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Stabilizing nanolasers 
via polarization lifetime tuning
Aycke Roos, Stefan Meinecke & Kathy Lüdge*

We investigate the emission dynamics of mutually coupled nanolasers and predict ways to optimize 
their stability, i.e., maximize their locking range. We find that tuning the cavity lifetime to the 
same order of magnitude as the dephasing time of the microscopic polarization yields optimal 
operation conditions, which allow for wider tuning ranges than usually observed in conventional 
semiconductor lasers. The lasers are modeled by Maxwell–Bloch type class-C equations. For our 
analysis, we analytically determine the steady state solutions, analyze the symmetries of the system 
and numerically characterize the emission dynamics via the underlying bifurcation structure. The 
polarization lifetime is found to be a crucial parameter, which impacts the observed dynamics in the 
parameter space spanned by frequency detuning, coupling strength and coupling phase.

Coupled nanophotonic semiconductor lasers are a prototypical model for on-chip laser networks1,2, which have 
attracted considerable attention as an optical solution for neuromorphic realizations in the recent years3–5. Due 
to their small footprint, high speed and low power consumption, they are promising light sources for a wide 
range of nanophotonic applications such as photonic integrated circuits, on-chip optical computing, and optical 
communication4,6–9. One crucial precondition for a successful photonic implementation is the knowledge of the 
synchronization stability boundaries and thus the underlying dynamics of the devices.

Micro- and nanolasers using metal cavities10 or made of 2D material11 differ from conventional meso- or 
macrolasers by their high photon loss rates12–15. The effect of a high spontaneous emission rate leads to interest-
ing stochastic effects close to threshold13–16, but also leads to an increased dynamical complexity of such lasers. 
Their deterministic dynamics are well described by macroscopic Maxwell–Bloch equations, which are structurally 
aquivalent to the Lorenz-Haken equations17–20. In particular, the dynamical influence of the polarization of the 
active medium can not be neglected for such lasers. Previous works have shown that this additional degrees of 
freedom can have a stabilizing effect onto the dynamics in injection and feedback setups12,21. We want to deepen 
this analysis and predict optimal configurations for delay coupled nanolasers with a focus on frequency tuning 
and locking ranges. The nanolasers investigated here are assumed to be single mode in order to emphasize the 
effect of the internal timescales. Therefore, dynamic effects induced by the gain competition of two-modes, as 
e.g. discussed in22–24, are omitted for clarity.

The dynamic classification of lasers into class-A, -B and -C is determined by the effective number of dynamical 
degrees of freedom25,26. Class-A lasers are characterized by a long photon lifetime in the cavity while the inversion 
and polarization lifetime are much smaller, thus, the electric field is the dominating dynamical quantity. For a 
class-B laser the inversion lifetime matches the photon lifetime and is therefore treated as an additional dynamic 
variable. Lastly, for a class-C laser, all three timescales are on the same order of magnitude and thus the dynamic 
degree of freedom of the polarization also plays a crucial role.

A nanolaser with its short cavity lifetime is usually a class-C laser27,28. In this paper, we do not want to pro-
vide a quantitave modelling of nanolasers, as e.g. possible in more elaborate frameworks29, but we will discuss 
the dynamic effect of the timescales. In particular, we explore the impact of the polarization lifetime onto the 
locking behavior of two coupled nanolasers. We use a paradigmatic (Maxwell–Bloch) class-C model and discuss 
the bifurcation structure with a special focus on the systems symmetries. We further show that polarization 
lifetimes on the order of the photon lifetime yield optimal locking behavior over wide tuning ranges. Our results 
are important for applications where synchronization among coupled lasers is crucial and where a wider tuning 
range allows for a higher tolerance towards volatility in the fabrication process.

Since meso-/macroscopic semiconductor lasers are proven to be described well by class-B lasers, a wide range 
of investigations has been carried out over the recent years. Therefore comprehensive insights on several setups 
as lasers with optical injection or feedback30–32 and coupled laser systems7,33–37 have been gathered. For class-C 
lasers it was theoretically predicted that injection and feedback setups show significant differences12,21. Here, we 
investigate the dynamics of two identical coupled class-C lasers. Since it is experimentally almost impossible to 
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realize two identical lasers, we analyze the lasers under small frequency detunings, which measure the effects of 
small differences between the lasers. We further study the system under a transition of the polarization lifetime 
from vanishing (class-B) to large times (class-C) to connect this manuscript to literature concerning coupled 
semiconductor class-B lasers33–36,38.

