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1 Introduction

Differential-algebraic equations (DAEs) are currently the standard model-
ing concept in many applications such as circuit simulation, multibody dy-
namics, chemical process engineering, and computational fluid dynamics, see
[3, 5, 9, 16, 19, 20, 27, 36, 37] and the references therein. They have a partic-
ular advantage for the treatment of multi-physics models arising from modern
automatic modeling tools such as [8, 32].

In this paper we will focus our analysis on linear systems with variable
coefficients which describe also the local behaviour of general nonlinear DAEs,
when the nonlinear system is linearized along a trajectory [7]. We will discuss
systems of the form

Eẋ = Ax + f (1)
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in a real interval I = [t0, tf ], where E,A ∈ Ck(I, Cm,n) and f ∈ Ck(I, Cm) are
sufficiently often differentiable and ẋ = dx

dt
. Here for k ∈ N0∪{∞}, Ck(I, Cm,n)

denotes the k times continuously differentiable functions from the interval I to
the real m × n matrices C

m,n (we leave off the superscript if k = 0).
The aim of this paper is to study different formulations of (1) that allow to

weaken the classical solvability concept given by the following definition.

Definition 1 A function x : I → C
n is called a classical solution of (1) if

x ∈ C1(I, Cn) and x satisfies (1) pointwise. It is called a classical solution of
the initial value problem consisting of (1) and

x(t0) = x0, (2)

if x is a solution of (1) and satisfies (2). An initial condition (2) is called
consistent if the corresponding initial value problem has at least one solution.

Considering system (1) one can immediately see that the concept of classical
solutions can be weakend by observing that in the kernel of the coefficient
function E the derivative ẋ does not occur.

Definition 2 Consider system (1) with sufficiently smooth coefficient functions
E, A, and f . A function x : I → C

n is called strong solution of (1) if ẋ exists in
the cokernel of E, x is continuous and satisfies (1) pointwise.

A very general approach to classify existence and uniqueness of solutions and
consistency of initial conditions uses a reformulation of the original differential-
algebraic equation via derivative arrays or by means of equivalence transfor-
mations and allows a reformulation of the differential-algebraic equation to one
where the minimal smoothness requirements can be read off directly. This ap-
proach is described in detail in the recent textbook [27]. We will discuss this
concept in a different setting in Section 3.

In some practical applications, in particular in circuit simulation, see e.g.,
[17, 18], and mechanical multibody systems [9] the differential-algebraic equa-
tion has a specific structure that can be used to weaken the solvability require-
ments. Often also the DAE has the factored form

F
d

dt
(Dx) = Gx + f, t ∈ I (3)

with F ∈ Ck(I, Cm,l), D ∈ Ck(I, Cl,n), G ∈ Ck(I, Cm,n). We say that the
differential-algebraic system has factored leading term if F,DT have pointwise
full column rank rF , rD, respectively, with rD = rF = l.

A different formulation for systems, where the leading coefficient is factored
and satisfies further requirements, was studied in [4, 29, 30, 31], where a linear
differential-algebraic system of the form (3) is called DAE with properly stated
leading term if F ∈ C(I, Cm,l), D ∈ C(I, Cl,n) with m = n,

kernel F (t) ⊕ range D(t) = C
l for all t ∈ I (4)

and there exists a projector R ∈ C1(I, Cl,l) such that

rangeR(t) = rangeD(t), kernel R(t) = kernel F (t), for all t ∈ I. (5)
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If a differential-algebraic equation has factored or properly stated leading
term, then clearly only Dx has to be differentiable and thus differentiability of
x is not necessary in the kernel of D, i.e., one can consider the larger solution
space

C1
D(I, Cn) = {x ∈ C(I, Cn) | Dx ∈ C1(I, Cl)}. (6)

In general this solution space can be further enlarged. We will discuss this for
systems with factored or properly stated leading term in Section 3.

The term weak formulation in numerical analysis is usually associated with
the concept of finding solutions by integrating against appropriately chosen test
functions. We will discuss this topic in Section 4.

Another weak formulation can be obtained for linear differential-algebraic
equations via a distributional setting. Such an approach based on the space of
impulsive smooth distributions was introduced for differential-algebraic systems
in [13, 14, 21] and then extended in [34, 35], see also [27]. We will discuss this
approach in Section 5.

There are also other weak formulations of differential-algebraic equations
that are used in conjunction with computer algebra methods, see [42, 43] or
the differential-geometric approach via jet spaces [46]. We do not discuss these
formulations here.

2 Preliminaries

Throughout the paper we will make use of several smooth factorizations of
matrix valued functions.

The first result, which can be viewed as a smooth version of the singu-
lar value decomposition, see [15], has been discussed in different places in the
literature, e.g., see [27, 38].

Lemma 3 Let E ∈ Ck(I, Cm,n), k ∈ N0 ∪ {∞}, with rank E(t) = rE for all
t ∈ I. Then there exist pointwise unitary (and therefore nonsingular) functions
U ∈ Ck(I, Cm,m) and V ∈ Ck(I, Cn,n), such that

UHEV =

[
Σ 0
0 0

]

(7)

with pointwise nonsingular Σ ∈ Ck(I, CrE ,rE).

Lemma 3 immediately leads to one-sided factorizations

EV = U

[
Σ 0
0 0

]

=
[

E1 0
]
, (8)

UHE =

[
Σ 0
0 0

]

V H =

[
Ẽ1

0

]

(9)

with E1 of full column rank and Ẽ1 of full row rank. This implies that for a
matrix E ∈ Ck(I, Cm,n) there exist bases, which behave as smoothly as E, of
the subspaces kernel and cokernel, spanned by the last n− rE, first rE columns
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of V , respectively, as well as of the subspaces range and corange, which are
spanned by first rE , last m − rE columns of U , respectively.

In the concept of systems with properly stated leading term, it is not re-
quired that the matrix functions F,DH have full column rank. This property,
however, can be easily achieved via a matrix factorization.

