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Abstract. This paper introduces two new matrix nearness problems that are intended to
generalize the distance to instability and the distance to stability. They are named the distance to
delocalization and the distance to localization due to their applicability in analyzing the robustness of
eigenvalues with respect to arbitrary localization sets (domains) in the complex plane. For the open
left-half plane or the unit circle, the distance to the nearest unstable/stable matrix is obtained as a
special case. Then, following the theoretical framework of Hermitian functions and the Lyapunov-
type localization approach, we present a new Newton-type algorithm for the distance to delocalization
(D2D) and study its implementations using both an explicit and an implicit computation of the
desired singular values. Since our investigations are motivated by several practical applications, we
will illustrate our approach on some of them. Furthermore, in the special case when the distance to
delocalization becomes the distance to instability, we will validate our algorithms against the state
of the art computational method.
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1. Introduction. Numerous problems in mechanics, mathematical physics, and
engineering can be formulated as eigenvalue problems where the focus is to determine
whether the eigenvalues are inside a speci�c desirable domain [9, 18, 25, 30], and later
on to detect an admissible size of a perturbation which will not move the eigenvalues
away from that domain. The most frequent of such domains in use are connected
to the stability of dynamical systems: the open left half-plane of the complex plane
(continuous dynamical systems) and the open unit disk (discrete dynamical systems).
Due to extensive research on the robustness of eigenvalues in the past years, it is
now well known that the concept of pseudospectra [32] is a more adequate tool to
analyze the behavior of nonnormal matrices, than the classical spectra. Because of
this fact, many authors have considered quantities such as pseudospectral abscissa,
pseudospectral radius, and in particular the distance to instability (stability), see
[1, 6, 7, 10, 13, 14, 15, 16, 17, 21, 26, 27], in order to provide e�cient tools for
exploring phenomena of spectral change under small perturbations.

While the distance to instability and the distance to stability have attracted a lot
of attention, there have not been many attempts to solve the same problem for some
other regions in the complex plane, although such problems often arise in applications.
For example, in eigenvalue problems from acoustic �eld computations, one is often
not interested in all the eigenvalues in the right half plane, but is interested in only
those whose imaginary part is between certain bounds de�ned by the hearing range
of the human ear [29]. Therefore, the information about the size of the perturbation
that will move the eigenvalues that are not originally in the hearing range (given by
an unbounded rectangular area in the complex plane) into it, is of importance, since
this would result in an undesirable sound, see [28]. Apart from this, many other
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problems in physics, structural mechanics and engineering and numerical analysis
involve di�erent spectral domains of interest. Motivated by this, we present Hermitian
functions as a useful approach to treat di�erent algebraic domains in the complex
plane [24] and we formulate the nearness problems connected to such domains.

The paper is organized as follows. We introduce as a new concept a distance
to delocalization (localization), motivate our work and brie�y discuss the distance
to instability in Section 2. In Section 3 we introduce the theoretical framework of
the Lyapunov-type localization approach which we use to derive a computational
method for the distance to delocalization in Section 4. For a large class of algebraic
domains, we provide two numerical algorithms that solve the introduced distance
problem under certain conditions. More precisely, we provide numerical procedures
that compute the size of the Euclidian norm of a minimal unstructured perturbation
that will move eigenvalues out of the desired region. Since the main aim is to develop
techniques that can tackle large scale problems, the developed algorithms avoid fre-
quent eigendecompositions and/or singular value decompositions [12, Chapter 5,7,8],
and are mainly based on linear solvers for large scale linear systems, while the used
nonlinear optimization approach is the implicit determinant method of [10] coupled
with a Newton-like method. Finally, the last section contains numerical experiments
for some well-known matrices with sensitive eigenvalues, comparisons with previously
proposed methods and some interesting applications of the introduced approach.

Throughout this paper, matrices are square and complex of size n and are denoted
by capital letters. The identity matrix is denoted by I and its dimensions follow from
the context. A Hermitian matrix X ∈ Cn,n is called positive de�nite, denoted X > 0,
if v∗Xv > 0 for all v ∈ Cn,n\{0}. Given a matrix A ∈ Cn,n, σ1(A) ≥ σ2(A) ≥ . . . ≥
σn(A) denote its singular values.

2. Preliminaries and motivations. Among many matrix nearness problems,
e.g., distance to symmetry, positive approximation, distance to orthogonality, distance
to normality or nearest matrix of low rank [19], the most commonly studied class
involves the set of c-stable matrices, i.e., the set of matrices which eigenvalues are
in the open left-half plane of the complex plane. Let us denote the set of c-stable
matrices of size n by Sn,n, i.e., for A ∈ Cn,n, A ∈ Sn,n if and only if for every
λ ∈ Λ(A), Re(λ) < 0, where Λ(A) := {λ ∈ C : det(A−λI) = 0} denotes the spectrum
of the matrix A. Obviously, Sn,n is a subspace of a normed space (Cn,n, ‖ · ‖), where
the intended norm on Cn,n will be speci�ed.
We �rst introduce the well-known problem of distance to instability:

Given a matrix A ∈ Sn,n, determine Â 6∈ Sn,n, such that

‖Â−A‖ = inf
X 6∈Sn,n

‖X −A‖,

which can be considered as a measure of the robustness of matrix stability under
arbitrary perturbations. A di�erent, complementary problem is called distance to
stability:

Given A 6∈ Sn,n, determine Â ∈ Sn,n, such that

‖Â−A‖ = inf
X∈Sn,n

‖X −A‖,

which can be viewed as the "stabilization" method for continuous dynamical systems.
In both cases, we are interested in �nding a perturbation of the smallest norm such

that the stability property will be either lost or gained. Therefore, we can formulate
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both problems in terms of eigenvalue perturbation, namely, for a given A ∈ Cn,n, one
can compute the distance to instability δ−stab ≥ 0, and distance to stability δ+

stab ≥ 0
using the following expressions:

δ−stab(A) := inf {‖∆‖ : Λ(A+ ∆) 6⊆ LHP, ∆ ∈ Cn,n} ,(2.1)

δ+
stab(A) := inf {‖∆‖ : Λ(A+ ∆) ⊆ LHP, ∆ ∈ Cn,n} ,(2.2)

where LHP := {λ ∈ C : Re(λ) < 0} denotes the open left-half plane of the complex
plane.

Investigating the behavior of a general matrix under arbitrary perturbations ∆
of norm ‖∆‖ ≤ ε, with ε > 0, leads to the study of the pseudospectra [32]:

Λε(A) = {z ∈ C : ‖(A− zI)−1‖−1 < ε}.

More precisely, Λε(A) is called the ε-pseudospectrum of the matrix A in the norm ‖·‖.
Its role becomes especially important for nonnormal matrices, i.e., when AA∗ 6= A∗A.
In this case, the size and the geometry of the pseudospectrum illustrate the dynamical
behavior, while the eigenvalues itself do not provide this information, see [32, Part V,
�23]. Particularly, for ‖ · ‖ being the Euclidian norm, denoted by ‖ · ‖2,

Λε(A) = {z ∈ C : ‖(A− zI)−1‖−1
2 < ε} = {z ∈ C : σn(A− zI) < ε},

where σn(A) is the minimal singular value of the matrix A. As a consequence, one
can determine the distance to instability δ−stab(A) using the pseudospectral theory by
computing

δ−stab(A) = inf {ε ≥ 0 : Λε(A) 6⊆ LHP} ,

which is equivalent to

δ−stab(A) = min
t∈R

σn(A− ıtI).(2.3)

In practice, we encounter the following constrained optimization problem:

Find min ε > 0 s.t. (A− ıtI)v = εu and (A− ıtI)∗u = εv,
where u, v ∈ Cn, t ∈ R.(2.4)

If the global minimum of (2.4) is obtained in (ε̂, û, v̂, t̂), then the distance to instability
δ−stab(A) is given by δ−stab(A) = ε̂ and the perturbation ∆ that moves an eigenvalue of

A to the point ẑ = ıt̂ on the imaginary axis is de�ned by ∆ = −ε̂ûv̂∗. In addition,
notice that (ε̂, û, v̂) de�nes the singular triplet of (A− ıt̂I).

