
Technische Universität Berlin
Institut für Mathematik

Signature Method Based Regularization
and Numerical Integration of DAEs

Andreas Steinbrecher† ‡

Preprint 2016/01

Preprint-Reihe des Instituts für Mathematik
Technische Universität Berlin

http://www.math.tu-berlin.de/preprints

Report 2016/01 February 2016



Modeling and simulation of dynamical systems often leads to differential-algebraic equations
(DAEs) which can be seen as differential equations, where every solution has to satisfy
constraints which are contained in the DAE. In general not all these constraints are stated
explicitly as equations or can be obtained by algebraic manipulations but are hidden in the
DAE and can be obtained from certain derivatives of (parts of) the DAE. Due to those
hidden constraints a direct numerical integration of DAEs in general leads to instabilities
and possibly non-convergence of numerical methods. Therefore, a regularization or remod-
eling of the model equations is required. In this article we present three approaches for
the regularization of DAEs that are based on the Signature method, which is a structural
analysis for DAEs. Furthermore, we present a software package suited for the proposed
regularizations and illustrate their efficiency on two examples.

AMS(MOS) subject classification: 34A09, 65L80

Keywords: DAE, hidden constraints, constraint level, structural analysis, signature
method, regularization, QUALIDAES

Authors address:

Andreas Steinbrecher
Institut für Mathematik, MA 4–5,
Technische Universität Berlin
Str. des 17. Juni 136
10623 Berlin, Germany
anst@math.tu-berlin.de



Signature Method Based Regularization and Numerical

Integration of DAEs

Andreas Steinbrecher†‡

February 5, 2016

Abstract

Modeling and simulation of dynamical systems often leads to differential-algebraic
equations (DAEs) which can be seen as differential equations, where every solution
has to satisfy constraints which are contained in the DAE. In general not all these
constraints are stated explicitly as equations or can be obtained by algebraic manip-
ulations but are hidden in the DAE and can be obtained from certain derivatives of
(parts of) the DAE. Due to those hidden constraints a direct numerical integration of
DAEs in general leads to instabilities and possibly non-convergence of numerical meth-
ods. Therefore, a regularization or remodeling of the model equations is required. In
this article we present three approaches for the regularization of DAEs that are based
on the Signature method, which is a structural analysis for DAEs. Furthermore, we
present a software package suited for the proposed regularizations and illustrate their
efficiency on two examples.

Keywords: DAE, hidden constraints, constraint level, structural analysis, signa-
ture method, regularization, QUALIDAES

AMS(MOS) subject classification: 34A09, 65L80

1 Introduction

The complete virtual design of dynamical systems plays a key role in our technological
progress. Therefore, the interconnection of automatic modeling tools with efficient and
robust simulation tools is of growing interest. The automatic modeling using coupling of
modularized subcomponents is frequently used in industrial applications. Here, the coupling
of subcomponents is usually described by algebraic constraints yielding large-scale (but
often sparse) differential-algebraic equations (DAEs) as model equations, e.g., for multibody
systems, electrical circuits, or flow problems.
In this article, we consider nonlinear DAEs of the form

F (t, z, ż) = 0, (1)

with sufficiently smooth functions F : I× Rn × Rn → Rm and z : I→ Rn, with t ∈ I and a
compact interval I ⊂ R.
Unfortunately, the direct numerical integration of DAEs in general is not feasible due to so
called hidden constraints which restrict the solution but are not explicitly stated as equations
or cannot be obtained only by algebraic manipulations. Hidden constraints usually lead to
instabilities and possibly non-convergence of the numerical methods, e.g., see [6, 11, 13, 22].
Hidden constraints can be determined by algebraic manipulations of a certain number of
differentiations of (parts of) the DAE. This number of differentiations gives a classification
of the difficulties in the treatment of DAEs, and yields in different index concepts, e.g., the
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differentiation index (d-index) νd [6, 11], the strangeness index νs [13], the tractability index
νt [14], the structural index νΣ [19], or the maximal constraint level νc [22].
To guarantee a stable and robust numerical integration, a regularization or remodeling of
the considered DAE is required. The basic idea of an approach to obtain a regularization
for high-index DAEs is to consider the original DAE together with a sufficient number of its
derivatives (as a derivative array). Then a DAE, called regularized DAE or regularization,
which has to be solution equivalent to the original DAE can be derived that now contains
all the information on the manifold in which the dynamic of the system take place as
algebraic equations. Thus, the regularized DAE does not contain further hidden constraints
but contains the originally hidden constraints explicitly as algebraic equations. Often, the
regularized DAE will consist of two parts, a purely algebraic part describing the manifold
of constraints and a differential part describing the dynamic on this manifold. Since all
constraints (including the originally hidden ones) are explicitly stated in the regularized
DAE, it can be guaranteed that all these constraints are satisfied within the numerical
solution (up to the accuracy that is used to solve these equations) and instabilities or drift
from the solution manifold are avoided.
Several general algebraic approaches for the regularization of DAEs are developed, e.g.,
projection methods [14], Kunkel-Mehrmann formulation [13, 20], projected strangeness-free
formulations [22], minimal extension [12]. However, the computational complexity for these
general algebraic approaches is substantial, since from the derivative array certain nullspaces
of the Jacobians and associated projectors onto these nullspaces have to be computed at
every integration step. This makes algebraic approaches quite expensive for medium or
large scale problems. For structured problems more specific regularization approaches are
developed, in particular, the Gear-Gupta-Leimkuhler formulation for the model equations
of multibody systems [9] and an element based approach for electrical circuits [4].
In addition to algebraic approaches so called structural approaches were developed, e.g.,
the Pantelides algorithm [18] or the Signature method (Σ-method) [19]. The structural ap-
proaches avoid the large computational effort necessary in algebraic approaches. Structural
approaches are based on the sparsity pattern of the DAE, to obtain necessary information for
a regularization. In these approaches generic structural information, together with certain
computer-algebra packages or symbolic differentiation, is used to identify the constraints
and interface conditions, as well as the dynamic equations, to determine the index of the
system and to compute an index-reduced regularized system model. The advantage of a
structural approach in comparison to classical algebraic regularization approaches is that
fast algorithms based on graph theory can be applied. Usually, the Pantelides algorithm
in combination with the Dummy Derivative Method [15] is used in many modeling and
simulation tools as the current state-of-the-art to regularize high-index DAEs.
In this article, we present regularization approaches for DAEs that are based on the Σ-
method. The article is organized as follows. In Section 2, we review the structural analysis
for DAEs based on the Σ-method for DAEs. In Section 3, we discuss regularization tech-
niques for structurally regular problems that are based on the information provided by the
Σ-method. Two of the regularization techniques yield overdetermined systems of DAEs.
Therefore, in Section 4 we shortly discuss the software package QUALIDAES for the numerical
integration of (overdetermined) quasi-linear DAEs. In Section 5 we illustrate the applicabil-
ity of the three proposed regularized formulations numerically integrated with QUALIDAES

at two examples. We end with some concluding remarks in Section 6.

2 Signature Method - Structural Analysis of DAEs

The Signature method (Σ-method), see [19] and also [16, 17, 21], can be applied to regular
nonlinear DAEs of arbitrary high order p of the form F (t, z, ż, . . . , z(p)) = 0 with F :
I× Rn × · · · × Rn → Rn sufficiently smooth and I ⊂ R a compact interval.
Nevertheless, in this article we will restrict our considerations to first order DAEs of the
form (1). We denote by Fi the ith component of the vector-valued function F and by zj

the jth component of the vector z. Furthermore, z(k) denotes the kth derivative dkz
dtk

with
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respect to t and ż = z(1), z̈ = z(2). Then, the Σ-method consists of the following steps:

Algorithm 2.1 (Signature method (Σ-method) [19])

1. Building the signature matrix Σ = [σij ]i,j=1,...,n with

σij =

{
highest order of derivative of zj in Fi,

−∞ if zj does not occur in Fi.

2. Finding a highest value transversal (HVT) of Σ, i.e., a transversal T = {(1, j1),
(2, j2), . . . , (n, jn)}, where (j1, . . . , jn) is a permutation of (1, . . . , n), with maximal
value Val(T ) :=

∑
(i,j)∈T σij .

3. Computing the offset vectors c = [ci]i=1,...,n and d = [dj ]j=1,...,n with ci, dj ∈ N0 such
that

dj − ci ≥ σij for all i, j = 1, . . . , n and (2a)

dj − ci = σij for all (i, j) ∈ T. (2b)

4. Forming the Σ-Jacobian J = [Jij ]i,j=1,...,n with

Jij :=


∂Fi

∂z
(σij)

j

if dj − ci = σij ,

0 otherwise.
(3)

5. Building the reduced derivative array

0 = F(t,Z) =

 F1(t,Z)
...