The paper is structured as follows: In “Semi-classical laser model” and “Symmetries” sections we introduce 
the model of two coupled class-C lasers, derive a class-B model as limit of small polarization lifetimes and dis-
cuss the symmetries of the coupled laser system. In “Compound laser modes (CLMs)” section we investigate the 
steady-state solutions (compound laser modes) with an emphasis on the polarization lifetime and the frequency 
detuning of the lasers. Finally, in “Bifurcation scenarios” and “Locking range” sections we discuss the bifurcation 
structure and study the maximum detuning (locking range) for which the lasers phase lock.

Semi‑classical laser model
Lasers generally consist of a cavity containing an active medium that is constantly being stimulated by an exter-
nal pump current p supplying the laser system with energy. The resulting inversion N of the medium induces 
an electric field E, which retrospectively causes a polarization P of the active medium. The modelling is done 
with macroscopic Maxwell–Bloch equations, both for atomic and semiconductor lasers20. They can be derived 
by a quantum-mechanical treatment of the active medium and a classical treatment of the electric field. The 
resulting microscopic Maxwell–Bloch equations can be transformed to macroscopic equations18. To describe 
two coupled lasers as shown in Fig. 1a, six differential equations, comprising the complex electric field E, the 
carrier inversion N and the complex polarization P for both lasers, are used. For a single laser we use the model 
published in12. The equations read 

 for j, k ∈ {1, 2} and j  = k , where all time scales, such as the carrier lifetime T and the polarization lifetime T2 are 
normalized to the photon lifetime in the cavity. To translate the timescales into SI-units, e.g., a photon lifetime 
of Tph = 1ps can be assumed39. The pump current is denoted by p. The parameter

normalizes the system such that the first laser threshold is always at p(1)thr = 1/2 . Thus, it does not depend on the 
polarization lifetime T2 , which allows for a fair comparison12. Throughout this paper, we choose a pumping of 
p = 2 , which corresponds to the lasers operating four times above threshold and below the second threshold12. 
The parameter �ω is the difference between the transition frequency of the two energy levels and the cavity 
mode. The system is further transformed into the reference frame of the average optical frequency ω0 of the two 
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Figure 1.   (a) Sketch of the coupling scheme and relevant dynamical variables and parameters. (b) Frequency 
scheme of the uncoupled lasers. The cold cavity frequencies ω1,2 of the lasers are detuned by 2δω . For both lasers 
there is a shift �ω between cavity resonance and gain maximum. The gain width is proportional to 1T2 for T2 > 1 
(figure not to scale).
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solitary laser frequencies ω1 and ω2 . Thus, a frequency shift of δω = (ω2 − ω1)/2 with respect to the solitary 
laser equations is added to account for the detuning of the lasers. All frequencies described above are schemati-
cally shown in Fig. 1b. The coupling among the lasers is implemented via the term KeiθEk(t − τ) in Eq. (1a), 
where self-coupling is not considered. τ represents the propagation time between the lasers. We only consider 
a delay of τ = 10 which corresponds to a length of 800 µm on an integrated chip. K is the coupling strength. 
In this manuscript we mainly choose a coupling of K = 0.1 , which refers to an intensity reflectivity of 20% . We 
consider superposition effects by back reflected light as small at this value and do not expect a significant impact 
on the observed dynamics40. The coupling phase θ is an additional phase shift acquired by the in-coupled light.

The complex eigenvalues of the linearized Class-C equations for one solitary laser have been determined as 
a function of the polarization lifetime T2 for the parameters discussed throughout the manuscript. Without the 
delayed coupling there are in total five eigenvalues out of which one is zero due to the phase symmetry12. The 
real and imaginary part of the (negative) eigenvalue which is undamped first (the one with the smallest absolute 
real part) are plotted in Fig. 2. The real part Re � corresponds to the damping ŴRO of the relaxation oscillations, 
whereas the imaginary part Im � yields the relaxation-oscillation frequency νRO.