Several authors have dealt with this problem. Let us brie�y review some of the
previous results. Following the early work [33], the SVD approach (computing the
smallest singular value as in (2.3)) was researched intensively. In [7], a bisection
method was proposed to determine the lower and upper bound on the distance to
instability. One of the inconveniences in this approach is the necessity of solving a
sequence of eigenvalue problems involving a large Hamiltonian matrix. This method
provided the basis for [17], where the inverse iteration method for singular values was
used to �nd a stationary point S(t) := σn(A − ıtI). The global minimum condition
was checked afterwards by solving the Hamiltonian eigenvalue problem. More e�cient
approaches include a so-called criss-cross algorithm [6] and the extension of [7] in [26].
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Recently, the so-called implicit determinant method was introduced in [1, 10]. The
initial idea from [31] was extended to a Newton-based method for the calculation of
the two-dimensional Jordan block corresponding to a purely imaginary eigenvalue in
a two-parameter dependent Hamiltonian eigenvalue problem introduced in [7]. Since
e�ective computations of the minimal singular triplets is challenging, the limits of the
method concern large (and often sparse) matrices that one encounters in practice.

An alternative approach is based on locating zeros of the pseudospectal abcissa
or radius function (the maximal real part or the maximal modulus of points in the
ε-pseudospectrum). Using the fact that the computation of the pseudospectrum can
be restricted to rank one perturbations, an iterative method for computing the ε-
pseudspectral abscissa or radius of discrete dynamical systems was recently proposed
in [16, 21]. For continuous dynamical systems an interesting idea of using di�erential
equations on the manifold of normalized matrices of rank one was presented and
successfully developed in [13, 14, 15].

The pseudospectral approach, though very suitable for computing the distance
to instability, turned out to be improper for the complementary problem (distance to
stability). In general, when the ε-pseudospectrum of the matrix crosses the imaginary
axis, there is no method to verify if all eigenvalues that originated from the open left-
half plane are still contained in this region (didn't leave this region). Due to this
di�culty, much less attention was given to the problem of the distance to stability.
Recently, an interesting method using a Lyapunov stability test has been proposed
in [27]. In this approach, the distance to stability is treated in the Frobenius norm,
and it is again formulated as a constrained optimization method, but instead of using
the pseudospectrum, the constraints are given through positive de�niteness of certain
matrices. Namely, it is a well known fact, called Lyapunov stability test [23], that
A ∈ Sn,n if and only if there exists an Hermitian positive de�nite (HPD) matrix Y
such that −(AY + Y A∗) is also positive de�nite. Using this result, a computational
method using successive convex approximations by Dikin ellipsoids [8] was introduced
to compute the distance to stability de�ned in the following way:

inf
X,Y

1
2‖X −A‖F s.t. − (XY + Y X∗) > 0, Y = Y ∗ > 0.(2.5)

For X̂ being a global solution of (2.5), the distance to stability δ+
stab(A) is given as

δ+
stab(A) = ‖X̂ −A‖F . Unfortunately, in order to obtain a Dikin ellipsoid which is as
close as possible to the original nonconvex domain, the choice of a suitable Y and X
is crucial for the quality of the method.

As we have seen, both problems, the distance to instability and distance to stabil-
ity, are of particular importance from the practical point of view. However, there are
many applications when one is interested to investigate the behavior of eigenvalues
under perturbations beyond left-half plane or unit circle domains. For example, in
structural acoustics, the localization of the eigenvalues in the complex plane corre-
sponds to the appearance of acoustic waves of certain frequencies, [28]. In general, the
range of frequencies that can be heard by humans is from 20Hz to 20kHz. This means
that the eigenvalues in the left half-plane (stable modes) or those whose imaginary
part, Im(λ), does not belong to the horizontal strips (−2π · 20kHz,−2π · 20Hz) and
(2π ·20Hz, 2π ·20kHz) in the right-half plane (hearing range of unstable modes), cor-
respond to "safe" modes in the sense that they do not produce audible noise. In the
context of linear discrete dynamical systems, if the spectrum of the governing matrix
belongs to the so-called annulus domain, i.e., r < |z| < R with radii R > r > 0,
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see Figure 5.2, then the dynamical system is stable and the dynamics matrix is non-
singular due to the fact that r is the lower bound for the moduli of its eigenvalues.
Also, in some applications, having the eigenvalues in the open left half-plane is often
undesirable for the simple reason that stability may be a too weak constraint. Often
it is desired that the spectrum guarantees that the corresponding closed loop dynam-
ics is damped, [18], implying that the domain of interest could be a wedge around
the negative part of the real line. One of such cases is the analysis of the bending
vibrations of the airframe of a rocket where the domain of interest is the cissoid of
Diocles, see Exmaple 4 and Figure 5.1.

Already these few examples certainly indicate the relevance of generalizing the
distance to instability and the distance to stability to what we name here as the
distance to delocalization and the distance to localization.

Definition 2.1. Let Ω be an open set in the complex plain, such that its boundary
consists of piecewise continuous algebraic curves, then

inf {‖∆‖ : Λ(A+ ∆) 6⊆ Ω, ∆ ∈ Cn,n}

is called the distance to delocalization, while

inf {‖∆‖ : Λ(A+ ∆) ⊆ Ω, ∆ ∈ Cn,n}

is called the distance to localization.
Roughly speaking, the distance to delocalization quanti�es the robustness of

eigenvalue localization sets, whereas the distance to localization enables to construct
a closest nearby matrix with its spectrum in a prescribed domain.

3. Distance to delocalization/localization. Before we generalize the dis-
tance to instability and distance to stability to other domains in the complex plane, we
will shortly mention two major approaches for obtaining eigenvalue localization sets.
The �rst one consists of forming unions and/or intersections of sets in the complex
plane (disks, ovals, lemniscates, etc.) which are constructed for a given matrix. We can
think of such localization sets as Ger²gorin-type localizations, eg. the union of Ger²-
gorin disks [11], see also [20, 34]. Another class of localization sets is de�ned through
di�erent domains in the complex plane (half-plane, unit disk, etc.) that are indepen-
dent of the matrix itself. For each such domain a speci�c matrix test can be assigned,
which veri�es if the domain contains the eigenvalues of the matrix of interest. A well
known localization test is given by the Lyapunov stability theorem [23]. Namely, if
for a given matrix A ∈ Cn,n, we de�ne the operator LA(X) = −(AX + XA∗), then
the open left half-plane localizes eigenvalues of A if and only if LA : Hn,n → Hn,n
is bijective, where Hn,n denotes the set of all n-by-n Hermitian positive de�nite ma-
trices. We will now extend Lyapunov theorem as in [24], and refer to this class of
localizations as Lyapunov-type localizations.