Lemma 4 Consider a product of matrix functions

E = FD

with F ∈ Ck(I, Cm,l), D ∈ Ck(I, Cl,n), where rE = rankE = rankD = rD

is constant. Then there exist unitary matrix functions V ∈ Ck(I, Cl,l), U ∈
Ck(I, Cm,m), and W ∈ Ck(I, Cn,n) such that

UHFV =

[
F1,1 F1,2

0 F2,2

]

, V HDW =

[
D1,1 0

0 0

]

(10)

with F1,1,D1,1 ∈ Ck(I, CrE ,rE) pointwise nonsingular. Furthermore, the matrix
function E can be transformed as

UHEW =

[
F1,1 F1,2

0 F2,2

] [
D1,1 0

0 0

]

=

[
F1,1

0

]
[

D1,1 0
]
. (11)

Proof. By Lemma 3 there exist unitary matrix functions V ∈ Ck(I, Cl,l), and
W ∈ Ck(I, Cn,n) such that

V HDW =

[
D1,1 0

0 0

]

with D1,1 ∈ Ck(I, CrD ,rD) pointwise nonsingular. If we partition the matrix
function FV as

FV =

[
F̃1,1 F̃1,2

F̃2,1 F̃2,2

]

with respect to the block structure of V HDW , then we get

EW = FV V HDW =

[
F̃1,1 F̃1,2

F̃2,1 F̃2,2

] [
D1,1 0

0 0

]

=

[
F̃1,1D1,1 0

F̃2,1D1,1 0

]

.

With the assumption rE = rD it follows that the first block column of FV has
pointwise full rank rE. Hence, according to Lemma 3 there exists a unitary
matrix function U ∈ Ck(I, Cm,m) such that

UHFV = UH

[
F̃1,1 F̃1,2

F̃2,1 F̃2,2

]

=

[
F1,1 F1,2

0 F2,2

]

.
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Remark 5 In Lemma 4 we have assumed that rankE = rankD, but analo-
gously we may assume that rankE = rankF and obtain in a similar way a
factorization

UHFV =

[
F1,1 0
0 0

]

, V HDW =

[
D1,1 0
D2,1 D2,2

]

, (12)

which again implies the factorization (11).

If a differential-algebraic system is given with factored or properly stated
leading term, then it is often useful to analyze its properties directly from the
factored matrix triple (F,D,G) without bringing it to the form (1). To do this,
we make use of equivalence transformations that operate on this triple directly.

Given pointwise nonsingular matrix functions U , V , and W of appropriate
size, we can scale the system (3) by multiplying with U from the left and by
transforming the solution space by setting x = Wx̃. We can also apply a
transformation D = V D̃, but in this case we have to consider that

d

dt
(Dx) =

d

dt
(V D̃x) = V̇ D̃x + V

d

dt
(D̃x),

and hence we need that V is differentiable.
These transformations lead to the following definition of an equivalence

transformation for the matrix triple (F,D,G).

Definition 6 Two matrix triples (F,D,G) and (F̃ , D̃, G̃) of matrix functions
with F ∈ C(I, Cm,l), D ∈ C(I, Cl,n) and G ∈ C(I, Cm,n) are called (globally)
equivalent if there exist pointwise nonsingular matrix functions U ∈ C(I, Cm,m),
V ∈ C1(I, Cl,l) and W ∈ C(I, Cn,n) such that

F̃ = U−1FV, D̃ = V −1DW, G̃ = U−1(G + FV
d

dt
(V −1)D)W

as equality of functions. We write this as

(F,D,G) ∼ (F̃ , D̃, G̃).

Using Lemma 3, we can show that a large class of linear systems can be
easily expressed as differential-algebraic systems with factored leading term.

Lemma 7 Consider a linear system of the form (1). If rankE = rE is constant
in I and if there exists a differentiable matrix function whose columns form a
basis of cokernel E, then there exist matrix functions

F ∈ Ck(I, Cm,rE ), D ∈ Ck(I, CrE ,n), G ∈ Ck(I, Cm,n)

such that E = FD, A = G − FḊ and (1) is equivalent to

F
d

dt
(Dx) = Gx + f. (13)

Furthermore, D can be chosen to have orthonormal rows.
Conversely, if a system of the form (1) can be expressed as (13), then E =

FD has constant rank and cokernel E is spanned by continuously differentiable
basis functions.
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Proof. A differential-algebraic system of the form (1) can be represented by
the matrix triple (E, In, A). According to Lemma 3 there exist unitary matrix
valued functions U ∈ Ck(I, Cm,m) and W ∈ Ck(I, Cn,n) such that

UHEW =

[
E11 0
0 0

]

, (14)

where E11 ∈ Ck(I, CrE ,rE) is pointwise nonsingular. If we partition

W =

[
W11 W12

W21 W22

]

according to the block structure of UHEW , then we get

(E, In, A) ∼
(

EW,W H , A + EWẆ H
)

=

(

U

[
E11 0
0 0

]

,

[
W H

11 W H
21

W H
12 W H

22

]

,

A + U

[
E11 0
0 0

] [
Ẇ H

11 Ẇ H
21

Ẇ H
12 Ẇ H

22

])

. (15)

Because [
E11 0
0 0

] [
Ẇ H

11 Ẇ H
21

Ẇ H
12 Ẇ H

22

]

=

[
E11Ẇ

H
11 E11Ẇ

H
21

0 0

]

,

we see that only the matrix function

[
W11

W21

]

, which represents the cokernel

of E, has to be differentiable. Furthermore, using the zero structure, we can
replace the matrix triple (15) by the triple (F,D,G) with

F = U

[
E11

0

]

, D =
[

W H
11 W H

21

]
, G = A + U

[
E11Ẇ

H
11 E11Ẇ

H
21

0 0

]

,

which represents a system of the form (13) with factored leading term.
For the converse, suppose that the system (1) can be expressed as (13).

It is obvious that the matrix function E has pointwise constant rank. To
show that rangeEH = cokernel E is spanned by continuously differentiable
basis functions, note that EH = DHFH , rankEH(t) = rankDH(t) on I. Then
range EH = range DH and the columns η1(t), . . . , ηrE

(t) of DH(t) are linear in-
dependent and continuously differentiable on I. It follows that rangeDH(t) =
span{η1(t), . . . , ηrE

(t)}.