The class-C laser equations can be reduced to class-B equations by considering the limit T2 → 0 , which 
mimicks the transition from a nanoscale to a mesoscale laser. By carrying out an adiabatic elimination of the 
polarization P and setting the derivative of the polarization to zero, we obtain the class-B laser equations12,41

Note that the frequency difference between gain and cavity resonance �ω now has an effect equivalent to the 
commonly known line-width enhancement factor α33,42,43.

Symmetries
Our model for the coupled laser system given in Eqs. (1a)–(1c) contains a number of symmetries that facilitate 
the interpretation of the results or enable the analysis of steady state solutions and the investigation of their 
stability. Hence, before presenting the results, the relevant symmetries are discussed in the following. These 
have been introduced by33 for two coupled class-B lasers and are reformulated and applied to class-C lasers here.

Reflection symmetry.  For identical lasers, Eqs. (1a)–(1c) are invariant under an exchange of the lasers. For 
non-identical lasers, i.e., here for a detuning δω  = 0 , the sign of the detuning has to be flipped

2πTranslational symmetry.  The system is invariant under 2π-phase shifts of the coupling phase

π‑Translational symmetry.  If the coupling phase θ is translated by π this translation can be cancelled out 
by a π-phase shift of one of the laser fields
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Figure 2.   Complex eigenvalue of the linearized Class-C equations for a solitary laser. (a) Real part eigenvalue 
describing the relaxation-oscillation (RO) damping, (b) Absolute value of the imaginary part yielding the RO 
frequency as a function of the polarization lifetime T2 . The secondary y-axes show a conversion to physical units 
assuming a photon lifetime of Tph = 1ps . Other parameters are �ω = 3 , p = 2 , K = 0 and T = 392.
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Note that the system satisfies more symmetries, which are however not crucial for the arguments within this 
manuscript.

Compound laser modes (CLMs)
The fundamental steady-state solutions describe the asymptotic behavior of the coupled laser system. Such solu-
tions have been previously discussed in the context of class-B lasers33 and are known as compound laser modes 
(CLMs). They describe fully synchronized, i.e., phase locked lasers. Due to the phase symmetry of the complex 
electric field and polarization we make the ansatz of constant light intensities |Ej|2 and constant rotation in the 
complex plane.

for j ∈ {1, 2} . The electric fields given by the optical frequency � of the CLM are allowed to have a phase differ-
ence φj,m for m ∈ {E, P} . Inserting the ansatz into Eqs. (1a)–(1c) yields a non-linear system of 10 equations that 
exhibits several branches of CLMs, characterized by different properties. In the following sections, we restrict 
the analysis to CLM branches that contain stable CLMs and CLM branches, which interact with the former.

For identical lasers ( δω = 0 ), the only CLMs found to be stable exhibit a phase difference between the lasers 
that is constant with respect to the coupling phase θ . Therefore such solutions correspond to phase-locking, 
i.e., synchronization, among the lasers. We refer to those steady states, also known as symmetric solutions35, 
as constant-phase CLMs in analogy to33, where a similar model for two coupled class-B lasers is discussed. We 
define the phase shift as

The amplitudes of the two lasers are identical when working on a constant-phase CLM. Figure 3a shows the 
intensities |Ej,0|2 of the CLMs as a function of the coupling phase θ . The color of the lines encodes the phase dif-
ference �φ between the two lasers and accordingly emphasizes two branches of constant phase CLMs, the in- and 
anti-phase CLMs (pink and yellow) with a phase difference �φ of 0 or π , respectively. The in- and anti-phase 
CLMs are connected by the π-translational symmetry: Given one full set of parameters, in particular θ = θ0 , for 
which an in-phase CLM exists, a corresponding anti-phase CLM exists for θ = θ0 + π . Figure 3a also depicts 
the intensity extrema found via numeric integration in dark green. It can be seen that the lasers either emits on 
the CLMs or they show periodic intensity oscillations that are born in Hopf bifurcations (the oscillations are 
identical for the two identical lasers). These periodic dynamics exist in regions where the CLMs are unstable 
and the oscillations form bridges between the in- and the anti-phase CLMs (these bridges are also found for 
the class-B limit with long delay36 and for mutually delay-coupled semiconductor lasers in Ref.38 where they are 
called symmetric two-color states).