Here, we assume that the domain of the possible location of the spectrum is
given. Then one is interested in the conditions of the desired inclusion of the eigen-
values with respect to the domain boundary. The main results in this direction are
related to the computation of inertia indices of Hermitian solutions of linear matrix
equations (generalizing the Lyapunov equations), using Hermitian functions with sep-
arable variables. In particular, given a Hermitian matrix Γ = Γ∗ = [γpq] ∈ Cm,m,
m ≥ 2, we will consider functions of the form

f(z) :=

m∑
p=1

m∑
q=1

γpqϕp(z)ϕq(z) = ϕ(z)TΓ ϕ(z),(3.1)
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where ϕ(z) = [ϕ1(z), ϕ2(z), . . . , ϕm(z)]T and the complex functions {ϕp}mp=1 are lin-
early independent. Since Γ = Γ∗, f is a real valued function of a complex variable and
we can consider it as a map f : R2 → R. For notational convenience, in the remainder
of the paper, we will identify f(x+ ıy) with f(x, y).
Let us now de�ne the following sets:

Λ+
f := {z ∈ C : f(z) > 0} ,(3.2)

Λ−f := {z ∈ C : f(z) < 0} ,(3.3)

Λ0
f := {z ∈ C : f(z) = 0} .(3.4)

The domain in (3.4) can be considered as a curve in the complex plane separating
the two other domains in (3.2) and (3.3). In general, however, the boundaries ∂Λ+

f

and ∂Λ−f of the domains in (3.2) and (3.3), respectively, do not necessarily have to

coincide with Λ0
f . However, if we choose the basis {ϕp}mp=1 as a standard basis, i.e.,

ϕp(z) := zp−1, 1 ≤ p ≤ m, then Λ0
f describes an algebraic curve of order at most

2m− 2, and the inclusions ∂Λ+
f ⊆ Λ0

f and ∂Λ−f ⊆ Λ0
f hold.

Given a matrix A ∈ Cn,n, a Hermitian function f de�ned as in (3.1) and basis

functions {ϕp}mp=1, we construct the generalized Lyapunov operator LfA : Cn,n →
Cn,n, given by

LfA(X) :=

m∑
p=1

m∑
q=1

γpqϕp(A)Xϕq(A
∗),(3.5)

where, for 1 ≤ p ≤ m, ϕp(A) is a matrix function de�ned via

ϕp(A) = − 1

2πı

∮
C

ϕp(z)(A− zI)−1dz,

and C is a closed simple contour separating a closed domain in C which contains the
spectrum of A that excludes the singularities of ϕp.

In particular, for the standard basis, f can be written as

f(z) :=

m∑
p=1

m∑
q=1

γpq(z)
p−1(z)q−1,(3.6)

and therefore, since ϕp(A) = Ap−1, 1 ≤ p ≤ m, the operator (3.5) takes the form

LfA(X) :=

m∑
p=1

m∑
q=1

γpqA
p−1XA∗(q−1).

In the following, for the sake of clarity, we develop algorithms for computing
the distance to delocalization working with domains which can be expressed in the
standard basis. The use of other bases will be illustrated later in several numerical
examples. Further details about these domains and their properties, together with a
method for computing their unions and intersections can be found in [24, Section 1.1.
and 1.4]. Here, we just note that, introducing matrices

Γl =

[
2a sin θ − sin θ + ı cos θ

− sin θ − ı cos θ 0

]
, Γc =

[
r2 − |ω|2 ω

ω −1

]
,(3.7)
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Γs =

 4a2 0 1
0 −2 0
1 0 0

 , and Γa =

 −r2R2 0 0
0 r2 +R2 0
0 0 −1

 ,(3.8)

a half-plane whose boundary is a line y cos θ = (x − a) sin θ, a ∈ R, θ ∈ [0, π), can
be obtained using a matrix Γl in (3.7), the interior of a circle centered in ω ∈ C with
radius r > 0 using a matrix Γc in (3.7), a horizontal strip y2 = a2, a > 0, using
matrix Γs in (3.8), and an annulus of radii 0 < r < R = 1 centered at zero using
matrix Γa in (3.8).
Our motivation to use Lyapunov-type domains arises from the following theorem.

Theorem 3.1 ([22, 24]). Let f be a Hermitian function given by (3.6) such
that the Hermitian matrix Γϕ(z)ϕ(z)TΓ − f(z)Γ is positive semide�nite. Given a
matrix A ∈ Cn,n, and an arbitrary Hermitian positive de�nite matrix Y ∈ Cn,n,
all the eigenvalues of matrix A belong to the domain Λ+

f if and only if the equation

LfA(X) = Y has a unique positive de�nite solution X, i.e.,

Λ(A) ⊆ Λ+
f if and only if LfA : Hn,n → Hn,n is a bijection.

In fact, a more general Theorem holds, [24, Theorem 1.5.1]. For a certain class of Her-
mitian functions f , the number of eigenvalues of the matrix A inside the domains Λ+

f

and Λ−f coincides with the number of positive and negative eigenvalues of the matrix

X, respectively, where X is such that LfA(X) is positive de�nite. These Lyapunov-
type localization techniques and inertia tests will play an essential role in studying
the distance to localization, which is beyond the scope of this paper and will be the
subject of future work.

So far, for a given Γ = Γ∗ and a basis {ϕp}mp=1, using Theorem 3.1, we can verify

if the inclusion Λ(A) ⊆ Λ+
f (A) holds. Now, our main goal is to determine whether the

ε-pseudospectrum of A is enclosed in the domain and to calculate the largest value
of ε for which it is. This leads to the formulation of a new matrix nearness problem,
called the distance to delocalization of Λ(A) from the domain Λ+

f (A), i.e.,

δ−f (A) := inf
{
‖∆‖ : Λ(A+ ∆) 6⊆ Λ+

f , ∆ ∈ Cn,n
}
.

Obviously, since for Γ = Γl, a = 0 and θ = π
2 , Λ+

f becomes an open left-half

plane, and for Γ = Γc, ω = 0 and r = 1, Λ+
f becomes an open unit disk, the distance

to delocalization is a generalization of the distance to instability in both the discrete
and the continuous case.

As we have already noticed, a straightforward approach to solve this problem is
using pseudospectral sets, where

δ−f (A) = sup
{
ε : Λε(A) ⊆ Λ+

f

}
.

Assuming that ∂Λ+
f = ∂Λ−f = Λ0

f and employing the Euclidean norm, yields

δ−f (A) = min
z∈Λ0

f

σn(A− zI).(3.9)

Before we discuss a computational method to compute the distance to delocal-
ization, which is the main objective of this paper, we will introduce a complementary
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matrix nearness problem generalizing the distance to instability in the discrete and
continuous sense. We de�ne the distance to localization of Λ(A) to the domain Λ+

f (A)
as

δ+
f (A) := inf

{
‖∆‖ : Λ(A+ ∆) ⊆ Λ+

f , ∆ ∈ Cn,n
}
.

Again, Theorem 3.1 allows to express δ+
f (A) equivalently as

δ+
f (A) = inf

{
‖Â−A‖ : Lf

Â
(X) > 0, X > 0, Â ∈ Cn,n

}
.

This formulation of the problem constitutes a starting point for generalizing the suc-
cessive convex approximations for the stabilization of polynomials and matrices in-
troduced in [27] into a computational method for the distance to localization.

4. Computational methods for distance to delocalization. In this section
we develop computational methods for the distance to delocalization problems stated
in (3.9). A singular value minimization problem over a curve in the complex plane is
considered. Under the assumption that the solution is a simple singular value, we can
construct a Newton-type method using formulas for the �rst and the second order
derivatives of a (simple) minimal singular value. More precisely, in the remainder
of the paper we will use the following assumptions on given matrices A ∈ Cn,n and
Γ = Γ∗ ∈ Cm,m:

Assumption 1. For domains Λ+
f , Λ−f and Λ0

f de�ned in (3.2)�(3.4), Λ(A) ⊆ Λ+
f

and ∂Λ+
f = ∂Λ−f = Λ0

f .

Assumption 2. The distance to delocalization δ−f (A) is achieved at a simple
singular value of A− zI, for z being a solution of (3.9).