Remark 8 If a system has properly stated leading term, then by Lemma 4,
it can be reformulated in the form (13) by transformed matrix functions F̃ ∈
C(I, Cm,rE ) and D̃ ∈ (I, CrE ,n) of pointwise full rank rE = rankF = rankD ≤ l.
In particular, if rankF = rankD = rE, then the projector function R can be
chosen as R = IrE

, i.e., the system has factored leading term.
Conversely, every square system with factored leading term has also a prop-

erly stated leading term, while for rectangular systems with m 6= n a properly
stated leading term is not defined.
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After presenting some preliminary results, in the next section we will now
discuss strong solutions.

3 Weak formulations with strong solutions

Using the factorization in Lemma 3, it was shown in [22] that under some con-
stant rank assumptions for the system (1), there exist nonsingular matrix val-
ued functions U ∈ C(I, Cm,m) and W ∈ C1(I, Cn,n) such that the transformed
system (with x = Wy) given by

U−1EWẏ = (U−1AW − U−1EẆ )y + U−1f

has the (normal) form (without arguments)









Is0
0 0 0

0 Id0
0 0

0 0 0 0
0 0 0 0
0 0 0 0















ẏ1

ẏ2

ẏ3

ẏ4







=









0 A12 0 A14

0 0 0 A24

0 0 Ia0
0

Is0
0 0 0

0 0 0 0















y1

y2

y3

y4







+









g1

g2

g3

g4

g5









, (16)

where the fourth block column has size u0 and the fifth block row has size v0.
Subtracting the derivative of the fourth block equation from the first equation
reduces the rank of the left hand side coefficient.

The resulting system can again be transformed to a system of the form (16)
with new block sizes s1, d1, a1, u1, v1. If this process is iterated, then (under
the assumption that the block sizes si, di, ai, ui, vi are constant) it follows that
after a finite number of µ steps one obtains sµ = 0. This integer µ is called the
strangeness index of the system.

The analysis in [22] shows that under the described constant rank assump-
tions the differential-algebraic system (1) is equivalent (in the sense that there
is a one-to-one correspondence between the solution spaces via a pointwise non-
singular matrix function) to a differential-algebraic system of the form

(a) ẋ1 = A13x3 + f1, dµ

(b) 0 = x2 + f2, aµ

(c) 0 = f3, vµ,

(17)

where A13 ∈ C(I, Cdµ,uµ) and the inhomogeneities f1, f2, f3 are determined from
f (0), . . . , f (µ), see also [27].

From the form (17) then existence and uniqueness of solutions as well as
consistency of initial conditions can be read off. Furthermore, this form allows
to identify exactly the minimal smoothness requirements for a strong solution,
since in (17) only the variable x1 has to be differentiable. It is, however, not
easy to express these requirements in a simple way in terms of the original data.

Moreover, the form (17) is mainly good for theoretical purposes. For nu-
merical computations it is not feasible to use derivatives of locally computed
matrix functions, since this may lead to highly erroneous results. Typically,
the only quantities that may be differentiated in a safe way are the original
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coefficent functions E,A, f or F,D,G, f if the system is given in factored form.
For this reason in [25, 26], based on so-called derivative arrays as introduced
in [6], a numerically computable analogue to (17) was developed, see also [27].
For the system (1) one introduces the derivative array of order ℓ ∈ N

Mℓ(t)żℓ = Nℓ(t)zℓ + gℓ(t), (18)

where
(Mℓ)i,j =

(
i
j

)
E(i−j) −

(
i

j+1

)
A(i−j−1), i, j = 0, . . . , ℓ,

(Nℓ)i,j =

{
A(i) for i = 0, . . . , ℓ, j = 0,
0 otherwise,

(zℓ)j = x(j), j = 0, . . . , ℓ,

(gℓ)i = f (i), i = 0, . . . , ℓ,

(19)

using the convention that
(

i
j

)
= 0 for i < 0, j < 0 or j > i.

Theorem 9 [28] Let the strangeness index µ be well defined for the system (1)
and let (Mµ, Nµ) be the associated derivative array. Setting

â = aµ, d̂ = dµ, v̂ = v0 + . . . + vµ, (20)

the inflated pair (Mµ, Nµ) associated with (E,A) has the following properties:

1. For all t ∈ [t0, tf ] the matrix function Mµ satisfies rankMµ(t) = (µ +
1)m − â − v̂. This implies the existence of a smooth matrix function Z

with orthonormal columns and size ((µ+1)m, â+v̂) satisfying ZHMµ̂ = 0.

2. For all t ∈ [t0, tf ] the projected matrix function rankZHNµ satisfies
rankZHNµ[In 0 · · · 0]H = â and without loss of generality Z can be
partitioned as [Z2, Z3] with Z2 of size ((µ + 1)m, â) and Z3 of size
((µ + 1)m, v̂), such that Â2 = ZH

2 Nµ[In 0 · · · 0]H has full row rank â

and that ZH
3 Nµ[In 0 · · · 0]H = 0. Furthermore there exists a smooth ma-

trix function T2 with orthonormal columns and size (n, d̂), d̂ = m− â− v̂

satisfying Â2T2 = 0.

3. For all t ∈ [t0, tf ] then rankE(t)T2(t) = d̂. This implies the existence of

a smooth matrix function Z1 with orthonormal columns and size (m, d̂)
so that Ê1 = ZH

1 E has constant rank d̂.

Furthermore, system (1) has the same solution set as the strangeness-free (i.e.,
with vanishing strangeness index) system





Ê1(t)
0
0



 ẋ =





Â1(t)

Â2(t)
0



x +





f̂1(t)

f̂2(t)

f̂3(t)



 , (21)

where Â1 = ZH
1 A, f̂1 = ZH

1 f , f̂i = ZH
i gµ for i = 2, 3.
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The properties described in parts 1.-3. of Theorem 9 guarantee the existence
of the reformulation of (1) in the strangeness-free form (21). To achieve the
form (21), however, the requirement that the strangeness index is well-defined
is a sufficient condition, but not necessary. For this reason in [28] and also
for general nonlinear systems [25, 26], the properties described in parts 1.-3.
of Theorem 9 are formulated as a hypothesis and the integer µ which is then
guaranteed to exist is still called the strangeness index despite the fact that the
constant rank assumptions on the intermediate ranks si, di, ai, ui, vi may not
hold.