(7)Ej = Ej,0e
−i�t+iφj,E , Pj = Pj,0e

−i�t+iφj,P , Nj = Nj,0.

(8)�φ(θ) = �φ = φ1,E − φ2,E = φ1,P − φ2,P .

Figure 3.   (a) Bifurcation scan of laser intensity |E|2 as a function of the coupling phase (dark green, lasers 
are identical and emit the same intensity), yellow and pink lines show the constant phase CLMs, (b) intensity 
of constant-phase and symmetry-broken CLMs. The line color encodes the phase difference �φ between the 
electric fields of the two lasers. The black squares denote pitchfork bifurcations33. Stable solutions in (b) are 
indicated by black surroundings. Other parameters are T2 = 2 , �ω = 3 , p = 2 , K = 0.1 , τ = 10 , δω = 0.
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In Fig. 3b two additional branches of symmetry-broken CLMs (also named intermediate-phase CLMs in 
Ref.33, asymmetric solutions in Ref.36 or out-of-phase solutions in Ref.35) can be seen (curves that change their 
color) next to the constant phase CLMs. The symmetry broken CLMs are characterized by a phase difference 
�φ(θ) that varies with the coupling phase, and by non-equal amplitudes Ej,033,36,38,44.  As a result the solutions for 
the two lasers that operate on a symmetry-broken CLM, do not parametrize the same curves in (�,N)-space. As 
can be seen in Fig. 3b, the symmetry-broken CLMs emerge in pitchfork bifurcations (black squares) from either 
in- or anti phase CLMs and vanish in the other.

In analogy to the external cavity modes of lasers subject to feedback (steady state solutions of the inten-
sity)12,30, Fig. 4 shows the CLMs in a (�,N)-phase projection. Here a matrix of such projection-maps is shown, 
where the polarization lifetime increases from top to bottom (mimicking the transition from nano- to mesoscale 
lasers) and the detuning increases from left to right (i.e a change from identical to slightly different lasers). The 
in- and anti-phase CLMs can be found in pink and yellow in the left column for vanishing detuning. They lie on 
the same curves due to their identical amplitudes up to phase shifts of π . Stable solutions are indicated by black 
surroundings. Again the symmetry-broken CLMs (curves that change color in Fig. 4) connect the in- and anti-
phase CLMs via pitchfork bifurcations (squares). Within every column of the matrix the polarization lifetime 
T2 ∈ {1, 2, 3} is varied from top to bottom. This change in T2 decreases the width of the gain spectrum, which 
is proportional to 1T2 (see Fig. 1b). As a result, the solutions for the coupled laser system are found on a smaller 
range of CLM frequencies �.

The consequences of non-vanishing detunings on the CLMs can be seen in the second and third column 
of Fig. 4. For each row, the polarization lifetime T2 is constant and the detuning δω is increased. Apart from T2

Figure 4.   Compound laser modes (CLMs) depicted in (�,N)-space for θ ∈ [0, 2π) . From top to bottom the 
polarization lifetime T2 increases. From left to right the detuning δω increases. Constant-phase (pink lines) and 
symmetry-broken CLMs (lines with continuous color) can be distinguished by the color coded phase difference 
�φ . Pitchfork bifurcations are marked as black squares, solutions for θ = 0 are indicated with white dots 
(black dots if stable). Stable solutions are indicated by black surroundings. For δω > 0 , the two curves of CLMs 
connect to one that differs for each laser (transparent for laser 2). Other parameters are �ω = 3 , p = 2 , K = 0.1 , 
τ = 10 , T = 392.
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-dependent deformations of the curves, every row shows a similar trend: For non-zero detunings, the pitchfork 
bifurcations, where the constant-phase and symmetry-broken CLMs coincide, are destroyed and we observe an 
anti-crossing instead. The CLM branches link and form horseshoe formed closed curves. This happens for both 
lasers (laser 2 printed transparent). For the laser emission this means that both lasers now always emit at differ-
ent intensities at the CLM solutions. Thus, due to the symmetry breaking induced by δω (non-identical lasers) 
we loose the clear distinction between constant-phase and symmetry-broken solutions. The side of opening and 
closing of the horseshoe is opposed to each other for both lasers. The deformed horseshoe-curves include stable 
CLMs, marked by black surrounding. The curves shrink, which indicates that the lasers can not stabilize for 
arbitrarily large detunings. When increasing the detuning δω we observe (not shown) that the horseshoe-formed 
curves pull together onto one point until they vanish completely and locking becomes impossible.