Let us de�ne s(x, y) := σn(A−(x+ıy)I). Our aim now is to determine (x̂, ŷ) ∈ R2

such that

s(x̂, ŷ) = min{s(x, y) : f(x, y) = 0, x, y ∈ R},(4.1)

where in the neighborhood of (x̂, ŷ) the following equalities hold, see [2, Lemma 3]

sx(x, y) = −Re(u∗v),
sy(x, y) = Im(u∗v),
sxx(x, y) = σu∗Eu+ σv∗Fv + 2Re(v∗(A− zI)Eu) + σ−1(Im(u∗v))2,
sxy(x, y) = 2Im(v∗(A− zI)Eu) + σ−1Re(u∗v)Im(u∗v),
syy(x, y) = σu∗Eu+ σv∗Fv − 2Re(v∗(A− zI)Eu) + σ−1(Re(u∗v))2.

(4.2)

Here,

E = (σ2I − (A− zI)∗(A− zI))† and F = (σ2I − (A− zI)(A− zI)∗)†,(4.3)

where † denotes the Moore-Penrose pseudoinverse [12, Chapter 5], and (σ, u, v) is the
minimal singular triplet of A− zI for z = x+ ıy.

Thus, we can introduce the Lagrange function Φ(x, y, µ) := s(x, y) + µf(x, y),
where µ is a Lagrange multiplier, and solve (4.1) using Newton's method, which is
given by

ξ(k+1) = ξ(k) −
[
∇2Φ

(
ξ(k)

)]−1

∇Φ
(
ξ(k)

)
, k = 0, 1, 2, . . . ,(4.4)
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where ξ = [x, y, µ]T and

∇Φ =

 sx + µfx
sy + µfy

f

 , ∇2Φ =

 sxx + µfxx sxy + µfxy fx
sxy + µfxy syy + µfyy fy

fx fy 0

 .(4.5)

For the sake of brevity, here and later on, we omit the arguments (x, y, ε).
Now, di�erentiating (3.6) yields the equations

fx(x, y) = ϕT (x, y) [D∗Γ + ΓD]ϕ(x,−y),
fy(x, y) = ı ϕT (x, y) [D∗Γ− ΓD]ϕ(x,−y),
fxx(x, y) = ϕT (x, y)

[
D2∗Γ + 2D∗ΓD + ΓD2

]
ϕ(x,−y),

fxy(x, y) = ı ϕT (x, y)
[
D2∗Γ− ΓD2

]
ϕ(x,−y),

fyy(x, y) = −ϕT (x, y)
[
D2∗Γ− 2D∗ΓD + ΓD2

]
ϕ(x,−y),

(4.6)

where ϕ(x, y) =
[
1, x+ ıy, (x+ ıy)2, . . . , (x+ ıy)m−1

]T
, and D = [dij ] ∈ Rm,m is

de�ned such that dij = i for 2 ≤ i = j − 1 ≤ m, and dij = 0 otherwise.
As a consequence, calculating values of f(x, y) and values of its partial derivatives

in each iteration step reduces to matrix vector multiplications with a matrix of the size
m-by-m. Since for most of the interesting domains it holds m ≤ 4, the computational
cost arising from checking the domain constraint is very small compared to the cost
of evaluating the function s(x, y) and its derivatives.

We will refer to this primary method for computing the distance to delocalization
as Algorithm eD2D (explicitDinstance to Delocalization). This algorithm converges
locally quadratically provided that the Hessian ∇2Φ is nonsingular in the limit point,
which obviously requires a necessary condition ∇f(x̂, ŷ) 6= 0.

Algorithm 1 : eD2D

Input: A, Γ, x0, y0, µ0, tol

1: Set x := x0, y := y0, µ := µ0

2: while ‖4ξ‖2 ≥ tol do
3: Compute the singular triplet (σ, u, v) of A− (x+ ıy)I;
4: Compute E,F from (4.3);
5: Compute sx, sy, sxx, sxy, syy using (4.2);
6: Compute f , fx, fy, fxx, fxy, fyy using (4.6);
7: Build gradient ∇Φ and Hessian ∇2Φ matrices using (4.5);
8: Compute 4ξ by solving the linear system ∇2Ψ 4ξ = −∇Ψ;
9: Update x := x+4ξ1, y := y +4ξ2, µ := µ+4ξ3;
10: end while
Output: ε, x+ ıy

Solving (3.9) by calculating the minimal singular triplets (ε, u, v) through the
singular value decomposition (SVD) is not the best approach when dealing with large
(and sparse) matrices arising from practical applications. Therefore, we proceed by
extending the recent work of [31], and [1, 10] on the implicit determinant method
to replace intensive SVD computations by the LU decompositions which signi�cantly
decreases the overall computational cost.

To that end, note that (3.9) can be reformulated as

min ε > 0 s.t.
(A− (x+ ıy)I)v = εu,
(A∗ − (x− ıy)I)u = εv,
f(x, y) = 0,

u, v ∈ Cn, x, y, ε ∈ R.(4.7)
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The implicit determinant method essentially bases on the fact that for a given
matrix A ∈ Cn,n and a point z = x + ıy ∈ C, |ε| is a singular value of A − zI if and
only if h(x, y, ε) = 0, where h(x, y, ε) is the last component of a unique solution (when
it exists) of the linear system −εI A− (x+ ıy)I c1

A∗ − (x− ıy)I −εI c2
c∗1 c∗2 0


︸ ︷︷ ︸

M :=M(x,y,ε)

 u(x, y, ε)
v(x, y, ε)
h(x, y, ε)

 =

 0
0
1

 .(4.8)

Moreover, see [1, Theorem 2.2], if ε̂ is a simple singular value of A−(x̂+ ıŷ)I with
corresponding left and right singular vectors û, v̂, and c1, c2 ∈ Cn are chosen such
that c∗1û + c∗2v̂ 6= 0, then the matrix M(x̂, ŷ, ε̂) is nonsingular. Hence, (4.8) de�nes
smooth functions u(x, y, ε), v(x, y, ε) and h(x, y, ε) in the neighborhood of (x̂, ŷ, ε̂).

We can now reformulate (4.7) locally as follows:
Theorem 4.1. Let A ∈ Cn,n and Γ = Γ∗ ∈ Cm,m. For û, v̂ being the left

and the right singular vectors corresponding to the singular value δ−f (A) we de�ne

E as a neighborhood of δ−f (A), and we introduce �xed vectors c1, c2 ∈ Cn such that
c∗1û+ c∗2v̂ 6= 0. Then, under the Assumptions 1 and 2, for (x̃, ỹ, ε̃) being the solution
of the constrained optimization problem:

min ε2 s.t.
h(x, y, ε) = 0,
f(x, y) = 0,

x, y ∈ R, ε ∈ E ,(4.9)

the distance to delocalization δ−f (A) of Λ(A) from the domain Λ+
f is given by ε̃, i.e.,

δ−f (A) = ε̃.

Proof. First, let us observe that, under the Assumption 1, (3.9) holds, i.e., δ−f (A)

is the smallest minimal singular value of A − zI, where z ∈ Λ0
f . Let ẑ = x̂ + ıŷ be a

complex number for which the minimum of (3.9) is attained. Then

f(x̂, ŷ) = 0, (A− ẑI)v̂ = δ−f (A)û, and (A− ẑI)∗û = δ−f (A)v̂.(4.10)

Since c∗1û+c∗2v̂ 6= 0, Assumption 2 implies thatM(x̂, ŷ, δ−f (A)) is nonsingular, and con-

sequently (4.8) de�nes a smooth function h(x, y, ε) in a neighborhood of (x̂, ŷ, δ−f (A))

with h(x̂, ŷ, δ−f (A)) = 0. Therefore, the problem (4.9) is well de�ned and for its so-
lution (x̃, ỹ, ε̃) we have h(x̃, ỹ, ε̃) = 0 and f(x̃, ỹ) = 0. However, the nonsingularity
of M(x̃, ỹ, ε̃) implies that ε̃ is a singular value of A − (x̃ + ıỹ)I, where x̃ + ıỹ ∈ Λ0

f .