This hypothesis allows the reformulation of the original differential-algebraic
equation in the form (21) without changing the solution set. In this way then
the strangeness index concept is extended to a more general class of problems
and it has been shown in [27] that all regular problems with sufficiently smooth
coefficient matrices have a well-defined strangeness-index defined in this way.

Using this extended concept of a strangeness index it has been shown in [27]
that for linear systems the strangeness index concept generalizes the differenti-
ation index, see [5], and the perturbation index, see [20], to nonsquare systems.
It is also closely related to the tractability index as defined in [16] and modified
for differential-algebraic systems with properly stated leading terms in [4, 29],
see [31, 40].

The condensed form (21) immediately allows the characterization of strong
solutions.

Corollary 10 Suppose that a differential-algebraic equation of the form (1)
satisfies conditions 1.-3. of Theorem 9 with integers â, d̂, and v̂ and that it has
been reformulated in the form (21). Then every strong solution x lies in the
space

Ŝ = {x ∈ C(I, Cn) | Ê1(t)x ∈ C1(I, Cd̂)}. (22)

Furthermore, the space Ŝ is the largest function space of strong solutions,
i.e, it cannot be enlarged within the set of continuous functions.

We will now show that similar results can be obtained for systems in factored
form. We only present the result analogous to (17), the corresponding result
for derivative arrays may be obtained by forming the derivative array from the
equation in factored form, computing the projection matrices Z1, Z2, Z3 and
(using a factorization) reformulating the system again in factored form.

Theorem 11 Let F ∈ C(I, Cm,l), D ∈ C(I, Cl,n) and G ∈ C(I, Cm,n) be suffi-
ciently smooth and rankF = rankD = l for all t ∈ I. Let

(a) T basis of kernelD,

(b) Z basis of corangeF = kernelFH ,

(c) T ′ basis of cokernelD = rangeDH ,

(d) V basis of corange(ZHGT )

(23)

and let
(a) a = rank(ZHAT ) (algebraic part)
(b) s = rank(V HZHAT ′) (strangeness)

(24)
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be constant in I. Then the factored triple (F,D,G) is globally equivalent to the
factored triple

















F1

F2

0
0
0









,
[

D1 D2 0 0
]
,









G1,1 G1,2 G1,3 G1,4

G2,1 G2,2 G2,3 G2,4

G3,1 G3,2 G3,3 0
0 G4,2 0 0
0 0 0 0

















, (25)

where all block entries are again matrix functions on I and the blocks G3,3 and
G4,2 are pointwise nonsingular.

Proof. By Lemma 3 there exist smooth unitary matrix valued functions U1 and
W1 such that

UH
1 F =

[

F
(1)
1

0

]

and DW1 =
[

D
(1)
1 0

]

,

where F
(1)
1 and D

(1)
1 are pointwise nonsingular matrix functions of size r × r.

If we partition
U1 =

[
Z ′ Z

]
and W1 =

[
T ′ T

]

according to the above block structure then the columns of T and T ′ are bases
of the kernel and the cokernel of D and the columns of Z are a basis of the
corange of F . Thus we get

(F,D,G) ∼

([

F
(1)
1

0

]

,
[

D
(1)
1 0

]

,

[
Z ′HGT ′ Z ′HGT

ZHGT ′ ZHGT

])

=

([

F
(1)
1

0

]

,
[

D
(1)
1 0

]

,

[

G
(1)
1,1 G

(1)
1,2

G
(1)
2,1 G

(1)
2,2

])

,

where rankG
(1)
2,2 = rank(ZHGT ) = a is constant on I by assumption. By

Lemma 3 there exist unitary matrix functions U2 and W2 such that

UH
2 G

(1)
2,2W2 =

[

G
(2)
2,2 0

0 0

]

with G
(2)
2,2 pointwise nonsingular on I and we get

([

F
(1)
1

0

]

,
[

D
(1)
1 0

]

,

[

G
(1)
1,1 G

(1)
1,2

G
(1)
2,1 G

(1)
2,2

])

∼










F
(2)
1

0
0



 ,
[

D
(2)
1 0 0

]

,






G
(2)
1,1 G

(2)
1,2 G

(2)
1,3

G
(2)
2,1 G

(2)
2,2 0

G
(2)
3,1 0 0









 ,

where F
(2)
1 = F

(1)
1 and D

(2)
1 = D

(1)
1 and the matrix functions G

(2)
i,j denote the

blocks of the transformed function G. If we partition

U2 =
[

V ′ V
]
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such that the columns of V are a basis of the corange of G
(1)
2,2 then the function

G
(2)
3,1 can be written as

G
(2)
3,1 = V HZHGT ′

and thus rankG
(2)
3,1 = s is constant on I by assumption. By Lemma 3 there exist

unitary matrix functions U3 and W3 such that

UH
3 G

(2)
3,1W3 =

[
0 G4,2

0 0

]

with G4,2 pointwise nonsingular. Applying these transformations to the factored
triple finally gives the factored triple (25), where

D
(2)
1 W3 =

[
D1 D2

]
and F

(2)
1 =

[
F1

F2

]

are partitioned such that F1 and D1 are of size d× l and l× d respectively with

d = dim(kernel(G
(2)
3,1)).

The factored triple (25) represents a differential-algebraic equation with
factored leading term of the form

(a) F1
d
dt

(D1x1 + D2x2) = G1,1x1 + G1,2x2 + G1,3x3 + G1,4x4 + f1,

(b) F2
d
dt

(D1x1 + D2x2) = G2,1x1 + G2,2x2 + G2,3x3 + G2,4x4 + f2,

(c) 0 = G3,1x1 + G3,2x2 + G3,3x3 + f3,

(d) 0 = G4,2x2 + f4,

(e) 0 = f5.