Fn(t,Z)

 (4)

with

Fi(t,Z) =


Fi(t, z, ż)
d
dtFi(t, z, ż)

...
dci

dtci Fi(t, z, ż)

 for i = 1, ...n,

and

ZT =
[
z1 ż1 . . . z

(d1)
1 . . . zn żn . . . z

(dn)
n

]
.

6. Success check: if F(t,Z) = 0, considered locally as an algebraic system, has a solution
(t∗,Z∗) ∈ I×Rn+

∑n
i=1 di , and J is nonsingular at (t∗,Z∗), then (t∗,Z∗) is a consistent

point and the method succeeds.

The crucial step in the Σ-method is the success check, i.e., the verification of regularity of
the Σ-Jacobian at a consistent point. DAEs for which the Σ-Jacobian is singular for all
points (t∗,Z∗) that solve the reduced derivative array (4) algebraically or DAEs for which
there exists no HVT are called structurally singular. Accordingly, if the Σ-method succeeds
the DAE (1) is called structurally regular with the structural index νΣ defined as

νΣ :=

{
maxi ci if all dj > 0
maxi ci + 1 if some dj = 0.

and Val(Σ), defined as the value of the highest value transversal T , corresponds to the
number of degrees of freedom of the system, see [19]. We call J the Σ-Jacobian since it is

3



in general not equal to the Jacobian ∂F
∂z or ∂F

∂ż , but defined by the offset vectors. Note that
the success check of the Σ-method is performed locally at a fixed point (t∗,Z∗), such that
the result may hold only locally in a neighborhood of a consistent point.
An HVT as well as the offset vectors can be computed by solving a linear assignment problem
(LAP), see [19]. That means, Σ is the matrix of the LAP, where each assignment is specified
by a transversal. This LAP (as a special kind of a linear programming problem) also has
a dual problem, and the offset vectors c and d are the corresponding solutions of the dual
problem. The HVT as well as the offset vectors c and d are not uniquely defined by the
conditions (2), since for any feasible solution c and d, also the vectors [ci + θ]i and [dj + θ]j
form a solution for any θ ∈ N0. However, there exists a unique element-wise smallest
solution, of the dual problem, the so-called canonical offset vectors. These are uniquely
determined and independent of the chosen HVT, for more details we refer [19].

Remark 2.2 It holds that the set of equations

0 = G(t,Z) =


dc1

dtc1 F1(t, z, ż)
...

dcn

dtcn Fn(t, z, ż)


is algebraically uniquely solvable for the highest occurring derivatives of the unknowns zi,

i = 1, ..., n in G, i.e., for
[
z

(d1)
1 ... z

(dn)
n

]T
, such that we get from the implicit function

theorem (see [3])
z

(d1)
1
...

z
(dn)
n

= Ḡ(t,
[
z

(0)
1 . . . z

(d1−1)
1 . . . z

(0)
n . . . z

(dn−1)
n

]T
).

See [19]. /

Definition 2.3 Let the DAE (1) be structurally regular with the canonical offset vectors c
and d defined in Algorithm 2.1. For the reduced derivative array F let

rank(
[
∂F
∂z

∂F
∂ż · · · ∂F

∂z(maxi di)

]
) = n+

n∑
i=1

ci (5a)

and rank(
[
∂F
∂ż · · · ∂F

∂z(maxi di)

]
) =

n∑
i=1

di (5b)

for all (t∗,Z∗) satisfying 0 = F(t∗,Z∗). Then from 0 = F a set of algebraic equations

0 = H(t, z) with H(t, z) : I× Rn → Rmc (6)

with mc = n+
∑n
i=1 ci −

∑n
i=1 di and

rank(
∂H(t, z)

∂z
) = mc for all (t, z) ∈M

with

M = {(t, z) ∈ I× Rn : 0 = H(t, z)}

can be extracted.
The set M is called set of consistency and the array of equations 0 = H(t, z) is called the
array of (hidden) constraints.

The array of constraints 0 = H(t, z) contains all (hidden) constraints of the DAE (1) and,
therefore, restricts every solution z of the DAE (1) into the set of consistency M. This means
that (t, z(t)) ∈M has to be satisfied by every solution z for all t ∈ I.
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Remark 2.4 Replacing all derivatives of all variables by algebraic variables, i.e., replacing

z
(j)
i by ωji for i = 1, ..., n and j = 1, ..., di, in the reduced derivative array (4) yields the

algebraic reduced derivative array

0 = F(t, z, ω)=F(t, z1, ω1, . . . , zn, ωn) (7)

with ωT =
[
ωT1 · · · ωTn

]
and ωi=

{
[ω1
i , ..., ω

di
i ]T if di ≥ 1,

[·] if di = 0.

From (5b), the implicit function theorem, and the assumed structural regularity of (1) it
follows that (7) can be solved uniquely for ω, such that we obtain

ω = Ω(t, z) (8)

such that 0 = F(t, z,Ω(t, z)). /

Definition 2.5 [23] Two DAEs (1) and

0 = F̂ (t, ẑ, ˙̂z) (9)

with their sets of consistency M ⊂ I× Rn and M̂ ⊂ I× Rn̂, respectively, are called solution
equivalent if there uniquely exists a bijective map Φ : M→ M̂ such that Φ(x) is a solution
of (9) if x is a solution of (1) and Φ−1(x̂) is a solution of (1) if x̂ is a solution of (9).

Definition 2.6 A DAE (9) with structural index ν̂Σ is called a structural regularization of
the DAE (1) with structural index νΣ if both DAEs are solution equivalent and ν̂Σ < νΣ.

Example 2.7 Let us consider the simple pendulum (Fig. 1) of mass m > 0 and length
` > 0 under gravity g, see also [19, 21].

(x(t),y(t))

m

L

ϕ

Y

X

g

(x(t), y(t))

m

`

g

Figure 1: Simple Pendulum

The state of the pendulum is described by the position x and y, the velocities v and w of
the mass point, and the Lagrange multiplier λ. The system equations are given by

0=F (z, ż)=


F1(z, ż)
F2(z, ż)
F3(z, ż)
F4(z, ż)
F5(z, ż)

=


ẋ− v
ẏ − w

mv̇ + 2xλ
mẇ + 2yλ+mg
x2 + y2 − `2

 ,
(10a)
(10b)
(10c)
(10d)
(10e)
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where zT =
[
x y v w λ

]
.

The model equations (10) contain hidden constraints which constrain the solution in addition
to the explicitly stated constraint (10e). In particular, as one hidden constraint we have the
constraint on level 1 (velocity level)

0 = 2xv + 2yw (11a)

obtained from the total time derivative of the constraint (10e), where the derivatives ẋ
and ẏ are replaced by (10a) and (10b), respectively. The constraint (11a) is called hidden
constraint on level 1 since this constraint is obtained after differentiation of (certain) model
equations at most once. A further hidden constraint is the constraint on level 2 (acceleration
level)

0 = 2v2 + 2w2 − 2yg− 4

m
(x2 + y2)λ. (11b)

This is obtained from the total time derivative of the constraint on level 1 (11a), where the
derivatives ẋ, ẏ, v̇, and ẇ are replaced by (10a)-(10d), respectively. The constraint (11b) is
called hidden constraint on level 2 since this constraint is obtained after differentiation of
(certain) model equations at most twice.
Following the Σ-method we get the signature matrix Σ for (10) and the canonical offset
vectors c and d as

Σ =


1 − 0 − −
− 1 − 0 −
0 − 1 − 0

− 0 − 1 0

0 0 − − −

, c =


1

1

0

0

2

, (12)

dT =
[

2 2 1 1 0
]
,

where the two possible HVTs

T1 = {(1, 3), (2, 2), (3, 5), (4, 4), (5, 1)},
T2 = {(1, 1), (2, 4), (3, 3), (4, 5), (5, 2)}

are marked by light gray boxes for T1 and dark gray boxes for T2. In Σ the entry ”−” stands
for −∞. The corresponding Σ-Jacobian J in (3) and the reduced derivative array F in (4)
takes the form

J=


1 0 −1 0 0
0 1 0 −1 0
0 0 m 0 2x
0 0 0 m 2y

2x 2y 0 0 0

 , (13)

0 = F(t,Z) =



ẋ− v
ẍ− v̇
ẏ − w
ÿ − ẇ

mv̇ + 2xλ
mẇ + 2yλ+mg
x2 + y2 − `2
2xẋ+ 2yẏ

2xẍ+ 2ẋ2 + 2yÿ + 2ẏ2



(14a)
(14b)
(14c)
(14d)
(14e)
(14f)
(14g)
(14h)
(14i)

with ZT =
[
x ẋ ẍ y ẏ ÿ v v̇ w ẇ λ

]
. Since det(J) = −4m(x2 + y2) =

−4m`2 6= 0, the Σ-Jacobian J is nonsingular at every consistent point, and the Σ-method
succeeds with νΣ = maxi ci + 1 = 3.