This however, according to (3.9), implies δ−f (A) ≤ ε̃. Finally, since ε̃ is the minimum

attained in (4.9), we conclude that δ−f (A) = ε̃ which completes the proof.
Theorem 4.1 guarantees that solving (4.9) will provide us with the desired value

of distance to delocalization. Hence, as before, we de�ne the Lagrange function of
(4.9) by

Ψ(x, y, ε, ζ, µ) := ε2 + ζh(x, y, ε) + µf(x, y),(4.11)

where, ζ and µ are Lagrange multipliers. We construct Newton's method for comput-
ing the stationary points of (4.9)

ξ(k+1) = ξ(k) −
[
∇2Ψ

(
ξ(k)

)]−1

∇Ψ
(
ξ(k)

)
, k = 0, 1, 2, . . . ,(4.12)
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where ξ = [x, y, ε, ζ, µ]T and

∇Ψ =


ζhx + µfx
ζhy + µfy
2ε+ ζhε

h
f

 , ∇2Ψ =


ζhxx + µfxx ζhxy + µfxy ζhxε hx fx
ζhxy + µfxy ζhyy + µfyy ζhyε hy fy

ζhxε ζhyε 2 + ζhεε hε 0
hx hy hε 0 0
fx fy 0 0 0

 .
(4.13)

Expressions for derivatives of f are given in (4.6), whereas formulas for derivatives
of h can be obtained by di�erentiating (4.8):

M(x, y, ε)

 ux uy uε
vx vy vε
hx hy hε

 =

 v ıv u
u −ıu v
0 0 0

 ,(4.14)

and

M(x, y, ε) =

 uxx uxy uxε uyy uyε uεε
vxx vxy vxε vyy vyε vεε
hxx hxy hxε hyy hyε hεε

 =

 2vx vy + ıvx ux + vε 2ıvy uy + ıvε 2uε
2ux uy − ıux vx + uε −2ıuy vy − ıuε 2vε
0 0 0 0 0 0

 .
(4.15)

Again, calculating the �rst and the second order partial derivatives of h(x, y, ε)
reduces to solving linear systems with the matrix M(x, y, ε). Therefore, we are able
to implement (4.12) in Algorithm iD2D0 (implicit Distance to Delocalization) such
that only one LU factorization of a Hermitian matrix per Newton step is needed. So
far, we have replaced one SVD and two n × n Moore-Penrose pseudoinverses by one
(2n+1)×(2n+1) LU factorization and six forward/backward substitutions. Obviously,
this change has signi�cantly reduced the computational cost, but, unfortunately, it
does su�er from several drawbacks. Before we go into more details, let us provide the
conditions for the convergence of Algorithm iD2D0.

Theorem 4.2. Let A ∈ Cn,n, Γ = Γ∗ ∈ Cm,m satisfy the Assumptions 1 and 2,
and let (x̂, ŷ, ε̂) be the solution of (4.9). Then, Algorithm iD2D0 converges quadrati-
cally to (x̂, ŷ, ε̂) for all starting values (x0, y0, ε0) su�ciently close to (x̂, ŷ, ε̂), provided
that the following conditions hold:

(1) ∇2f(x̂, ŷ) 6= 0,
(2) c1, c2 ∈ Cn are chosen such that c∗1û+ c∗2v̂ 6= 0,
(3) ζ0, µ0 are su�ciently close to −2 (‖û‖22 + ‖v̂‖22)−1ε̂ and 2 α̂ ε̂, respectively,

(4) and ∇2h(x̂, ŷ, ε̂)− (‖û‖22 + ‖v̂‖22)

[
α̂∇2f(x̂, ŷ) 0

0 ε̂−1

]
is nonsingular,

with û := u(x̂, ŷ, ε̂), v̂ := v(x̂, ŷ, ε̂), and

α̂ :=


2Re(û∗v̂)

(‖û‖22 + ‖v̂‖22)fx(x̂, ŷ)
, fx(x̂, ŷ) 6= 0,

− 2Im(û∗v̂)

(‖û‖22 + ‖v̂‖22)fy(x̂, ŷ)
, fx(x̂, ŷ) = 0.

(4.16)

Proof. Since Algorithm D2D0 is the Newton-type method given in (4.4), it cal-

culates a vector ξ̂ = [x̂, ŷ, ε̂, ζ̂, µ̂]T such that ∇Ψ(ξ̂) = 0, and its local quadratic
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Algorithm 2 : iD2D0

Input: A, Γ, c1, c2, x0, y0, ε0, ζ0, µ0, tol

1: Set x := x0, y := y0, ε := ε0, ζ = ζ0, µ := µ0;
2: Set 4ξ = 2tol;
3: while ‖4ξ‖2 ≥ tol do
4: Build M = M(x, y, ε) as in (4.8);
5: Determine the LU decomposition M = LU ;
6: Solve the linear system (4.8) to obtain h, u, v;
7: Solve the linear system (4.14) to obtain hx, hy, hε;
8: Solve the linear system (4.15) to obtain hxx, hxy, hxε, hyy, hyε, hεε;
9: Calculate basis ϕ;
10: Compute f , fx, fy, fxx, fxy, fyy using (4.6);
11: Build gradient ∇Ψ and Hessian ∇2Ψ matrices using (4.13);
12: Compute 4ξ by solving the linear system ∇2Ψ 4ξ = −∇Ψ;
13: Update x := x+4ξ1, y := y+4ξ2, ε := ε+4ξ3, ζ := ζ +4ξ4, µ := µ+4ξ5;
14: end while
Output: ε, x+ ıy

convergence follows directly from the nonsingularity of the Hessian in the limit vector
ξ̂, i.e, ∇2Ψ(ξ̂). According to Theorem 4.1, we need to guarantee that the starting

vector ξ0 in (4.4) is su�ciently close to ξ̂ and prove that the 5× 5 Hermitian matrix

∇2Ψ(ξ̂) is nonsingular.
First, we observe that, due to condition (1), α̂ is well de�ned. Second, since

h(x̂, ŷ, ε̂) = 0, we have that c∗1û + c∗2v̂ = 1 and [û∗, v̂∗, 0]M(x̂, ŷ, ε̂) = [0, 0, 1]T ,
see (4.8). By multiplying (4.14) with [û∗, v̂∗, 0] we get hx(x̂, ŷ, ε̂) = 2Re(û∗v̂),
hy(x̂, ŷ, ε̂) = −2Im(û∗v̂) and hε(x̂, ŷ, ε̂) = ‖û‖22 + ‖v̂‖22 > 0. Now, exploiting the

fact that ∇Ψ(ξ̂) = 0, we obtain

ζ̂ = − 2

‖û‖22 + ‖v̂‖22
ε̂, µ̂ = 2 α̂ ε̂, h(x̂, ŷ, ε̂) = 0, and f(x̂, ŷ) = 0,(4.17)

which guaranties that ξ0 is su�ciently close to ξ̂.
To prove the nonsingularity of the Hessian matrix, we notice that it can be written

as

∇2Ψ(ξ̂) =

[
B P
PT 0

]
,

where

B = ζ̂ ∇2h(x̂, ŷ, ε̂)+

[
µ̂∇2f(x̂, ŷ) 0

0 2

]
and P =

[
∇h(x̂, ŷ, ε̂)

∇f(x̂, ŷ)
0

]
.

Condition (4) implies that B is nonsingular, while rank(P ) = 2 due to hε(x̂, ŷ, ε̂) > 0.