As mentioned before, the CLM solutions plotted in Fig. 4 are obtained by continuously tuning the coupling 
phase θ . For the specific choice of θ = 0 , the CLMs are marked by white and black dots. By inspecting those dots 
it becomes obvious that, for the fixed parameter set, there is only one stable CLM solution (black dot). This solu-
tion determines the emission frequency of the synchronized state observed numerically. It is noted that the size 
of the CLM curves increases with the coupling strength K (not seen in the figure). Their shape is not influenced 
by K, although the number of solutions, found for a fixed coupling phase, changes.

Bifurcation scenarios
In order to analyze the synchronization behavior of the two coupled class-C lasers with respect to their cou-
pling, we investigate the laser system with a focus on the coupling parameters θ , K and δω . Two dimensional 
bifurcation analyses are carried out by integrating Eqs. (1a)–(1c) numerically, using random initial conditions 
for each data point.

Figure 5a shows a bifurcation diagram in the parameter space of coupling strength K and detuning δω . Every 
data point of the graph represents a time series of one of the lasers intensities |E|2 , where the number of maxima 
of this time series is evaluated. For zero maxima, the lasers settle onto a CLM (see “Compound laser modes 
(CLMs)” section). In this case, instead of the number of maxima, the plots show the phase difference �φ of the 
electric fields. Figure 5b shows the difference |Emax

1 |2 − |Emax
2 |2 of the maxima of the two lasers. We concentrate 

on the period-one and steady state emission and thus areas with two or more maxima are masked in black in 
(b). The symmetry-breaking of the CLMs caused by non-zero detuning δω  = 0 can be seen by the red and blue-
ish colored regions. In Fig.  4 we saw this detuning induced symmetry breaking via the different closed loop of 
solutions (different intensity for each laser). The white regions in Fig. 5b indicate symmetric operation of both 
lasers, which interestingly also occurs for non-vanishing detuning within the regions of period-one oscillations 
(light blue regions in Fig. 5a).

The overall bifurcation structure for the small value of T2 = 1 chosen in Fig. 5, is in agreement with existing 
results on delay coupled class-B lasers. As expected for lasers with weak damping of their relaxation oscillations 
the locking range of the lasers approximately increases linearly with the coupling strength K. Please see Fig. 2 
for the values of relaxation-oscillation frequency ωRO and damping ŴRO of the solitary class-C laser used here.

Figure 5.   Dynamics in (K , δω)-space. (a) The number of maxima of time series |E1(t)|2 is shown in blue. The 
second color map encodes the phase difference �φ between the electric fields of the two lasers when they are 
phase locked on a CLM. (b) Intensity difference between both lasers ( |Emax

1 |2 − |Emax
2 |2 ) color coded in blue 

and red, white indicates identical laser emission. Areas with more than one maximum are masked black. Other 
parameters are T2 = 1 , �ω = 3 , p = 2 , θ = 0 , τ = 10 , T = 392.
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For an increasing detuning, the locking cone is bounded by saddle-node bifurcations, while it collapses in a 
Hopf-bifurcation for increasing K around K ≈ 0.235. In Fig. 5 we can see the saddle-node characteristics as the 
dynamics changes abruptly from locked operation (yellow/pink) to complex dynamics (dark blue). Instead, at the 
Hopf bifurcation (vertical border of the locking range for increasing K) harmonic oscillations with one maximum 
(light blue colors in Fig. 5) are born (they can also be seen in the 1D-bifurcation scan in Fig. 3a). The bifurcation 
structure changes substantially with the coupling phase θ as can be seen in the animation (Supplementary Video 
S1), which shows graphs as in Fig. 5 with varying coupling phase θ , where also the periodicity in the coupling 
phase θ (translations of π or 2π ) can be nicely seen. In particular, the π-periodicity can directly be associated 
with the π-translational symmetry of the in- and anti-phase CLMs. For phase differences of π and 2π , complex 
dynamics are observed for detuning δω = 0 and small coupling strengths (Supplementary Video S1) which most 
likely emerge when the periodic bridges between in- and anti-phase dynamics form homoclinic connections36.