6



As mentioned in Definition 2.3 the reduced derivative array (14) allows the determination
of all (hidden) constraints yielding the array of (hidden) constraints (6). In particular, the
constraint on level 0 (10e) (which is not hidden) is contained explicitly as equation (14g).
Furthermore, the hidden constraint on level 1 (velocity level) (11a) can be obtained from
(14h), where ẋ and ẏ are replaced by use of equations (14a) and (14c), respectively. The
hidden constraint on level 2 (acceleration level) (11b) can be obtained from (14i), where ẍ
and ÿ are replaced by use of equations (14b) and (14d) and ẋ, ẏ, v̇, and ẇ are replaced by
use of equations (14a), (14c), (14e), and (14f), respectively. Summarizing we get the array
of (hidden) constraints as

0 = H(t, z) =

 x2 + y2 − `2
2xv + 2yw

v2+w2− 2
m (x2+ y2)λ−yg

 . (15)

/

Example 2.8 In the second example we are interested in a path following problem of a
mass-spring-chain as in Figure 2. On the first and the last body the force F is applied
while the body in the center has to follow a prescribed path given as constraint (16g). The
unknown variables are pi and vi as the position and velocity of body i = 1, 2, 3 and F as
acting force.

Path

Control

Control

p

p

p

F

F

c

c

1

2

3

2

1

m

m 2

m 3

1

Figure 2: Mass-Spring-Chain

The model equations are given by

0 = F (z, ż) =



ṗ1−v1

ṗ2−v2

ṗ3−v3

mv̇1+c(p1−p2)−F
mv̇2−c(p1−p2)+c(p2−p3)

mv̇3−c(p2−p3)−F
p2−sin(t)


,

(16a)
(16b)
(16c)
(16d)
(16e)
(16f)
(16g)

where zT =
[
p1 p2 p3 v1 v2 v3 F

]
. Beside the explicitly stated constraint (16g),

which prescribes the path, there exists the hidden constraints

0 = v2−cos(t), (17a)

0 =
c

m
(p1−p2)− c

m
(p2−p3)+sin(t), (17b)

0 =
c

m
(v1−v2)− c

m
(v2−v3)+cos(t), (17c)

0 =
c

m2
(−3c(p1−p2)+3c(p2−p3)+2F )−sin(t). (17d)
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These hidden constraints (17a)-(17d) are on level 1 up to 4, respectively, and are obtained
in a similar way as in Example 2.7 by differentiating (parts of) the DAE once up to four
times, respectively, with replacing derivatives of the states by use of equations (16a)-(16f).
Following the Σ-method we get the signature matrix Σ for (16) and the canonical offset
vectors c and d as

Σ =



1 − − 0 − − −
− 1 − − 0 − −
− − 1 − − 0 −
0 0 − 1 − − 0

0 0 0 − 1 − −
− 0 0 − − 1 0

− 0 − − − − −


, c =



1

3

1

0

2

0

4


,

dT =
[

2 4 2 1 3 1 0
]
, (18)

where the two possible HVTs

T1 = {(1, 4), (2, 5), (3, 3), (4, 7), (5, 1), (6, 6), (7, 2)},
T2 = {(1, 1), (2, 5), (3, 6), (4, 4), (5, 3), (6, 7), (7, 2)}

are marked by light gray boxes for T1 and dark gray boxes for T2. Here again in Σ the entry
”−” stands for −∞. The corresponding Σ-Jacobian J in (3) and the reduced derivative
array 0 = F in (4) takes the form

J =



1 0 0 −1 0 0 0
0 1 0 0 −1 0 0
0 0 1 0 0 −1 0
0 0 0 m 0 0 −1
−c 0 −c 0 m 0 0
0 0 0 0 0 m −1
0 1 0 0 0 0 0


, (19)

0 = F(t,Z) =



ṗ1 − v1

p̈1 − v̇1

ṗ2 − v2

p̈2 − v̇2

p
(3)
2 − v̈2

p
(4)
2 − v

(3)
2

ṗ3 − v3

p̈3 − v̇3

mv̇1 + c(p1 − p2)− F
mv̇2 − c(p1 − p2) + c(p2 − p3)
mv̈2 − c(ṗ1 − ṗ2) + c(ṗ2 − ṗ3)

mv
(3)
2 − c(p̈1 − p̈2) + c(p̈2 − p̈3)
mv̇3 − c(p2 − p3)− F

p2 − sin(t)
ṗ2 − cos(t)
p̈2 + sin(t)

p
(3)
2 + cos(t)

p
(4)
2 − sin(t)



(20a)

(20b)

(20c)

(20d)

(20e)

(20f)

(20g)

(20h)

(20i)

(20j)

(20k)

(20l)

(20m)

(20n)

(20o)

(20p)

(20q)

(20r)

with ZT = [p1 ṗ1 p̈1 p2 ṗ2 p̈2 p
(3)
2 p

(4)
2 p3 ṗ3 p̈3 v1 v̇1 v2 v̇2 v̈2 v

(3)
2 v3 v̇3 F ].

Since det(J) = 2cm 6= 0, the Σ-Jacobian J is nonsingular independent on Z, and the Σ-
method succeeds with νΣ = maxi ci + 1 = 5.
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Again the reduced derivative array (14) allows the determination of all (hidden) constraints
yielding the array of (hidden) constraints (6). In particular, the constraint on level 0 (16g)
(which is not hidden) is contained explicitly as equation (20n). Furthermore, the hidden
constraint on level 1 (velocity level) (17a) can be obtained from (20o), where ṗ2 is replaced
by use of equation (20c). The hidden constraint on level 2 (acceleration level) (17b) can be
obtained from (20p), where p̈2 is replaced by use of equation (20d) and v̇2 is replaced by use
of equation (20j). The hidden constraint on level 3 and 4 can be obtained in a similar way.
Summarizing we get the array of (hidden) constraints as

0 = H(t, z) =


p2−sin(t)
v2−cos(t)

c
m (p1−p2)− c

m (p2−p3)+sin(t)
c
m (v1−v2)− c

m (v2−v3)+cos(t)
c
m2 (−3c(p1−p2)+3c(p2−p3)+2F )−sin(t)

. (21)

/

3 Regularization Approaches for DAEs

Now, we consider structurally regular DAEs (1) with m = n for which the Σ-method suc-
ceeds and discuss three different regularization approaches. These regularization approaches
mainly use the reduced derivative array F in (4) provided by the Σ-method as well as the
set of (hidden) constraints (6), see Definition 2.3. These proposed regularization approaches
differ in its degree of analytical preprocessing and possible degree of automation of the
approach.

3.1 Regularization via Structural Extension

To obtain a regularized formulation of a given DAE system (1), the information in the
reduced derivative array F provided by the Σ-method can be used.
The reduced derivative array F is defined in Step 5 in Algorithm 2.1 by adding the
derivatives of Fi up to order ci to the original DAE resulting in (4) and consists of
M =

∑
i ci + n equations in n unknowns z1, . . . , zn. More precisely, it depends on

z1, ż1, . . . , z
(d1)
1 , . . . , zn, żn, . . . , z

(dn)
n . Thus, to obtain the same number of equations and

unknowns, we have to introduce nψ =
∑
i ci new variables.

For that we choose one HVT T ∗ from the set of all existing HVTs. Then for each j = 1, . . . , n
we have a unique i with (i, j) ∈ T ∗, and a regularization can be obtained from the reduced

derivative array F in (4) by replacing the derivatives z
(σij+1)
j , ..., z

(di)
j with the new algebraic

variables ψ
σij+1
j , ..., ψdij if di > σij .

By replacing derivatives of the unknown variables with algebraic variables in the reduced
derivative array 0 = F in (4) as described above, we obtain the structurally extended (StE)
formulation

S(t, z, ż, ψ) = 0 (22)

with ψ as new algebraic variables, where

ψT =
[
ψT1 · · · ψTn

]
and

ψj :=

{ [
ψ
σij+1
j · · · ψdij

]T
of size ci if dj > σij

[ · ] of size 0 if dj = σij .