Finally, the equality det[∇2Ψ(ξ̂)] = det[B] det[PTB−1P ] implies the nonsingularity

of ∇2Ψ(ξ̂), which completes the proof.
According to Theorem 4.2, Algorithm iD2D0 exhibits a local quadratic conver-

gence for an appropriately chosen starting point, while the computed value of ε is
only a stationary point of (4.11). Both algorithms eD2D and iD2D0, as Newton-type
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methods, may not produce the distance to delocalization, but, instead, return a larger
value of ε, such that Λε(A) ∩Λ−f 6= ∅. These suboptimal results may arise due to the
general relationship between geometries of the pseudospectrum and the domain. This
makes the choice of a good starting point x0 + ıy0 hard, even if the eigenvalues of A
are known. This phenomenon will be illustrated in the following section. However,
unlike Algorithm eD2D, Algorithm iD2D0 can also produce suboptimal solutions since
h(x, y, ε) = 0 implies that |ε| is a singular value, but not necessary the minimal one.
To overcome this drawback, we develop an implicit version of the D2D algorithm.

Let us now take a point z0 = x0 + ıy0 in the complex plane which is su�ciently
close to the solution ẑ = x̂ + ıŷ of (3.9). In order to run Algorithm iD2D0, we will
still need to specify c1, c2 ∈ Cn and good starting values for ε0, ζ0, µ0 ∈ R. Since,
under Assumption 2, see [2], the singular value of A − zI and its corresponding left
and right singular vectors are di�erentiable functions of z in the neighborhood of ẑ,
Theorem 4.2 provides good starting values. Namely, we can compute the minimal
singular triplet (ε0, u0, v0) of A− (x0 + ıy0)I and set c1 = u0/2 and c2 = v0/2. Then,
0 6= c∗1û+c∗2v̂ ≈ c∗1u0+c∗2v0 = 1 and condition (1 ) of Theorem 4.2 is ful�lled. Similarly,
condition (2 ) gives appropriate starting values for the Lagrange multipliers ζ0 = −ε̂
and µ0 := 2Re(û∗0v̂0)/fx(x0, y0) for fx(x0, y0) 6= 0, and µ0 := −2Im(u∗0v0)/fy(x0, y0)
otherwise. With such constructed starting values, given matrices A and Γ, and com-
puted tolerance tol, we can run Algorithm iD2D0 by specifying an initial point in the
complex plane. As a result, we get ẑ = x̂ + ıŷ and ε̂, which is a singular value of
A − ẑI. Unfortunately, we cannot guarantee that ε̂ is the minimal singular value of
A − ẑI. Namely, taking into account that ∂Λε̂(A) consists of the outermost closed
curves of {(x, y) ∈ R2 : h(x, y, ε̂) = 0}, it may happen that a chosen starting point
was closer to the place where some of the inner curves touch the boundary of the
domain Λ+

f . As a consequence, we may end up in a suboptimal value of ε̂ > δ−f (A).
A remedy for this problem is to compare ε̂ with σn(A − ẑI), and to restart the al-
gorithm if necessary. Using these two tricks, we have the following improved implicit
D2D Algorithm, denoted by iD2D.

Algorithm 3 : iD2D

Input: A, Γ, x0, y0, tol

1: Compute the minimal singular triplet (ε0, u0, v0) of A− (x0 + ıy0)I;
2: Set ε := ε0 + 2tol;
3: while |ε− ε0| ≥ tol do
4: Set c1 = u0/

√
2,c2 = v0/

√
2 and ζ0 = −ε0;

5: Compute fx(x0, y0) and fy(x0, y0) using (4.6);
6: if fx(x0, y0) > tol then
7: Set µ0 = 2ε0 Re(u

∗
0v0)/fx(x0, y0);

8: else
9: Set µ0 = −2ε0 Im(u∗0v0)/fy(x0, y0);
10: end if
11: Run the Algorithm iD2D0(A, Γ, c1, c2, x0, y0, ε0, ζ0, µ0) to obtain ε, x and y;
12: Set x0 := x, y0 := y;
13: Compute the minimal singular triplet (ε0, u0, v0) of A− (x0 + ıy0)I;
14: end while
Output: ε, x+ ıy
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Although the computation of non-minimal singular values in iD2D0 can be �xed
by restarts implemented in iD2D, another way to solve this issue is to stabilize the
Newton iterations by step size control. The standard, state of the art, stabilization
techniques use back tracking with the Armijo rule [3] and the Wolfe conditions [35, 36].
However, these techniques require the recomputation of the Lagrange function (4.11)
and its gradient for every contraction step, and result in an increased number of LU
factorizations and forward/backward substitutions. Fortunately, since computing the
values of f is extremely cheap in comparison to the computation of h, step size control
based on values of f seems to be a much better choice. In fact, we are iteratively
approaching the point in the complex plane which corresponds to the coalescence of
the domain boundary Λ0

f and the outermost curves of {(x, y) ∈ R2 : h(x, y, ε̂) =
0}. Therefore, if our step size control assures that we move in the steepest descent
direction while staying out of the domain Λ+

f , we automatically enforce computations
of ε values that correspond to the minimal singular values. This leads to the �nal
Algorithm iD2Dd (implicit Distance to Delocalization - damped). To simplify the
presentation we state only the part of the step size control using step contraction
parameter β ∈ (0, 1) and the smallest step parameter τ ∈ (0, 1) which replaces line 13
in the Algorithm iD2D0:

Lines 13a-13f for iD2D0 (damping of the descent step size):

Set γ = 1;
while f < 0 and τ < γ do
Update γ = γβ;
Compute f using (3.6);

end while
Update x := x+γ4ξ1, y := y+γ4ξ2, ε := ε+γ4ξ3, ζ := ζ+γ4ξ4, µ := µ+γ4ξ5;

In the following section, we will illustrate our algorithms for computing the dis-
tance to delocalization using several test examples. In the case when it coincides with
the distance to instability, we will compare our results with the algorithm of [10],
denoted as FS, since they are both based on Newton's method. In addition, we will
discuss some strategies for choosing the proper starting points, which are crucial for
the convergence of the method. It is important to note that the computed values
may not coincide with the distance to delocalization and that, contrary to the case
of the left half-pane, up to now there is no reasonable method to test if the solution
is a global minimum. The distance to instability test in [17], based on computing
imaginary eigenvalues of Hamiltonian matrices, was used in almost all the state of the
art algorithms. Unfortunately, this approach cannot easily be generalized to the more
complicated domains introduced in this paper. Still missing is a simple and e�cient
test for checking whether the ε-pseudospectrum crosses an algebraic curve of the form
Λ0
f .

5. Numerical examples. In this section, we start with three example problems
from [10] for computing the distance to instability. Since that algorithm is also based
on Newton's method and the implicit determinant approach, it seems reasonable to
compare it with our algorithms with a special choice of the domain, namely, the open
left half-plane. More precisely, we will present a comparison of the implicit D2D
algorithm (iD2D) and the FS algorithm, and show that iD2D can be considered as
a suitable generalization of the FS method to domains di�erent than the open left
half-plane. To ensure the global optimum in the outer iteration of iD2D, we use the
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same test as in FS, see [10], which, unfortunately, is restricted to the case of the open
left half-plane. For a detailed discussion, see [10].

All algorithms were implemented in Matlab version 8.1 (R2013a) running on an
Intel R© CoreTM 2 DUO CPU E6850 and tested with some matrices from the Matrix
Market repository [5] and EigTool [37].

Example 1. Let A be the bwm200.mtx matrix from the Matrix Market repos-
itory. The size of the matrix is n = 200 and it originates from a Brusselator wave
model in a chemical reaction. The starting point for both FS and iD2D algorithm
is chosen according to [10] as z0 = 2.139497522076343i, and the tolerance is set to
tol = 10−10.