We note that the analysis of the coupled laser dynamics is performed for deterministic equations. Neverthe-
less, we checked if the dynamics is preserved when a Gaussian white noise term Dξ is added onto the field equa-
tion. Our results show that as long as the noise strength D is chosen below D ≈ 0.1 (corresponding to a relative 
standard deviation σ/�I� ≈ 0.8 for the solitary class-C laser), the locking structure is preserved. For D > 0.1 the 
noise dominates the dynamics.

The significant dependency of the locking behavior on the coupling phase θ suggests an analysis of the system 
with respect to this parameter. Within this projection we will also further investigate the impact of the polari-
zation lifetime on the locking behavior of the lasers. Experimentally the coupling phase θ can easily be varied 
without crucially changing the other parameters. The normalized T2-time can be changed either by tuning the 
photon lifetime, i.e., the cavity, or by adjusting the active medium.

Figure 6 shows two-dimensional bifurcation diagrams for which the coupling phase θ and the detuning δω 
are varied. If the lasers stabilize on a CLM (locking region), the diagrams show the phase difference �φ of the 
electric fields color coded with the yellow and pink color scale. Figure 6 a shows the results for a class-B laser 

Figure 6.   Two dimensional bifurcation scenarios in the (θ , δω)-parameter space. For each data point the 
maxima of one time series of one laser are counted and color coded in blue. In the locked regions the phase 
difference of the electric fields of the lasers is shown by the pink and yellow color code. From (a) to (d) the 
polarization lifetime T2 increases. Other parameters are �ω = 3 , p = 2 , K = 0.1 , τ = 10 , T = 392.
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while panels (b)–(d) show the results for T2 ∈ {1, 2, 3} , respectively. The class-B laser mainly differs from the 
class-C laser by its widespread exhibition of complex dynamics ( ≥ 8 maxima). For the class-C lasers, such areas 
are mainly replaced by harmonic oscillations (one maximum), i.e., the saddle-node bifurcations at the borders 
of the locking range are replaced by Hopf bifurcations. The extend and shape of the locking regions change 
dramatically with the polarization lifetime (Fig. 6 from top to bottom) and an optimal value of T2 seems to exist. 
We investigate that in more detail in the next section.

The numeric results in Fig. 6 also nicely highlight the symmetries of our coupled laser system. Due to the 2π
-translational symmetry the results repeat and the system only needs to be investigated for θ ∈ [0, 2π) . The π
-translational symmetry can be seen by focusing on the locked regions. If we perform a horizontal cut through 
the locking region along δω = 0 the change from in-phase (pink shading) to anti-phase CLMs (orange shadings) 
always occurs after a phase shift of π . For every in-phase CLM at coupling phase θ0 , a corresponding anti-phase 
CLM exists at phase θ0 + π solving Eqs. (1a)–(1c) equivalently. Therefore, also the stability of these in- and 
anti-phase CLMs coincides making the number of maxima or the locking regions π-periodic with respect to 
the coupling phase θ . At last, also the reflection symmetry can be found in Fig. 6. It appears as a symmetry of 
the locking regions at the horizontal axis along δω = 0.

Locking range
The goal of this section is to identify a polarization lifetime that is best suited to attain large locking ranges. Thus, 
we define the locking range δωlock(θ) . It is the maximum detuning δω > 0 for which the lasers lock onto a CLM 
for one specific coupling phase θ (see arrow in Fig. 6d for the definition). Negative detunings do not need to be 
considered since the locking regions are symmetrical. For some phases, the locking regions vanish completely, i.e., 
δωlock = 0 . As can be seen in Fig. 6, δωlock also strongly depends on the polarization lifetime T2 . A monotonous 
correlation of the locking range to the polarization lifetime however can not be detected here, in contrast to a 
single class-C laser with feedback, which is stabilized by higher polarization lifetimes12.