Note that dj = σij + ci by (2b).
The obtained structurally extended formulation (22) is of increased size and not unique,
since it depends on the chosen HVT T ∗.
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The application of the Σ-method to StE-formulation (22) with the vector of unknowns[
zT ψT

]T
yields canonical offset vectors

c =

 0
...
0

 and d =

[
dz

dψ

]

with dz ∈ {0, 1}n corresponding to the existing highest derivatives of z in (22) consisting only
zeros and ones and with dψ = 0 corresponding to ψ in (22), see [21]. Therefore, according
to Remark 2.2 and due to c = 0, it holds that (22) is algebraically uniquely solvable for[
z

(dz1)
1 ... z

(dzn)
n ψ1 ... ψnψ

]T
. Consequently, we get

z
(dz1)
1
...

z
(dzn)
n

ψ1

...
ψnψ


=

[
Ψz(t, z)
Ψψ(t, z)

]
,

in particular, ψ = Ψψ(t, z). Therefore, the StE-formulation (22) is locally solution equivalent
to the original DAE (1) as long as the StE-formulation (22) is structurally regular with

Φ : z 7→
[

z
Ψψ(t, z)

]
=

[
z
ψ

]
.

Consequently, the StE-formulation (22) has locally the same set of solutions for the original
unknowns z as the original DAE (1). Due to the reduced structural index νΣ = 0 of the
StE-formulation (22) it is a local structural regularization of the original DAE (1).
In general the structurally extended formulation (22) is only valid locally in a neighbor-
hood of a consistent point as long as the StE-formulation themselves is structurally regular.
Therefore, it may lead to an inappropriate regularization, if an inappropriate HVT T ∗ is
used (see Example 3.1). If an HVT is choosen which is not suitable, the StE-formulation is
structurally singular. Therefore, the determination/usage of a new StE-formulation during
the (numerical) integration may be necessary (also known as dynamic state selection). In
this case, the numerical integration has to be interrupted and to be restarted with the newly
regularized model equations. Unfortunately, this leads to an increase in integration time
and influences the obtained precision negatively. This is a common problem whenever new
variables are introduced to obtain a regularization. The same problem occurs in the Method
of Dummy Derivatives [15] or in the Index Reduction by Minimal Extension [12].
To choose a suitable HVT, i.e., one that is valid in a preferably large neighborhood of a
consistent point, we use a weighting for the different possible HVTs. Based on the Σ-
Jacobian (that is regular since the Σ-method succeeds locally at the consistent point) we
define the (local) weighting coefficient for each possible HVT T as

κT :=
∏

(i,j)∈T

|Jij |

and choose one with largest value κT , i.e., we choose T ∗ as an HVT of Σ with κT∗ =
maxT (κT ). The choice of the HVT based on the weighting factor κT is motivated by the
observation, that a “good” HVT should be well-conditioned in the sense that the resulting
regularized system is structurally regular and well away from a singular point. For more
details in the choice of T ∗ see [21], where it is shown that the structurally extended system
(22) is (locally) a regular system of structural index νΣ ≤ 1 if T ∗ is chosen as described
above.
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This approach via structural extension completely can be automated using automatic or
symbolic differentiation tools. Therefore, an analytical preprocessing is not necessary.
The regularization approach via structural extension based on the Σ-method is similar to the
Method of Dummy Derivatives [15], where the Pantelides algorithm [18] is used to determine
the number of times each equation has to be differentiated to obtain a reduced derivative
array. It has been shown in [19] that the Pantelides algorithm and the Σ-method are essen-
tially equivalent in the sense that, if they both can be applied and they both succeed (or
converge in case of the Pantelides algorithm), they result in the same structural index, and
the canonical offset vector c = [ci] corresponds to the number of differentiations for each
equation Fi as determined by the Pantelides algorithm. In the proposed regularization via
structural extension, the selection of variables for which derivatives are replaced is directly
prescribed by the HVT T ∗ and the canonical offset vectors. Once the Σ-method is done,
this selection of variables is easy to achieve and requires no further numerical computations.
In contrast, in the Dummy Derivative Method, the selection of variables is based on an algo-
rithm that aims at selecting certain columns of the Jacobian to obtain a regular submatrix,
for details see [15]. As a result, the selected variables are not necessarily the same, and the
two approaches might result in different regularizations.

Example 3.1 Let us continue the consideration of the model equations (10) for the simple
pendulum. See Example 2.7. The DAE (10) is structurally regular and of structural index
νΣ = 3. The reduced derivative array (14) consists of M =

∑
ci + n = 9 equations in n = 5

unknowns.
For the HVT T ∗ = T1 marked by the light gray boxes in the signature matrix (12) (assuming
that κT1

= 4x2 ≥ κT2
= 4y2), we have to introduce new algebraic variables as in the following

table:

for j with i replace with new
s.t. derivatives algebraic variables

(i, j) ∈ T ∗ z
(σij+1)
j , ..., z

(dj)
j ψ

σij+1
j , ..., ψ

dj
j

1 5 z
(1)
1 , z

(2)
1 ψ1

1 , ψ
2
1

2 2 z
(2)
2 ψ2

2

3 1 z
(1)
3 ψ1

3

4 4 ∅ ∅
5 3 ∅ ∅

Then we construct the structurally extended formulation as

0=S1(t, z, ż, ψ1)=



ψ1
1 − v

ψ2
1 − ψ1

3

ẏ − w
ψ2

2 − ẇ
mψ1

3 + 2xλ
mẇ + 2yλ+mg
x2 + y2 − `2
2xψ1

1 + 2yẏ
2xψ2

1 +2(ψ1
1)2+2yψ2

2 +2ẏ2


(23)

with

zT =
[
x y v w λ

]
,

ψT1 =
[
ψ1

1 ψ2
1 ψ2

2 ψ1
3

]
.

For the HVT T ∗ = T2 marked by the dark gray boxes in the signature matrix (12) (assuming
that κT2

= 4y2 ≥ κT1
= 4x2), we have to introduce new algebraic variables as in the following

table:
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for j with i replace with new
s.t. derivatives algebraic variables

(i, j) ∈ T ∗ z
(σij+1)
j , ..., z

(dj)
j ψ

σij+1
j , ..., ψ

dj
j

1 1 z
(2)
1 ψ2

1

2 5 z
(1)
2 , z

(2)
2 ψ1

2 , ψ
2
2

3 3 ∅ ∅
4 2 z

(1)
4 ψ1

4

5 4 ∅ ∅

Then we construct the structurally extended formulation as

0=S2(t, z, ż, ψ2)=



ẋ− v
ψ2

1 − v̇
ψ1

2 − w
ψ2

2 − ψ1
4

mv̇ + 2xλ
mψ1

4 + 2yλ+mg
x2 + y2 − `2
2xẋ+ 2yψ1

2

2xψ2
1 +2ẋ2+2yψ2

2 +2(ψ1
2)2


(24)

with

zT =
[
x y v w λ

]
,

ψT2 =
[
ψ2

1 ψ1
2 ψ2

2 ψ1
4

]
.

Let us check the result by applying the Σ-method to the StE-formulations (23) and (24).

For the StE-formulation (23) we obtain the according signature matrix Σ̃1 and the canonical

offset vectors c̃1 and d̃1 as

Σ̃1 =



− − 0 − − 0 − − −
− − − − − − 0 − 0

− 1 − 0 − − − − −
− − − 1 − − − 0 −
0 − − − 0 − − − 0

− 0 − 1 0 − − − −
0 0 − − − − − − −

0 1 − − − 0 − − −
0 1 − − − 0 0 0 −



, c̃1 =



0

0

0

0

0

0

0

0

0



,

d̃T1 =
[

0 1 0 1 0 0 0 0 0
]

with the the highest value transversals marked with dark gray and light gray boxes. Further-
more, the value of Σ̃1 is Val(Σ̃1) = 2. Since c̃1 = 0, the corresponding reduced derivative ar-

ray coincides with the system (23), i.e., F̃1(t, x̃1, ˙̃x1) = S1(t, x, ẋ, ψ1) with x̃T1 =
[
xT ψT1

]
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and the Σ-Jacobian is given by

J̃1 =



0 0 −1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 −1
0 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 1 0

2λ 0 0 0 2x 0 0 0 m
0 0 0 m 2y 0 0 0 0

2x 0 0 0 0 0 0 0 0
2w1

1 2y 0 0 0 2x 0 0 0
2w2

1 4ẏ 0 0 0 4w1
1 2x 2y 0


(25)

with det(J̃1) = 16mx2(x2 + y2) = 16mx2`2 for all consistent values, in particular, satisfying

the seventh equation in (23). Therefore, the Σ-Jacobian J̃1 can be checked to be nonsingular
at a consistent point, since x is assumed to be nonzero (x ≥ y and both cannot be zero
simultaneously). Thus, the Σ-method for S1 succeeds with structural index νΣ = 1. Note
that for x = 0, the Σ-Jacobian (25) is singular, and the other HVT T2 would have to be
chosen (ensured by the condition that κT2 > κT1 in this case).