In Table 5.1 we present the convergence behavior of both algorithms. After initial-
ization of iD2D, which consists of computing the minimal singular triplet ofA−z0I and
setting up starting values ε0, ζ0 and µ0, both algorithms were executed with the same
starting values. We present only the last 8 digits of y(i) (y(0) = 2.139497522076343)
and 3 digits of ε(i) (ε(0) = 8.240972726e−06 for algorithm iD2D), which are the only
ones varying during the iterations. The values of x(i) are omitted since they are equal
to zero (up to machine precision).

i y(i) = 2.1394975 . . . ε(i) = 8.240972 . . . Error(i)

FS iD2D FS iD2D FS iD2D
0 22076343 22076343 0 726 - -
1 22045502 21953098 700 726 4.19e-06 8.24e-06

2 22014727 22014689 687 697 3.83e-07 6.16e-11

3 22014739 - 689 - 1.63e-10 -
4 22014746 - 691 - 8.10e-11 -

Table 5.1: Results for Brusselator wave model - Example 1. Algorithm FS is compared
to algorithm iD2D.

As we can see, algorithm iD2D converges in two iterations, whereas FS needed
four iterations to obtain the same distance to instability ε̂ = 8.240972e − 06. This
demonstrates the advantage of formulating the optimization problem of distance to
instability using the Hermitian function f over the formulation via Hamiltonian eigen-
value problems as it was done in [10]. Also, the CPU times of FS (1.29s) and iD2D
(0.7s) indicate a better performance of iD2D.

Example 2. Our second example is the Tolosa matrix tols340.mtx of size
n = 340 from the Matrix Market repository. It is a highly nonnormal matrix
used in the stability analysis of a �ying airplane. Again, the starting point z0 =
155.9999219999809ı and tolerance tol = 10−12 are chosen as in [10]. Other starting
values are obtained through initialization of iD2D.

Table 5.2 presents the last 10 digits of y(i) and 7 digits of ε(i), where y(0) =
155.9999219999809 and ε(0) = 0.001999797129104 for algorithm iD2D. Here, both
algorithms converge in four steps to the same ε̂, however, the CPU times FS (3.7s)
and iD2D (2.85s) again indicate better performance of iD2D.

Example 3. Both algorithms are tested with matrix rdb450.mtx of dimen-
sion 450 from the Matrix Market repository, which originates from a reaction-
di�usion Brusselator model. Starting point z0 = 1.610747974050403ı and tolerance
tol = 10−12 are used. Analogously to the previous example, this gives the same values
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i y(i) = 155.999 . . . ε(i) = 0.00199979 . . . Error(i)

FS iD2D FS iD2D FS iD2D
0 9219999809 9219999809 0 7129104 - -
1 8829972845 7659892313 6887893 7129104 1.00e-03 2.01e-03

2 8439945398 8439945868 6825390 6137865 1.60e-06 7.80e-05

3 8439945282 8439945282 6887893 6637884 3.13e-11 3.58e-10

4 8439945282 8439945282 6887893 6887893 3.79e-16 1.04e-14

Table 5.2: Results for Example 2, Tolosa matrix. Algorithms FS and iD2D are
compared.

ε̂ = 0.084277384643143 and ẑ = 1.593892567251319ı, while CPU times, FS (8.2s)
and iD2D (6.81s), show again a slightly better performance of iD2D.

Based on these and other tests, we observe that our method performs as good
as the state of the art methods for computing the distance to instability. But more
importantly, the distance to delocalization algorithms presented here are the �rst
approaches designed for determining robustness of other domains of spectral inclusion.
In the following examples, we illustrate the behaviour of the new algorithms for four
di�erent domains: an annulus given by Γa as in (3.8), a cissoid of Diocles given by Γd
and the area between two hyperbolas given by Γh, where

Γd =

 0 0 a/2
0 −a −1
a/2 −1 0

 , Γh = −

 −4a2b2 0 a2 + b2

0 2(b2 − a2) 0
a2 + b2 0 0

 .(5.1)

Example 4. In this example we will consider the perturbed motion of a rocket,
taking into account the elastic oscillations of its airframe as a straight �exible nonuni-
form rod. The governing equations of this dynamical system are given in [24, Example
3.1.2.]. The domain of interest for the location of the "stable" dynamical system is
chosen to be a cissoid of Diocles Γd in (5.1) with a = 0.1. Starting with an unsta-
ble sparse matrix A of size n = 9, controller K is constructed using Theorem 3.1
and its related theory. Afterwards, a matrix M = A + BKC, whose eigenvalues are
located in the domain bordered by the cissoid of Diocles, is de�ned. Table 5.3 con-
tains the nonzero elements of the matrices A ∈ R9,9, B ∈ R9,1 and C ∈ R3,9, while
K = [1.0401, 1.5558, −0.0177].

As expected, the choice of a suitable starting point is fundamental to avoid being
trapped in a local minimum. This situation is illustrated in Figure 5.1 for two starting
points z0 = 0.01ı (on the left) and z0 = 5ı (on the right). In the latter case, a local
minimum is attained, since the pseudospectrum has already crossed the boundary
around 0. Indeed, Table 5.4 shows that the computed value ε̂ for starting point
z0 = 5ı is much larger than the one computed for z0 = 0.01ı. However, testing this
in practice is still a computationally challenging task, contrary to the case when the
domain is an open left-half plane.

For all three algorithms eD2D, iD2D, and iD2Dd, �nding a good starting point is
not an easy task. However, for certain domains one can sample closely outside of the
domain Λ+

f , following the boundary Λ0
f by a regularly spaced set of points. Then, one

computes the minimal singular value of A− zI for each sample point z, and starts an
algorithm in the point corresponding to the smallest minimal singular value. In the
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i, j aij i, j aij i, j aij i, j aij i bi
1,2 1 3,1 -0.0458 3,8 7e-4 7,6 -169 2 -1.138
2,3 0.2165 3,2 1 4,5 1 7,7 -0.13 3 -0.0348
2,4 -0.0356 3,3 -0.0133 5,4 -29.81 8,9 1 5 29.56
2,6 -0.0299 3,4 4e-4 5,5 -0.0546 9,8 -334.3 7 47.25
2,8 -0.027 3,6 6e-4 6,7 1 9,9 -0.1828 9 16.4

i, j cij i, j cij i, j cij i, j cij i, j cij
1,1 1 1,8 -0.124168 2,7 -0.082347 3,4 -0.73673 3,7 0.041957
1,4 0.02462 2,2 1 2,9 -0.08976 3,5 -1.1663e-5 3,8 161.21166
1,6 0.06918 2,5 -0.04819 3,3 4.368 3,6 53.7935 3,9 0.08851

Table 5.3: The nonzero elements of matrices A ∈ R9,9, B ∈ R9,1 and C ∈ R3,9 of
Example 4.
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Fig. 5.1: Results of iD2D for Example 4 with starting point z0 = 0.01ı (left) and
z0 = 5ı (right).

following, we have implemented a simple sampling strategy using a built-in Matlab
function contourc and computed the corresponding minimal singular triplets using
the Matlab svd function. However, if one deals with large and sparse matrix, a
better option would be to use the svds function based on the implicitly restarted
Arnoldi iteration. The same holds for the implementation of the eD2D algorithm for
sparse matrices.

Example 5. Let A = 0.3 · demmel(10), where demmel(10) is the Demmel matrix
of dimension n = 10 from the EigTool. We test algorithms eD2D, iD2D and iD2Dd
(with parameters β = 0.8 and τ = 0.1) for the annulus domain Γa in (3.8) with R = 1
and r = 0.1.