(26)

Equation (26c) represents an algebraic condition and (26e) gives a solvability
condition for the differential-algebraic system. Equation (26d) can be solved
for x2 and the result can be inserted into the equations (26a) and (26b) if the
smoothness condition

D2x2 = −D2G
−1
4,2f4 ∈ C1(I, Cl) (27)

is satisfied. We can then replace the equations (26a) and (26b) by

(a) F1
d
dt

(D1x1) = G1,1x1 + G1,2x2 + G1,3x3 + G1,4x4 + f1

+ F1
d
dt

(D2G
−1
4,2f4),

(b) F2
d
dt

dt(D1x1) = G2,1x1 + G2,2x2 + G2,3x3 + G2,4x4 + f2

+ F2
d
dt

(D2G
−1
4,2f4).

(28)

This leads to a system which does not have a factored leading term, because
the function D1 does not have pointwise full row rank. However, we have

rank

[
F1

F2

]

D1 = d,

and thus according to Lemma 4 there exist unitary matrix functions U , V and
W such that

UH

[
F1

F2

]

V V HD1W =

[
F1,1 F1,2

0 F2,2

] [
D1,1 0

0 0

]

=

[
F1,1

0

]
[

D1,1 0
]
,
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where F1,1 and D1,1 are pointwise nonsingular matrix functions of size d × d.
After applying these transformations to the modified system consisting of the
equations (28a,b) and (26c,d,e) we end up with a system with factored leading
term which can be represented by a factored triple of the form

















F1,1

0
0
0
0









,
[

D1,1 0 0 0
]
,









G1,1 G1,2 G1,3 G1,4

G2,1 G2,2 G2,3 G2,4

G3,1 G3,2 G3,3 0
0 G4,2 0 0
0 0 0 0

















. (29)

If the assumptions of Theorem 11 are satisfied for the triple (29), then
we can again transform it to the form (25) and repeat the above process.
This allows for an inductive procedure analogous to that for general linear
system of differential-algebraic equations. We start with the factored triple
(F0,D0, G0) = (F,D,G) and obtain a sequence (Fi,Di, Gi), i ∈ N, of factored
triples by transforming (Fi,Di, Gi) to the form (25). According to the above
statements the corresponding system can be represented by a factored triple
(Fi+1,Di+1, Gi+1) of the form (29). In each step of this procedure the assump-
tions (24) and (27) have to be satisfied. This defines the sequence (ri, ai, si) of
characteristic values of the triples (Fi,Di, Gi). This sequence becomes station-
ary if si = 0 for some i ∈ N. Because ri+1 = ri − si, this is always the case after
a finite number µ of steps. The corresponding index µ is a characteristic value
of the tuple (F,D,G) and we call µ = min{i ∈ N0 : si = 0} the strangeness
index of the triple (F,D,G) and of (13). With the described construction we
have shown the following Theorem.

Theorem 12 Consider a system with factored leading term in the form (3).
Suppose that (24) and (27) hold for each triple (Fi,Di, Gi) of the above se-
quence, and let f ∈ Cµ(I, Cm). Then the differential-algebraic equation (3) is
equivalent (in the sense that there is a one-to-one correspondence between the
solution spaces via a pointwise nonsingular matrix function) to a strangeness
free differential-algebraic system with factored leading term of the form





F1

0
0




d

dt




[

D1 0 0
]





x1

x2

x3







 (30)

=





G1,1 G1,2 G1,3

G2,1 G2,2 0
0 0 0









x1

x2

x3



+





f1

f2

f3



 ,

where F1,D1 are pointwise nonsingular of size dµ × dµ, dµ = rµ, and G2,2 is
pointwise nonsingular of size aµ × aµ. The inhomogeneity is determined from
f, ḟ , . . . , f (µ).

Remark 13 It has been shown in [22, 23] that the block sizes in (30) are
invariants of the differential-algebraic equation. If we would multiply out the
factors at every step of the reduction procedure and transform the system to
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the standard from (1), then after some further non-unitary transformations this
procedure would lead directly to the canonical form (17). For this reason the
notation that uses the same quantities ri, ai, si and µ is justified.

Remark 14 The points where any of the constant rank assumptions (24) are
violated are candidates for critical points, where the solution behavior changes.
However, even if a rank change happens, then this may be a removable singu-
larity, like in the example,

tẋ(t) = tx(t), t ∈ (−1, 1),

x(−1) = 0,

where the solution is 0 everywhere except at t = 0 where it is not characterized.
But clearly it can be continued at t = 0 if we require a classical solution, i.e.,
that x is at least continuous.

In summary, we obtain the following existence and uniqueness result for
systems with factored leading term.

Corollary 15 Consider a system of the form (3) and suppose that the trans-
formation to the normal form (30) exists, i.e., the constant rank and differen-
tiability conditions (24) and (27) are satisfied. Then

1. the problem (3) is solvable if and only if the vµ = m− dµ − aµ functional
consistency conditions

f3 = 0 (31)

are fulfilled,

2. an initial condition x(t0) = ξ is consistent if and only if in addition the
aµ conditions

G2,1x1(t0) + G2,2x2(t0) + f2(t0) = 0 (32)

are implied by the initial condition,

3. the corresponding initial value problem is uniquely solvable if and only if
in addition

uµ = n − dµ − aµ = 0 (33)

holds.

As we have seen in the previous analysis, it is not necessary to require the
solution to be differentiable in all components. If the system is in one of the
normal forms (17) or (30) or in the condensed form (21) then we can determine
the minimal smoothness requirements for classical solutions. For systems of the
form (3) with properly stated leading term therefore in [29] the space

C1
D(I, Cn) = {x ∈ C(I, Cn) | Dx ∈ C1(I, Cl)}. (34)

was introduced and the minimal smoothness requirement in this solution space
has been characterized using a projector chain in [30].
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For general linear differential-algebraic equation systems of the form (1) we
can alternatively consider the projector function E+E which projects onto the
cokernel of E. Here, E+ denotes the Moore-Penrose pseudo-inverse of E that
can be computed using the decomposition of Lemma 3. With this, a weaker
solution space for (strangeness-free) systems of the form (1) has been defined
in [24] as

C1
E+E(I, Cn) = {x ∈ C(I, Cn) | E+Ex ∈ C1(I, Cn)}. (35)

The following Lemma shows that for systems with factored leading term,
both solution spaces are equal provided that the matrix function D is continu-
ously differentiable.