For the StE-formulation (24) we obtain the according signature matrix Σ̃2 and the canonical

offset vectors c̃2 and d̃2 as

Σ̃2 =



1 − 0 − − − − − −
− − 1 − − 0 − − −
− − − 0 − − 0 − −
− − − − − − − 0 0

0 − 1 − 0 − − − −
− 0 − − 0 − − − 0

0 0 − − − − − − −

1 0 − − − − 0 − −
1 0 − − − 0 0 0 −



, c̃2 =



0

0

0

0

0

0

0

0

0



,

d̃T2 =
[

1 0 1 0 0 0 0 0 0
]

again with the the highest value transversals marked with dark gray and light gray boxes.
Furthermore, the value of Σ̃2 is Val(Σ̃2) = 2. Again, since c̃2 = 0, the corresponding

reduced derivative array coincides with the system (24), i.e., F̃2(t, x̃2, ˙̃x2) = S2(t, x, ẋ, ψ2)
with x̃T2 =

[
xT ψT2

]
and the Σ-Jacobian is given by

J̃2 =



1 0 0 0 0 0 0 0 0
0 0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 0 0 0 1 −1
0 0 m 0 2x 0 0 0 0
0 2λ 0 0 2y 0 0 0 m
0 2y 0 0 0 0 0 0 0

2x 2w1
2 0 0 0 0 2y 0 0

4ẋ 2w2
2 0 0 0 2x 4w1

2 2y 0


(26)

with det(J̃2) = −16my2(x2 + y2) = −16my2`2 for all consistent values, in particular, sat-

isfying the seventh equation in (24). Therefore, the Σ-Jacobian J̃2 can be checked to be
nonsingular at a consistent point, since y is assumed to be nonzero (y ≥ x and both cannot
be zero simultaneously). Thus, the Σ-method for S2 succeeds with structural index νΣ = 1.
Note also here that for y = 0, the Σ-Jacobian (26) is singular, and the other HVT T1 would
have to be chosen (ensured by the condition that κT1

> κT2
in this case).
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0 = S1(t, z, ż, ψ1) (23)
0 = S2(t, z, ż, ψ2) (24)

t

x

y

Figure 3: Dynamic state selection

Summarizing, we get two locally valid regularizations in form of the structurally extended
formulations. In particular, S1 (23) is valid as long as x 6= 0 while S2 (24) is valid as long
as y 6= 0 as illustrated in Figure 3. /

Example 3.2 Let us continue the consideration of the model equations (16) for the mass-
spring-chain with path control. See Example 2.8. The DAE (16) is structurally regular and
of structural index νΣ = 5. The reduced derivative array (20) consists of M =

∑
ci+n = 18

equations in n = 7 unknowns. For the two possible HVTs T1 and T2 we get κT1
= κT2

= cm.
Therefore, none of them is preferable.
For the HVT T ∗ = T1 marked by the light gray boxes in the signature matrix (18) we have
to introduce new algebraic variables as in the following table:

for j with i replace with new
s.t. derivatives algebraic variables

(i, j) ∈ T ∗ z
(σij+1)
j , ..., z

(dj)
j ψ

σij+1
j , ..., ψ

dj
j

1 5 z
(1)
1 , z

(2)
1 ψ1

1 , ψ
2
1

2 7 z
(1)
2 , ..., , z

(4)
2 ψ1

2 , ..., ψ
4
2

3 3 z
(2)
3 ψ2

3

4 1 z
(1)
4 ψ1

4

5 2 z
(1)
5 , z

(2)
5 , z

(3)
5 ψ1

5 , ψ
2
5 , ψ

3
5

6 6 ∅ ∅
7 4 ∅ ∅

Then we construct the structurally extended formulation as

0 = S1(t, z, ż, ψ1) =



ψ1
1 − v1

ψ2
1 − ψ1

4

ψ1
2 − v2

ψ2
2 − ψ1

5

ψ3
2 − ψ2

5

ψ4
2 − ψ3

5

ṗ3 − v3

ψ2
3 − v̇3

mψ1
4 + c(p1 − p2)− F

mψ1
5 − c(p1 − p2) + c(p2 − p3)

mψ2
5 − c(ψ1

1 − ψ1
2) + c(ψ1

2 − ṗ3)
mψ3

5 − c(ψ2
1 − ψ2

2) + c(ψ2
2 − ψ2

3)
mv̇3 − c(p2 − p3)− F

p2 − sin(t)
ψ1

2 − cos(t)
ψ2

2 + sin(t)
ψ3

2 + cos(t)
ψ4

2 − sin(t)



(27)
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with

z =
[
p1 p2 p3 v1 v2 v3 F

]T
,

ψ1 =
[
ψ1

1 ψ2
1 ψ1

2 ψ2
2 ψ3

2 ψ4
2 ψ2

3 ψ1
4 ψ1

5 ψ2
5 ψ3

5

]T
.

For the HVT T ∗ = T2 marked by the dark gray boxes in the signature matrix (18) we have
to introduce new algebraic variables as in the following table:

for j with i replace with new
s.t. derivatives algebraic variables

(i, j) ∈ T ∗ z
(σij+1)
j , ..., z

(dj)
j ψ

σij+1
j , ..., ψ

dj
j

1 1 z
(2)
1 ψ2

1

2 7 z
(1)
2 , ..., , z

(4)
2 ψ1

2 , ..., ψ
4
2

3 5 z
(1)
3 , z

(2)
3 ψ1

3 , ψ
2
3

4 4 ∅ ∅
5 2 z

(1)
5 , z

(2)
5 , z

(3)
5 ψ1

5 , ψ
2
5 , ψ

3
5

6 3 z
(1)
6 ψ1

6

7 6 ∅ ∅

Then we construct the structurally extended formulation as

0 = S2(t, z, ż, ψ2) =



ṗ1 − v1

ψ2
1 − v̇1

ψ1
2 − v2

ψ2
2 − ψ1

5

ψ3
2 − ψ2

5

ψ4
2 − ψ3

5

ψ1
3 − v3

ψ2
3 − ψ1

6

mv̇1 + c(p1 − p2)− F
mψ1

5 − c(p1 − p2) + c(p2 − p3)
mψ2

5 − c(ṗ1 − ψ1
2) + c(ψ1

2 − ψ1
3)

mψ3
5 − c(ψ2

1 − ψ2
2) + c(ψ2

2 − ψ2
3)

mψ1
6 − c(p2 − p3)− F
p2 − sin(t)
ψ1

2 − cos(t)
ψ2

2 + sin(t)
ψ3

2 + cos(t)
ψ4

2 − sin(t)



(28)

with

z =
[
p1 p2 p3 v1 v2 v3 F

]T
,

ψ2 =
[
ψ2

1 ψ1
2 ψ2

2 ψ3
2 ψ4

2 ψ1
3 ψ2

3 ψ1
5 ψ2

5 ψ3
5 ψ1

6

]T
.

Let us again check the result by applying the Σ-method to the StE-formulations (27) and
(28).

For the StE-formulation (27) we obtain the according signature matrix Σ̃1 and the canonical
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offset vectors c̃1 and d̃1 as

Σ̃1 =



− − − 0 − − − 0 − − − − − − − − − −
− − − − − − − − 0 − − − − − 0 − − −
− − − − 0 − − − − 0 − − − − − − − −

− − − − − − − − − − 0 − − − − 0 − −

− − − − − − − − − − − 0 − − − − 0 −

− − − − − − − − − − − − 0 − − − − 0

− − 1 − − 0 − − − − − − − − − − − −
− − − − − 1 − − − − − − − 0 − − − −
0 0 − − − − 0 − − − − − − − 0 − − −
0 0 0 − − − − − − − − − − − − 0 − −

− − 1 − − − − 0 − 0 − − − − − − 0 −
− − − − − − − − 0 − 0 − − 0 − − − 0

− 0 0 − − 1 0 − − − − − − − − − − −
− 0 − − − − − − − − − − − − − − − −

− − − − − − − − − 0 − − − − − − − −

− − − − − − − − − − 0 − − − − − − −

− − − − − − − − − − − 0 − − − − − −

− − − − − − − − − − − − 0 − − − − −



, c̃1 =



0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



,

d̃T1 =
[

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
]

with the the highest value transversals marked with dark gray and light gray boxes. Further-
more, the value of Σ̃1 is Val(Σ̃1) = 2. Since c̃1 = 0, the corresponding reduced derivative ar-

ray coincides with the system (27), i.e., F̃1(t, x̃1, ˙̃x1) = S1(t, x, ẋ, ψ1) with x̃T1 =
[
xT ψT1