To get a more comprehensive insight, Fig. 7 shows the locking range δωlock plotted color coded as a function 
of the coupling phase θ and the polarization lifetime T2 . Every horizontal line of the diagram holds the same 
information about the locking range as one sub-figure in Fig. 6. Presenting the situation continuously with 
respect to T2 shows that the locking range δωlock does not vary monotonously with T2 for any given coupling 
phase θ . In fact, on the interval investigated here, there are at least two disjoint partial intervals for which the 
locking range δωlock vanishes.

We furthermore define the maximum locking range δωθ
max as

This maximally achievable locking range for the given coupling strength K = 0.1 is depicted as a function of 
the polarization lifetime T2 in Fig. 8a for coupling strengths of K = 0.1 and K = 0.2 . For both coupling strengths, 
the maximum locking range δωθ

max increases until it reaches its maximum at T2 ≈ 1.06 for K = 0.1 or T2 ≈ 1.39 
for K = 0.2 . Afterwards, it decreases with δωθ

max ∝ 1/T2 for T2 > 1.06 or for T2 > 1.39 (see dashed lines in 
Fig. 8a). The decrease of the maximum locking range correlates with the decrease of the gain spectrum (as its 
width scales with 1/T2 ) and consequently with a narrower frequency spectrum of possible CLMs (see “Com-
pound laser modes (CLMs)” section). The increase of the maximum locking range for T2 < 1.06 on the other 
hand can be explained by the rising dynamical impact of the polarization lifetime and the additional degree of 
freedom in phase space compared to the class-B case. This additional dynamical degree of freedom also leads to 

(9)δωθ
max(T2) = max

θ∈[0,2π)
δωlock(θ ,T2).

Figure 7.   Color coded locking range δωlock as a function of the coupling phase θ and the polarization lifetime 
T2 on the intervals [0.1, 8]T2 and [0, 2π]θ . Other parameters are �ω = 3 , p = 2 , K = 0.1 , τ = 10.
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a maximum around T2 = 1 for the damping of the relaxation oscillations of the solitary laser (see Fig. 2). Both 
effects combined nicely explain the occurrence of an optimal value for T2 as seen in Fig. 8a. Further, the maximum 
locking range δωθ

max increases with the coupling strength K as shown in the plot. In particular, we found that it 
increases linearly for small coupling strengths below K ≈ 0.15.

A second approach to characterize the locking behavior is by defining the relative stability µδ , which repre-
sents the relative share of coupling phases on the interval [0, 2π)θ for which the locking range exceeds a certain 
threshold δ

� denotes the Heavyside function. The relative stability gives further insights on how stable a given polarization 
lifetime T2 is regarding all coupling phases. Figure 8b shows the relative stability µδ for several thresholds δ as a 
function of the polarization lifetime T2 . Trivially, the relative stability increases if the threshold δ , that has to be 
exceeded, decreases. For all shown δ , the curves have maxima on the interval [1, 2]T2 . Hence, the polarization 
lifetime T2 that exhibits the optimal maximum locking range δωθ

max approximately matches the polarization 
lifetime that shows the biggest share µδ of of high locking ranges. Both quantities together provide a compre-
hensive view of the locking behavior of the coupled laser system and show that optimal locking is achieved for 
polarization lifetimes of the order of the photon lifetime.

Conclusion
We have investigated the locking and synchronization behavior of two coupled class-C lasers as a paradigmatic 
example of nanolasers with a small photon lifetime. An emphasis was put on the impact of the polarization life-
time, the frequency detuning, and the coupling phase. To approach the locking structure of the delay-coupled 
laser system, we have determined the compound laser modes, which are the fundamental steady-state solutions 
of the system, investigated the symmetries of the system, and performed a bifurcation analysis of the underlying 
dynamics. The polarization lifetime T2 was found to decisively influence the locking range of the lasers. Inter-
estingly a value of T2 can be found where the locking range as well as the relative stability is optimal. The value 
depends on the photon lifetime within the cavity. Thus we can predict nanolasers to show best synchronization 
properties for the case where the photon lifetime is equal to the polarization lifetime for the case of weak coupling 
and about two third of the polarization lifetime for stronger coupling.
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