Lemma 16 Let F ∈ C(I, Cm,l) and D ∈ C1(I, Cl,n) be two matrix functions
with rankF = rankD = rankFD = r for all t ∈ I. Then for E = FD we get

C1
D(I, Cn) = C1

E+E(I, Cn).

Proof. The Moore-Penrose pseudo-inverse of E = FD can be computed using
the decomposition of Lemma 4 which gives

E = U

[
F1,1 0
0 0

] [
D1,1 0

0 0

]

W H

with pointwise nonsingular matrix functions F1,1 and D1,1 of size r × r and
unitary matrix functions U and W . The pseudo-inverse can then be computed
as

E+ = W

[
D−1

1,1 0

0 0

] [
F−1

1,1 0

0 0

]

UH

and we get

E+E = W

[
Ir 0
0 0

]

W H = D+D

and thus

{x ∈ C(I, Cn) | Dx ∈ C1(I, Cl)} ⊆ {x ∈ C(I, Cn) | D+Dx ∈ C1(I, Cn)}

= {x ∈ C(I, Cn) | E+Ex ∈ C1(I, Cn)}

⊆ {x ∈ C(I, Cn) | DD+Dx ∈ C1(I, Cl)}

= {x ∈ C(I, Cn) | Dx ∈ C1(I, Cl)}.

Note that for systems with a strangeness index µ > 0 these spaces can still
be enlarged by studying the equivalent strangeness-free normal form (30). For
this let W be the product of all transformation matrix functions determined in
each step of the transformation procedure leading to the form (30). Then in
terms of the partitioned vector





x1

x2

x3
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in (30) we have for the original solution vector x in (1) that

x = W





x1

x2

x3



 =





W1,1 W1,2 W1,3

W2,1 W2,2 W2,3

W3,1 W3,2 W3,3









x1

x2

x3





and the minimal smoothness requirement for a strong solution is that

D1

[
W1,1 W1,2 W1,3

]





x1

x2

x3



 ∈ C1(I, Cdµ). (36)

Thus, we immediately have the following Corollary.

Corollary 17 Consider a system with factored leading term in the form (3).
Suppose that the constant rank conditions (24) and (27) hold for each triple
(Fi,Di, Gi) of the above sequence and that f ∈ Cµ(I, Cm). If W is the product
of all transformation matrix functions determined in each step of the transfor-
mation procedure leading to the form (30), then every strong solution x lies in
the space

S = {x ∈ C(I, Cn) | D1

[
W1,1 W1,2 W1,3

]





x1

x2

x3



 ∈ C1(I, Cdµ)}. (37)

Thus, for systems with factored leading term for which the constant rank con-
ditions (24) and (27) hold, we have

C1
D(I, Cn) = C1

E+E(I, Cn) ⊆ S (38)

and the inclusion is proper whenever µ > 0.
In a similar way it has been shown via projector chains in [29, 30] how

the solution space may be enlarged for systems with properly stated leading
term. The major difference between the resulting solution spaces is that using
(30) the space is characterized in terms of a transformed system and the back-
transformation has to be carried out to get the solution space in the original
variables, while in the characterization of [29, 30] the space is characterized in
terms of a projector which is constructed via a matrix chain.

However, as we have already noted above, the normal forms (17) and (30)
and also the matrix chains of [29, 30] need further assumptions than (21) and
cannot be computed well numerically. Thus, we have

C1
D(I, Cn) = C1

E+E(I, Cn) ⊆ S ⊆ Ŝ, (39)

where Ŝ is defined in (22).
The last inclusion here is proper in the sense that there exist examples such as

[
0 t

0 0

]

ẋ =

[
1 0
0 1

]

x +

[
f1(t)
f2(t)

]

, I = [−1, 1],
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see, e. g., [34], where the form (17) and the projector chains of [29] do not exist,
while the form (21) can be determined and is

0 = x + f̂ , f̂(t) =

[
f1(t) + tḟ2(t)

f2(t)

]

and hence here Ŝ = C(I, C2).

4 Weak formulations and weak solutions

In numerical analysis the concept of weak formulations or weak solutions is used
in a different way than in the previous section.

Let C∞
0 (I, Cn) be the space of infinite times differentiable functions φ : I →

C
n which have compact support in the open interval (t0, tf ). L2(I, Cn) denotes

the usual Lebesgue space of square integrable functions x : I → C
n, equipped

with the scalar product

(x, y) =

∫

I

y(t)Hx(t) dt.

We say that a function x ∈ L2(I, Cn) has a (weak) time derivative y =: ∂tx, if
y ∈ L2(I, Cn) and

(φ, y) = −(
d

dt
φ, x) for all φ ∈ C∞

0 (I, Cn).

The subspace of functions x ∈ L2(I, Cn) possessing such a weak derivative
∂tx is the Sobolev space H1(I, Cn), e.g., see [1] for details.

In order to consider the strangeness-free system (21) in a weaker sense, we

test (21) against all test functions φ ∈ C∞
0 (I, Cd̂+â+v̂), or equivalently,

(Ê1∂tx, φ1) = (Â1x, φ1) + (f̂1, φ1), φ1 ∈ C∞
0 (I, Cd̂), (40a)

0 = (Â2x, φ2) + (f̂2, φ2), φ2 ∈ C∞
0 (I, Câ), (40b)

0 = (f̂3, φ3), φ3 ∈ C∞
0 (I, Cv̂). (40c)

We see that the DAE (40) now only has to hold in an L2-sense, i.e., the differ-
ential equations, the algebraic constraints, and the consistency conditions for
the inhomogeneity may be violated on a set of measure zero.

In order to interpret (40a) in an even weaker sense, we make the assumption

that Ê1 ∈ C∞(I, Cd̂,n) and introduce the restricted space of test functions

C∞

0,Ê1
(I, Cn) = {φ̂ ∈ C∞

0 (I, Cn) | φ̂ = ÊH
1 φ1 for φ1 ∈ C∞

0 (I, Cd̂)}.