]
and the Σ-Jacobian is given by

J̃1 =



0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0
0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0
c −c 0 0 0 0 −1 0 0 0 0 0 0 0 m 0 0 0
−c 2c 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 0
0 0 −c 0 0 0 0 −c 0 2c 0 0 0 0 0 0 m 0
0 0 0 0 0 0 0 0 −c 0 2c 0 0 −c 0 0 0 m
0 −c 0 0 0 m −1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0



(29)

with det(J̃1) = −2c3m 6= 0 independent of z and ψ1, i.e., for all values. Therefore, the

Σ-Jacobian J̃1 can be checked to be nonsingular at every point. Thus, the Σ-method for S1
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succeeds globally with structural index νΣ = 1.
For the StE-formulation (28) we obtain the according signature matrix Σ̃2 and the canonical

offset vectors c̃2 and d̃2 as

Σ̃2 =



1 − − 0 − − − − − − − − − − − − − −
− − − 1 − − − 0 − − − − − − − − − −
− − − − 0 − − − 0 − − − − − − − − −

− − − − − − − − − 0 − − − − 0 − − −

− − − − − − − − − − 0 − − − − 0 − −

− − − − − − − − − − − 0 − − − − 0 −

− − − − − 0 − − − − − − 0 − − − − −
− − − − − − − − − − − − − 0 − − − 0

0 0 − 1 − − 0 − − − − − − − − − − −
0 0 0 − − − − − − − − − − − 0 − − −

1 − − − − − − − 0 − − − 0 − − 0 − −
− − − − − − − 0 − 0 − − − 0 − − 0 −
− 0 0 − − − 0 − − − − − − − − − − 0

− 0 − − − − − − − − − − − − − − − −

− − − − − − − − 0 − − − − − − − − −

− − − − − − − − − 0 − − − − − − − −

− − − − − − − − − − 0 − − − − − − −

− − − − − − − − − − − 0 − − − − − −



, c̃2 =



0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



,

d̃T2 =
[

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]

again with the highest value transversals marked with dark gray and light gray boxes.
Furthermore, the value of Σ̃2 is Val(Σ̃2) = 2. Again, since c̃2 = 0, the corresponding

reduced derivative array coincides with the system (28), i.e., F̃2(t, x̃2, ˙̃x2) = S2(t, x, ẋ, ψ2)
with x̃T2 =

[
xT ψT2

]
and the Σ-Jacobian is given by

J̃2 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1
0 −c 0 m 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 2c −c 0 0 0 0 0 0 0 0 0 0 0 m 0 0 0
−c 0 0 0 0 0 0 0 2c 0 0 0 −c 0 0 m 0 0
0 0 0 0 0 0 0 −c 0 2c 0 0 0 −c 0 0 m 0
0 −c c 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 m
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0



(30)

also with det(J̃2) = −2c3m 6= 0 independent of z and ψ2, i.e., for all values. Therefore, also
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the Σ-Jacobian J̃2 can be checked to be nonsingular at every point. Thus, the Σ-method
for S2 succeeds globally with structural index νΣ = 1.
Summarizing, we get two different but globally valid regularizations of the original DAE
(16) in form of the structurally extended formulations S1 (27) and S2 (28). Due to the
global validity a change of the formulation has not to be performed during the numerical
integration. /

3.2 Regularization via Algebraic Derivative Arrays

As we have seen in the previous section, in particular, in Example 3.1, the structurally
extended regularization in general is only locally valid. Therefore, it may be necessary to
switch to another structurally extended formulation within a numerical integration. This in-
fluences the time integration negatively. As a remedy in this section we propose an extended
regularization.
As mentioned in Definition 2.3 the reduced derivative array (4) contains all necessary equa-
tions to obtain all hidden constraints. In particular, from the algebraic reduced derivative
array (7) it is possible to extract the array of (hidden) constraints (6) in an algebraic way
which, in particular, can be done automatically within the numerical integration.
From the algebraic reduced derivative array (7) in combination with the original DAE (1)
we obtain the algebraic derivative array (ADA) formulation

0 = A(t, z, ż, ω) =

[
F (t, z, ż)
F(t, z, ω)

]
(31)

with ω as in (7) which forms an overdetermined DAE for z and ω and is uniquely solvable
for consistent initial values z(t0), w(t0) as long as the original DAE was uniquely solvable
for consistent initial values z(t0).
According to Remark 2.4, the algebraic derivative array formulation (31) is solution equiv-
alent to (1) with

Φ : z 7→
[

z
Ω(t, z)

]
.

Therefore, the algebraic derivative array formulation (31) has the same set of solutions for
the original unknowns z as the original DAE (1). Since the structural index is not defined
for (31) due to its overdetermindness it does not fit into the Definition 2.6 of structural
regularization. Nevertheless, (31) can be seen as a regularization of (1) due to the solution
equivalence and the fact that all hidden constraints from (1) are contained in the lower part
of (31). Therefore, (31) has no further hidden constraints.
The obtained algebraic derivative array formulation (31) is of more increased size as the
structurally extended formulation (22). This increases the needed simulation time. On
the other hand, the obtained algebraic derivative array formulation (31) is globally valid
such that the regularized formulation has to be determined only once before the numerical
integration in contrast to the structurally extended formulation (22). This regularization
approach via algebraic derivative arrays also can be automated using automatic or symbolic
differentiation tools. Therefore, an analytical preprocessing is not necessary.

Example 3.3 Let us use the model equations (10) of the simple pendulum to illustrate the
regularization based on the algebraic derivative array formulation. The reduced derivative
array is given in (14). Replacing all occurring derivatives with algebraic variables, i.e.,
ẋ → ω1

1 , ẍ → ω2
1 , ẏ → ω1

2 , ÿ → ω2
2 , v̇ → ω1

3 , and ẇ → ω1
4 , leads to the algebraic reduced
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derivative array

0 = F(t, z, ω) =



ω1
1 − v

ω2
1 − ω1

3

ω1
2 − w

ω2
2 − ω1

4

mω1
3 + 2xλ

mω1
4 + 2yλ+mg
x2 + y2 − L2

2(xω1
1 + yω1

2)
2(xω2

1 +(ω1
1)2+yω2

2 +(ω1
2)2)


(32)

with

z =
[
x y v w λ

]T
, (33a)

ω =
[
ω1

1 ω2
1 ω1

2 ω2
2 ω1

3 ω1
4

]T
. (33b)

Together with the original DAE (10), we get the algebraic derivative array formulation (31)
with F (t, z, ż) given in (10) and F(t, z, ω) given in (32) as

0 = A(t, z, ż, ω) =



ẋ− v
ẏ − w

mv̇ + 2xλ
mẇ +mg + 2yλ
x2 + y2 − L2

ω1
1 − v

ω2
1 − ω1

3

ω1
2 − w

ω2
2 − ω1

4

mω1
3 + 2xλ

mω1
4 + 2yλ+mg
x2 + y2 − L2

2(xω1
1 + yω1

2)
2(xω2

1 +(ω1
1)2+yω2

2 +(ω1
2)2)



(34)

with (33). This corresponds to an overdetermined system of DAEs containing 14 equations
for 11 unknowns. /

Example 3.4 For the model equations (16) for the mass-spring-chain with path control
we obtain the algebraic reduced derivative array from (20) by replacing all derivatives of z

by the algebraic representations, i.e., ṗ1 → ω1
1 , p̈1 → ω2

1 , ṗ2 → ω1
2 , p̈2 → ω2

2 , p
(3)
2 → ω3

2 ,

p
(4)
2 → ω4

2 , ṗ3 → ω1
3 , p̈3 → ω2

3 , v̇1 → ω1
4 , v̇2 → ω1

5 , v̈2 → ω2
5 , v

(3)
2 → ω3

5 , v̇3 → ω1
6 . We get the
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algebraic reduced derivative array as

0 = F(t, z, ω) =



ω1
1 − v1

ω2
1 − ω1

4

ω1
2 − v2

ω2
2 − ω1

5

ω3
2 − ω2

5

ω4
2 − ω3

5

ω2
3 − v3

ω2
3 − ω1

6

mω1
4 + c(p1 − p2)− F

mω1
5 − c(p1 − p2) + c(p2 − p3)

mω2
5 − c(ω1

1 − ω1
2) + c(ω1

2 − ω1
3)

mω3
5 − c(ω2

1 − ω2
2) + c(ω2

2 − ω2
3)

mω1
6 − c(p2 − p3)− F
p2 − sin(t)
ω1

2 − cos(t)
ω2

2 + sin(t)
ω3

2 + cos(t)
ω4

2 − sin(t)


with

z =
[
p1 p2 p3 v1 v2 v3 F

]T
, (35a)