In the preliminary phase, we sample the region around the domain using ten
points per contour and compute the corresponding singular triplets (0.66s of CPU
time). In Table 5.5 we present the results of our algorithms. The last two columns
of the table contain the condition numbers of the system matrices M(x̂, ŷ, ε̂) and the
Hessian matrices. Although these are relatively high due to the ill-conditioning of the
eigenvalues of the Demmel matrix, our methods still converge. Also, since the size
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Starting Initialization "Inner" iterations "Outer" iterations Total ε̂
point Time (s) Quantity Time (s) Quantity Time (s) Time (s)
0.01ı 6.98e-4 8 0.0097 1 4.11e-4 0.0108 9.3e-4
5ı 2.2e-4 9 0.0084 1 3.97e-4 0.0090 0.13

Table 5.4: Number of iterations, CPU times, and ε̂ for Example 4 tested with iD2D
and two di�erent starting points.

of the problem is small (n = 10), the CPU times for the explicit and implicit D2D
algorithms are almost the same, which makes eD2D a better choice in this example.
The behavior of all the three algorithms is illustrated in Figure 5.2. The sampling
points are marked as solid dots, and the other objects are labeled according to Figure
5.1: the domain Λ+

f is shaded, the boundary Λ0
f is plotted with a solid line, the

resulting pseudospectrum Λε̂(A) with a thick solid line, the spectrum Λ(A) is marked
with +, the spectrum of the resulting perturbed matrix Λ(A − ε̂ûv̂∗) with ×, the
contact point ẑ with 2, and the points x+ ıy from the consecutive iterations with ◦.
It is interesting to note here that the point where distance to delocalization is achieved
is away of the place where the boundary of the domain is closest to the spectrum of
the matrix. Namely, ẑ = −1 belongs to the outer circle of the annulus while the
eigenvalues of the matrix (all equal to 0.3) are much closer to the inner circle. This
serves as n example that the strategy of choosing a starting point that was introduced
in [10] is not always a suitable one and that sometimes sampling of the boundary is
crucial to the global convergence.

Algorithm Iterations CPU time ε̂ ẑ κ(M) κ(H)
Inner Outer Inner Outer

eD2D 16 - 0.012 - 8.8200e-6 -1 - 2.1e9
iD2D 7 1 4.7e-3 3.0e-4 8.8200e-6 -1 2.0e8 2.6e9
iD2Dd 12 1 8.2e-3 3.2e-4 8.8200e-6 -1 2.0e8 2.6e9

Table 5.5: Results for the Demmel matrix with the annulus domain.
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Fig. 5.2: Demmel matrix with annulus domain, R = 1 and r = 1/10.

Example 6. A particularly challenging example for the distance to delocalization
is the "Twisted" matrix A from the EigTool Matlab package [37]. This matrix
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has an exponentially strong degree of nonnormality, with pseudomodes in the form
of wave packets. Its pseudospectrum Λε(A) grows the fastest around zero. We will
test our algorithms using this matrix and the domain Λ+

f de�ned as Γh of (5.1) with
a = b = 1.

The distance to delocalization δ−f (A) = 6.35606398911156e-6 in this example is
attained in ẑ = 1 and ẑ = −1. Moreover, the second smallest singular value of A−ẑI is
6.35606401102379e-6, which makes the problem almost nongeneric, i.e., the resulting
singular value is almost double, since the di�erence between the two smallest ones
is only 2.19e − 14 (smaller than the used tolerance tol = 10−12). However, all three
algorithms computed the exact value without breaking down. Again, ten sampling
points per contour were taken and the corresponding minimal singular values were
computed, all in 0.88s of CPU time. Table 5.6 presents detailed results for each
iteration step. Approaching the double singular value successfully is re�ected in the
conditioning of the matrix M . As before, Figure 5.3 illustrates the results.

Algorithm Iterations CPU time ε̂ ẑ κ(M) κ(H)
Inner Outer Inner Outer

eD2D 14 - 0.35 - 6.3561e-6 -1 - 7.5e9
iD2D 35 1 0.42 7.5e-3 6.3561e-6 -1 1.6e14 3.5e12
iD2Dd 144 1 1.9 7.4e-3 6.3561e-6 -1 1.7e14 1.3e11

Table 5.6: Results for the Twisted matrix with a hyperbolic domain.
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Fig. 5.3: Twisted matrix with a hyperbolic domain.

Finally, we remark that all three algorithms eD2D, iD2D, and iD2Dd, can be
easily adapted to domains Λ+

f which are not constructed using the standard basis.
The only changes involve computing a gradient and Hessian of the function f that
de�nes the domain. Omitting the details, we provide a test example that comes
from the analysis of the vibration of a wing in the air stream. Namely, for A being
a standard linearization of the matrix quadratics of the example wing from [4], we
compute the distance to delocalization from the nonstandard domain Λ+

f (domain

with a nonstandard basis ϕ) de�ned by f(x, y) = −x + y2 − a2 +
√
x2 + (y2 + a2)2,

where a = 2.2. Note that this domain contains both the stable modes and the
unstable modes with frequencies out of the range given by the parameter a, see the
left picture of Figure 5.4. Starting with z0 = 1 + 0.2ı, while eD2D and iD2D brake
down, iD2Dd with damping parameters β = 0.5 and τ = 0.1, converges in 22 inner and
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1 outer iteration taking of 0.014s of CPU time producing distance to delocalization
ε̂ = 0.067738021782556. This is illustrated in Figure 5.4, where the picture on the
right is a zoom of the point where the distance to delocalization is achieved.
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Fig. 5.4: Results of algorithm iD2D with starting point z0 = 1, for the linearization
of the quadratics from a wing example, [4].

6. Conclusions and open problems. In this paper we have investigated a
class of matrix nearness problems that naturally generalizes the well-established and
extensively studied concepts of distance to instability and distance to stability. Based
on motivations arising from various applications of the spectral theory of matrices,
we have formulated two matrix nearness problems - the distance to delocalization
and the distance to localization, and proposed computational methods to determine
a solution of the �rst one.

While the distance to localization was only introduced, the distance to delocal-
ization was studied in more details. In particular, we studied the robustness of the
Lyapunov-type spectral inclusions presented in [24] and used the pseudospectral ap-
proach to develop algorithms for their e�ective computations. In the special case of
the open left-half plane, when the distance to delocalization coincides with the dis-
tance to instability, we have compared the proposed algorithms with the state of the
art method from [10]. Moreover, several interesting benchmark problems of practical
relevance were used to illustrate their behavior.

For matrices of medium size we have presented the eD2D algorithm that converges
to the distance to delocalization, provided that a good starting point in the complex
plane is chosen. The boundary sampling technique used in Section 5 was successful
in our examples, however, it su�ers from a high computational cost for domains with
challenging geometries. Therefore, in the general case, the question of choosing a
good starting point without expensive computations, remains open.

Another important open problem concerns testing whether eD2D converges to a
global or a local solution. One can determine if the ε-pseudospectrum, for a given
ε, crosses the boundary of a given domain or not, only in the case of the open left
half-plane. In this speci�c case, the method of [17], based on the computation of
Hamiltonian eigenvalues, can be used to check if the obtained solution is a global
minimum. While it is simple to extend this approach to any open half-plane or open
disk using polar coordinates in the complex plane, other Lyapunov-type domains
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remain a challenging task.

Finally, equations (4.2) for the explicit computation of the derivatives of singular
values, can be used only under the assumption that the singular value is simple.
Although this is generically the case, in some applications this assumption will not
be satis�ed and di�erent algorithms need to be developed.

Since algorithm eD2D is computationally too demanding for large (and possibly
sparse) matrices, we have developed an implicit D2D algorithm based on the im-
plicit determinant method, [1, 10, 31], which avoids SVD, Hermitian or Hamiltonian
eigenvalue computations. The use of this implicit approach has increased the sen-
sitivity of the algorithm, therefore, we have provided an e�cient step size control
that is much cheaper than the commonly used backtracking line search in Newton's
methods. Again, choosing a good starting point and assuring that the solution is the
global minimum, is a challenging task. Possible improvements of both the explicit
and the implicit method may be achieved by replacing the Newton's method for the
constrained optimization by a more advanced techniques like tunneling or �ltering.

All the open problems discussed now and throughout the paper, together with
many interesting applications of the introduced matrix nearness problems, are the
subject of further research.
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