We say that a function x ∈ L2(I, Cn) has a derivative y =: ∂
(Ê1)
t x, which is

weak in the DAE sense, if y ∈ L2(I, Cn) and

(φ̂, y) = −(
d

dt
φ̂, x) for all φ̂ ∈ C∞

0,Ê1
(I, Cn).
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The derivative becomes unique by requiring in addition that ∂
(Ê1)
t x(t) ∈

cokernel(Ê1(t)) for almost every t ∈ I. The subspace of functions which are
weakly differentiable in the DAE sense is denoted by

Š = {x ∈ L2(I, Cn) | ∂
(Ê1)
t x exists in L2(I, Cn)}. (41)

Replacing ∂tx in (40a) by the (in the DAE sense) weak derivative ∂
(Ê1)
t x,

equation (40a) makes sense not only for functions x ∈ H1(I, Cn) but also for
x ∈ Š ⊇ H1(I, Cn).

We note that for x ∈ Ŝ, we have

g :=
d

dt
(Ê1x) − (

d

dt
Ê1)x ∈ C(I, Cd̂),

and since Ê1 is smooth and has full rank, there exists a unique function y ∈
C(I, Cn) with y(t) ∈ cokernel(Ê1(t)) for t ∈ I satisfying Ê1y = g. Hence,

∂
(Ê1)
t x = y ∈ L2(I, Cn) and Ŝ ⊆ Š whenever I is a compact interval.

It is a classical result that H1(I, Cn) can be embedded into C(I, Cn), e.g.,

see [10]. For x ∈ Š we only have that Ê1x ∈ H1(I, Cd̂) and thus there is a
continuous representative of Ê1x. Since Ê1 is smooth and has full rank, the
dynamical components of x (lying in cokernel(Ê1)) are also continuous, such
that the prescription of initial values for the underlying ODE still makes sense.

5 Weak formulations and distributional solutions

Another way to relax the smoothness requirements on the inhomogeneity f

is to allow generalized functions (or distributions) as solutions of (1) or (3).
Such an approach, which uses a particular class of distributions as solutions
of differential-algebraic equations, allows to include non-differentiable and even
discontinuous inhomogeneities as well as non-consistent initial values and was
introduced in the context of constant coefficient control problems, see [12, 13,
14, 21]. This concept was then studied and extended to differential-algebraic
systems with variable coefficients in [34, 35], see also [27]. We briefly review
this concept here and discuss it in the context of systems with factored leading
term.

Let C be the space of all distributions acting on the set D of test functions,
see [41]. The Dirac delta distribution δ ∈ C is defined by

δ(φ) = φ(0) for all φ ∈ D.

We can then define a subspace of C which is appropriate for solutions of
differential-algebraic equations. The basic idea is to restrict the nonsmooth
behaviour of these solutions to a single point t∗ ∈ I such that we can assign
values to these distributions away from t∗. For simplicity we set t∗ = 0 here.
It has been discussed in [27], how one can extend this to the case where the
nonsmooth behaviour happens at a countable number of points.
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Definition 18 [21, 41] A generalized function x ∈ C is called impulsive smooth
if it can be written in the form

x = x− + x+ + ximp, (42)

where x− ∈ C∞((−∞, 0], C), x+ ∈ C∞([0,∞), C) and the impulsive part ximp

has the form

ximp =

q
∑

i=0

ciδ
(i), ci ∈ C, i = 0, . . . , q, (43)

with some q ∈ N0. The set of impulsive smooth distributions is denoted by Cimp.

A distribution x ∈ Cimp uniquely determines the decomposition (42). The
set Cimp is a complex vector space and it is closed under multiplications with
functions A ∈ C∞(R, C). In particular, we have

Ax = Ax− + Ax+ +

q
∑

i=0

q−i
∑

j=0

(−1)j
(
j+i
j

)
A(j)(0)ci+jδ

(i) (44)

for x with (42). These definitions can easily be extended to the n-dimensional
case. A vector x ∈ Cn

imp can then be multiplied with a matrix function A ∈

C∞(R, Cm,n) by decomposing x according to (42), where we replace C by C
n,

and computing the distribution Ax ∈ Cm
imp by (44).

Finally, we will need a measure for the smoothness of impulsive smooth
distributions.

Definition 19 [34, 35] Let the impulsive part of x ∈ Cn
imp have the form

ximp =

q
∑

i=0

ciδ
(i), ci ∈ C

n, i = 0, . . . , q. (45)

The impulse order of x is defined as iord x = −q− 2 if x can be associated with
a continuous function and q with 0 ≤ q ≤ ∞ is the largest integer such that
x ∈ Cq(R, C). It is defined as iordx = −1 if x can be associated with a function
that is continuous everywhere except at t = 0 and it is defined as

iord x = max{i ∈ N0 | 0 ≤ i ≤ q, ci 6= 0}

otherwise.

Lemma 20 Let x ∈ Cn
imp and A ∈ C∞(R, Cm,n). Then

iord Ax ≤ iord x

with equality for m = n and A(0) invertible.

Proof. This is a direct consequence of (44).

For a detailed analysis of the distributional formulation, see [34, 35] or [27].
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Let us now, for completeness, consider the distributional version of a
differential-algebraic equation with factored leading term

F
d

dt
(Dx) = Gx + f, t ∈ I (46)

with f ∈ Cm
imp. Looking for solutions x ∈ Cn

imp we must require that F ∈

C∞(R, Cm,l), D ∈ C∞(R, Cl,n) and G ∈ C∞(R, Cm,n) in order to have well-
defined products F d

dt
(Dx) and Gx. Lemma 3 is also valid for infinitely often

differentiable functions and thus all the techniques of the previous sections can
be applied to these distributional differential-algebraic systems. In particular,
we can obtain systems like (26) and (30) in the same way with infinitely often
differentiable matrix functions but without the smoothness requirements for the
inhomogeneity. We can merge these results into the following statement.