ω =
[
ω1

1 ω2
1 ω1

2 ω2
2 ω3

2 ω4
2 ω1

3 ω2
3 ω1

4 ω1
5 ω2

5 ω3
5 ω1

6

]T
. (35b)

Together with the original model equations (16) we obtain the algebraic derivative array
formulation (31) as

0 = A(t, z, ż, ω) =



ṗ1 − v1

ṗ2 − v2

ṗ3 − v3

mv̇1 + c(p1 − p2)− F
mv̇2 − c(p1 − p2) + c(p2 − p3)

mv̇3 − c(p2 − p3)− F
p2 − sin(t)
ω1

1 − v1

ω2
1 − ω1

4

ω1
2 − v2

ω2
2 − ω1

5

ω3
2 − ω2

5

ω4
2 − ω3

5

ω2
3 − v3

ω2
3 − ω1

6

mω1
4 + c(p1 − p2)− F

mω1
5 − c(p1 − p2) + c(p2 − p3)

mω2
5 − c(ω1

1 − ω1
2) + c(ω1

2 − ω1
3)

mω3
5 − c(ω2

1 − ω2
2) + c(ω2

2 − ω2
3)

mω1
6 − c(p2 − p3)− F
p2 − sin(t)
ω1

2 − cos(t)
ω2

2 + sin(t)
ω3

2 + cos(t)
ω4

2 − sin(t)



(36)

with (35). This corresponds to an overdetermined system of DAEs containing 25 equations
for 20 unknowns. /
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3.3 Regularization via Hidden Constraints

In the previous sections, we did obtain regularizations that increased in its size more then
necessary. Therefore, in the numerical integration more computational time is needed than
necessary.
As mentioned in Definition 2.3 the reduced derivative array (4) allows the determination
of the array of (hidden) constraints (6) in an analytical preprocessing. From the array of
(hidden) constraints (6) in combination with the original DAE (1), we obtain the set

0 = O(t, z, ż) =

[
F (t, z, ż)
H(t, z)

]
, (37)

which forms the hidden constraints (HiC) formulation for z and is uniquely solvable for
consistent initial values z(t0) as long as the original DAE was uniquely solvable for these
consistent initial values z(t0). The obtained overdetermined formulation is of increased
number of equations for the same unknown variables as in the original DAE. For more
details see [22].
The hidden constraints formulation (37) is solution equivalent to the original DAE (1) with

Φ : z 7→ z.

Therefore, (37) has the same set of solutions as the original DAE (1). Since the structural
index is not defined for the hidden constraints formulation (37) due to its overdetermindness,
also (37) does not satisfy the Definition 2.6 of a structural regularization. Nevertheless, (37)
can be seen as a regularization of (1) due to the solution equivalence and the fact that all
hidden constraints from (1) are contained in (37) explicitly as algebraic equations. Therefore,
(37) has no further hidden constraints.

Example 3.5 For the simple pendulum, see Example 2.7, the (hidden) constraints are
known to be (10e), (11a), and (11b) summarized in the array of (hidden) constraints (15).
Then the regularization via hidden constraints is determined by (10), (15) in the form

0 = O(t, z, ż) =



ẋ− v
ẏ − w

mv̇ + 2xλ
mẇ +mg + 2yλ
x2 + y2 − `2
x2 + y2 − `2
2xv + 2yw

v2+w2− 2
m (x2+ y2)λ−yg


(38)

as a system of DAEs containing 8 equations for 5 unknowns. /

Example 3.6 For the mass-spring-chain with path control, see Example 2.8, we get the
array of (hidden) constraints in (21). Consequently, the regularization via hidden constraints
is determined by (16), (21) in the form

0 = O(t, z, ż) =



ṗ1−v1

ṗ2−v2

ṗ3−v3

mv̇1+c(p1−p2)−F
mv̇2−c(p1−p2)+c(p2−p3)

mv̇3−c(p2−p3)−F
p2−sin(t)
p2−sin(t)
v2−cos(t)

c
m (p1−p2)− c

m (p2−p3)+sin(t)
c
m (v1−v2)− c

m (v2−v3)+cos(t)
c
m2 (−3c(p1−p2)+3c(p2−p3)+2F )−sin(t)


as a system of DAEs containing 12 equations for 7 unknowns. /
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There exist further (algebraic) approaches for the determination of the hidden constraints.
In particular, let us mention the strangeness-index concept [13] which is based on rank
decisions and the evaluation of kernels and cokernels of the Jacobians of the derivative array.
Furthermore, the constraint level concept [22] determines the hidden constraints within an
iterative procedure.

4 The Software Package QUALIDAES

In Sections 3.2 and 3.3 the proposed regularization approaches lead to overdetermined formu-
lations in form of the algebraic derivative array formulation (31) and the hidden constraints
formulation (37). Since in these formulations the number of equations and the number of
unknowns are not the same, usually used numerical methods, like DASSL [6], DASPK [25],
MEBDF [1], or RADAU5 [10, 11] cannot be applied. Therefore, adapted methods suited for
overdetermined DAEs have to be used, like ODASSL [7, 8], OVDBDF [5], or QUALIDAES [24].
In particular, the software package QUALIDAES (QUAsi LInear DAE Solver) is suited for the
numerical integration of (overdetermined) quasi-linear DAEs of the form[

E(t, z)
0

]
ż =

[
k(t, z)
g(t, z)

]
differential part,
algebraic constraints.

(39)

with E : I × Rn → Rmd×n, k : I × Rn → Rmd , g : I × Rn → Rmc , z : I → Rn, and
md +mc ≥ n, with t ∈ I, where I ⊂ R is the compact interval. For the usage of QUALIDAES
it is required that the algebraic equations 0 = g(t, z) are nonredundant, i.e., rank(∂g∂z ) = mc

for all (t, z) ∈M = {(t, z) ∈ I× Rn : 0 = g(t, z)}.
QUALIDAES is implemented in FORTRAN. The discretization scheme is the 3-stage Runge-
Kutta RADAU IIa of order 5 ,e.g., see [10, 11]. The used decomposition methods in
QUALIDAES is adapted w.r.t. the overdetermined structure (39) such that the (hidden) al-
gebraic constraints 0 = g(t, z) are solved (numerically) precisely, while the differential part
E(t, z)ż = k(t, z) is solved in an ’approximative sense’.
Further features of QUALIDAES are variable step size control, continuous output, and check
and correction of the initial values with respect to its consistency. The specification of the
DAE (39) can be done in FORTRAN source code or alternatively in MODELICA using a
simple MODELICA-parser. For MODELICA a Matlab interface is provided, see [2]. For
more information to QUALIDAES we refer to [24].

5 Numerical Results

In the following, we illustrate the efficiency of the proposed regularization techniques for the
numerical integration with QUALIDAES on two examples. The first one is the simple pendulum
(see Example 2.7) and the second one is the mass-spring-chain with path constraints (see
Example 2.8).
The numerical integrations are done on an AMD Phenom(tm) II X6 1090T, 3210 MHz,
16GB RAM, openSuSE 13.1 (Linux 3.11.10), GNU Fortran compiler gcc version 4.8.1, no
compiler options.

Example 5.1 The model equations of the simple pendulum, see Example 2.7, are stated in
(10) and have structural index νΣ = 3. The mass and length are given by m = 1 and ` = 1
while we use the gravitational acceleration g = 13.7503716373294544. In this case the exact
solution has a period of 2s which allows the comparison of the accuracy every period. The
initial values are given by

x(0) = 1, v(0) = 0, λ(0) = 0,
y(0) = 0, w(0) = 0.

In Figure 4 the solution for t = 2i, i ∈ {0, 1, ..., 1000} is illustrated. In this figure only
the solution after every period is plotted such that the curves are illustrated to be constant.
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Figure 4: Solution for the simple pendulum (illustrated at every period, i.e., at t = 2i,
i ∈ {0, 1, ..., 1000})
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Figure 5: Solution for the simple pendulum (zoom)

Furthermore, in Figure 5 the solution is illustrated for the first 10 periods, i.e., in I = [0s, 20s].
The numerical simulation is done for the time domain I = [0s, 2000s]. In the following we
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investigate the suitability of the proposed regularization approaches.
The numerical results for the proposed regularization approaches are obtained with the
numerical integration by QUALIDAES. The proposed regularized formulations for the simple
pendulum are

• the structurally extended (StE) formulations given in (23) and (24) depending on the
current position (x, y) of the pendulum mass, i.e,

S(t, z, ż, ω) =

{
S1(t, z, ż, ω1) for |x| > |y|,
S2(t, z, ż, ω1) else,

where the case criterion (|x| > |y|) is evaluated only at the beginning of an integration
step within the numerical integration,

• the algebraic derivative array (ADA) formulation given in (34), and

• the hidden constraints (HiC) formulation given in (38).

In comparison we use the widely used solvers RADAU5, with the Gear-Gupta-Leimkuler (GGL)
formulation [9] given by

0 = G(t, z, ż, µ) =


ẋ− v + 2xµ
ẏ − w + 2yµ
mv̇ + 2xλ

mẇ + 2yλ+mg
x2 + y2 − `2
2xv + 2yw

 (40)

and DASSL with the d-index-1 (DI1) formulation consisting the differential equations (10a)-
(10d) and the constraint on acceleration level (11b), i.e.,

0 = D(t, z, ż) =


ẋ− v
ẏ − w

mv̇ + 2xλ
mẇ + 2yλ+mg

2v2 + 2w2 − 2yg− 4
m (x2 + y2)λ

 . (41)

Note that the GGL formulation (40) also can be seen as a regularization of the model
equations (10) since both are solution equivalent and the number of hidden constraints is
lowered in the GGL formulation (40) in comparison to the original DAE (10). On the
other hand, the d-index-1 formulation (41) is only a so called index reduction since the
index is reduced and with that also the number of the hidden constraints but the d-index-1
formulation (41) is not solution equivalent to the the model equations (10) due to the loss
of the constraints on level 0 and on level 1. Therefore, the dimension of the set of solutions
is increased and we expect that the numerical solution for the the d-index-1 formulation
(41) drifts from the set of consistency, i.e., violates the constraints from the model equations
(10).
The numerical solution (for every period, i.e., for t = 2i, i ∈ {0, 1, ..., 1000}) for a prescribed
tolerance TOL=10−7 and the corresponding absolute errors are illustrated in Figure 6 and
Figure 7, respectively. Comparing Figure 4 with Figure 6 it is obvious that the numerical
solution DASSL(DI1) deviates strongly from the exact solution.
An important issue in the numerical treatment of DAEs are the compliance with the con-
straints as well as the energy balance. In particular, the simple pendulum is a conservative
dynamical system such that the energy is invariant for every solutions which should be re-
flected by the numerical results. In Figure 8 the residual of the constraints as well as the
energy conservation, i.e., the deviation from the initial energy, is illustrated. The numerical
results DASSL(DI1) are drifting from the constraints on level 0 (position level) as well as
from the constraints on level 1 (velocity level). The drift from the constraints are provoked
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Figure 6: Numerical solution for the simple pendulum (for TOL=10−7)
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Figure 7: Absolute error for the simple pendulum (for TOL=10−7)

from the used formulation (DI1) (41). In this formulation the constraints on level 0 and
level 1 are no longer contained (even not hidden). Therefore, the solver cannot satisfy these
constraints. The other numerical solutions satisfy the constraints within the prescribed tol-
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Figure 8: Residual of the constraints for the simple pendulum (for TOL=10−7)

erance. The best energy conservations are reached with QUALIDAES, while we get the best
energy conservation for the structurally extended formulation (StE).
In Figure 9 the efficiency of the proposed regularization approaches with the numerical
integration by QUALIDAES in comparison to the numerical results obtained by DASSL and
RADAU5 is shown.
The numerical solution QUALIDAES(HiC) offers the best efficiency, i.e., less computational
effort and small absolute error of the numerical solution. This numerical solution is slightly
more efficient than the numerical result obtained with RADAU5(GGL) followed by the nu-
merical solutions of QUALIDAES(ADA) and QUALIDAES(StE). The large time consumption
for the integration of the StE-formulation lies in its local validity as discussed in Exam-
ple 3.1. Within one period of 2 seconds it has to be switched between (23) and (24) four
times, see Figure 3. Furthermore, due to the increased size of the ADA-formulation and the
StE-formulation both are less efficient than the HiC-formulation. The numerical integration
using DASSL is not successful at all due to the stability properties of BDF methods, the
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for the simple pendulum

occurring drift off effect by use of the d-index-1 formulation (DI1), where the constraints on
position level and on velocity level are lost, and the large time domain I. Nevertheless, the
maximally obtained precision is excellent for QUALIDAES(HiC) and QUALIDAES(ADA). /

Example 5.2 For the example of the mass-spring-chain we use the mass m = 1 for all
masses and the stiffness c = 1/6 for both springs. With initial values

p1(0) = 0, v1(0) = −2, F (0) = 0,
p2(0) = 0, v2(0) = 1,
p3(0) = 0, v3(0) = −2

we get the exact solution

p1(t) = −2 sin(t), v1(t) = −2 cos(t), F (t) = 3
2 sin(t),

p2(t) = sin(t), v2(t) = cos(t),
p3(t) = −2 sin(t), v3(t) = −2 cos(t).

The simulation is done for the time domain I = [0s, 400s].
For the numerical integrations with QUALIDAES we use the proposed regularizations for the
mass-spring-chain, i.e.,

• the structurally extended (StE) formulation given in (27) which is globally valid for
the mass-spring-chain,

• the algebraic derivative array (ADA) formulation given in (36), and

• the hidden constraints (HiC) formulation given in (39).

Furthermore, for the numerical integrations with DASSL and RADAU5 we use the d-index-
1 (DI1) formulation consisting the differential equations (16a)-(16f) and the constraint on
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Figure 10: Numerical solution for the mass-spring-chain (for TOL=10−7)

level 4 (17d), i.e.,

0 = D(t, z, ż) =



ṗ1−v1

ṗ2−v2

ṗ3−v3

mv̇1+c(p1−p2)−F
mv̇2−c(p1−p2)+c(p2−p3)

mv̇3−c(p2−p3)−F
c
m2 (−3c(p1−p2)+3c(p2−p3)+2F )−sin(t)


. (42)

Note again, that the d-index-1 formulation (42) is not a regularization but only a so called
index reduction and we expect drift for the numerical results obtained from the d-index-1
formulation (42).
The numerical solution for a prescribed tolerance TOL=10−7 and the corresponding absolute
errors are illustrated in Figure 10 and Figure 11, respectively. Also for this example the
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Figure 11: Absolute error for the mass-spring-chain (for TOL=10−7)

numerical solution DASSL(DI1) deviates strongly from the exact solution.
The compliance with the constraints is illustrated in Figure 12. While the constraints are
satisfied according to the prescribed tolerance by the usage of the proposed regularizations,
the numerical solutions for the d-index-1 formulation (DI1) drifts away from all except the
constraint on level 4. Here the drift is less intensive for RADAU5 with (DI1). Note, all
constraints except the constraint on level 4 are removed within the d-index-1 formulation
(DI1).
In the same style as in the last example, the efficiency of the numerical solutions is illustrated
in Figure 13. Again the numerical solution QUALIDAES(HiC) offers the best efficiency followed
by the numerical solution QUALIDAES(StE). In contrast to the previous example of the simple
pendulum, the efficiency using the StE-formulation is better since the StE-formulation (27)
for the mass-spring-chain is valid for the whole time domain and has not to be switched
during the numerical integration. Furthermore, the numerical solution QUALIDAES(ADA)
offers a good efficiency. The efficiency of RADAU5(DI1) is similar, but the obtained precision is
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Figure 12: Residual of the constraints for the mass-spring-chain (for TOL=10−7)

not as good as for the previous results. The reason is that we used the d-index-1 formulation
(DI1), where the hidden constraints on level 4 are included instead of (16g). Therefore, the
(hidden) constraints up to level 3 are lost, and the solution drifts away from these lost
constraints. Nevertheless, the maximally obtained precision is excellent for QUALIDAES with
all regularizations proposed in Section 3, i.e., for the StE-formulation, the ADA-formulation,
and the HiC-formulation. /

6 Summary

The aim of this article was to discuss several approaches for the regularization of differential-
algebraic equations that benefit numerical integration. For this purpose, we have proposed
three different regularization approaches which end in the structurally extended formulation
(22), the algebraic derivative array formulation (31), and the hidden constraints formulation
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Figure 13: Efficiency (simulation time vs. absolute error for different prescribed tolerances)
for the mass-spring-chain

(37). All these regularization approaches are based on the signature method (Σ-method),
which was reviewed in Section 2, and the last two of them require numerical integration
methods suited for overdetermined differential-algebraic equations. We also briefly intro-
duced the software package QUALIDAES suited for quasi-linear differential-algebraic equations
which may be overdetermined and illustrated the efficiency of the numerical integration for
the numerical simulation of the simple pendulum and the numerical solving of a path fol-
lowing problem for a mass-spring-chain.
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