Theorem 21 Let F ∈ C∞(R, Cm,l), D ∈ C∞(R, Cl,n) and G ∈ C∞(R, Cm,n)
and let the strangeness index µ of the factored matrix tuple (F,D,G) be well-
defined. Let f ∈ Cm

imp with iord f = q ∈ Z ∪ {−∞}. Then the differential-

algebraic equation (46) is equivalent (in the sense that there is a one-to-one
correspondence between the solution spaces via a pointwise nonsingular infinitely
often differentiable matrix function) to a differential-algebraic equation of the
form





F1

0
0




d

dt




[

D1 0 0
]





x1

x2

x3







 (47)

=





G1,1 G1,2 G1,3

G2,1 G2,2 0
0 0 0









x1

x2

x3



+





f1

f2

f3



 ,

where F1,D1 ∈ C∞(R, Cdµ,dµ), dµ = rµ, and G2,2 ∈ C∞(R, Caµ,aµ) are point-
wise nonsingular and iord([fT

1 fT
2 fT

3 ]T ) ≤ q + µ.

Proof. All corresponding constructions can be executed by infinitely often dif-
ferentiable matrix functions due to Theorem 3. The inhomogeneity [fT

1 fT
2 fT

3 ]T

is determined from f, ḟ , . . . , f (µ) via infinitely often differentiable matrix func-
tions.

The following solvability and uniqueness results then follow immediately.

Corollary 22 Let F ∈ C∞(R, Cm,l), D ∈ C∞(R, Cl,n), and G ∈ C∞(R, Cm,n)
satisfy the assumptions of Theorem 21. Then, we have:

1. Problem (46) has a solution in Cn
imp if and only if the vµ = m − dµ −

aµ distributional conditions
f3 = 0 (48)

are fulfilled.

19



2. Let t0 6= 0 and x0 ∈ C
n. There is a solution x ∈ Cn

imp satisfying one of
the initial conditions

x(t0) = x0, x(0−) = x0, x(0+) = x0 (49)

if and only if in addition to (48) the corresponding condition out of

x2(t0) = −f2(t0), x2(0
−) = −f2(0

−), x2(0
+) = −f2(0

+) (50)

is implied by the initial condition.

3. The corresponding initial value problem has a unique solution in Cn
imp if

and only if in addition

uµ = n − dµ − aµ = 0 (51)

holds.

Moreover, all solutions x satisfy iord x ≤ max{q + µ, iord x3}.

Inconsistent initial values can be treated within the distributional setting
as well, see [34, 35] and [27]. For systems with factored leading term this can
be done analogously. The basic idea is to change the inhomogeneity of the
differential-algebraic system such that it satisfies a given history and to solve
the modified system in the context of nonsmooth inhomogeneities.

Suppose that (46) satisfies the assumptions of Theorem 21 with uµ = vµ = 0
which implies that it is uniquely solvable. Consider x0

− ∈ C∞((−∞, 0], Cn) that
indicates how the system has behaved until t = 0. Setting

f− = F
d

dt
(Dx0

−) − Gx0
− (52)

forces x0
− to be a solution for the part

F
d

dt
(Dx) = Gx + f−, t ∈ (−∞, 0] (53)

of (46) thus making the initial condition consistent. Then, according to Theo-
rem 21, the problem

F
d

dt
(Dx) = Gx + f, x− = x0

−, (54)

where f satisfies (52), has a unique solution x ∈ Cn
imp. Now let x be this solution

and let

x = x− + x+ + ximp,

f = f− + f+ + fimp

according to (42). Because

ẋ = ẋ− + ẋ+ + ẋimp + (x+(0) − x−(0))δ,
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the system (54) can be written as

FḊx + FD(ẋ− + ẋ+ + ẋimp + (x+(0) − x−(0))δ) = Gx + f− + f+ + fimp

with x− = x0
− and due to (52) we get

FḊ(x−x−)+ FD(ẋ+ + ẋimp + x+(0)δ) = G(x−x−)+ FDx−(0)δ + f+ + fimp.

Setting x̃ = x − x− and f̃ = f − f−, this can be expressed in the form

F
d

dt
(Dx̃) = Gx̃ + FDx0δ + f̃ , x̃− = 0, (55)

where x0 = x−(0). This shows that the impulsive behaviour and the future
smooth development of the system does not depend on the whole history but
only on the (possibly inconsistent) initial condition. In this sense, problem (55)
is the adequate form to treat inconsistent initial conditions. Observe that the
initial condition does not occur as it is stated in the classical formulation (we
cannot prescribe values of distributions) but as part of the inhomogeneity.

If we turn over to general (possibly nonsquare) systems of the form

F
d

dt
(Dx) = Gx + FDx0δ + f, x̃− = 0, (56)

then the formulation (56) of an initial value problem suggests that for suffi-
ciently smooth f the smoothness of x will depend on the initial condition. We
therefore assume now that in the problem (56) the distribution f ∈ Cm

imp has
iord f ≤ −1 and satisfies f− = 0.

Definition 23 Let f ∈ Cm
imp be given with f− = 0 and iord f ≤ −1. We say

that x0 ∈ C
n is weakly consistent with f if there exists a solution x ∈ Cn

imp

of (56) with iord x ≤ −1. We say that x0 is consistent with f if x0 is weakly
consistent with f and there exists a solution x ∈ Cn

imp of (56) satisfying x(0+) =
x0.

Theorem 24 Let the strangeness index µ of ((FD), G) in (55) be well-defined,
let vµ = 0, and let f ∈ Cm

imp be given with f− = 0 and iord f ≤ −1.

1. All vectors x0 ∈ C
n are consistent with f if and only if µ = 0 and a0 = 0.

2. All vectors x0 ∈ C
n are weakly consistent with f if and only if µ = 0.

All results presented in this section can be extended to the case of discontinuities
or initial values given at points t0 6= 0 and also to the case where the nonsmooth
behaviour of the inhomogeneity or inconsistent initial conditions occur at a
countable number of points, see [27].

We have seen in this section, that via the distributional setting the solution
spaces can be further increased whenever the normal forms (17) or (30) exist,
i.e., S can be interpreted as a subset of the set of distributional solutions.
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6 Multibody systems

The use of derivative arrays to determine the strangeness-free formulation (30)
can be significantly simplified if the system has extra structure, such as in the
case of multibody systems or electrical circuits. We will discuss this topic here
only briefly.

Consider first the equations of motion of a constrained multibody system
in linear time dependent form

Mp̈ = Cp + Kṗ − HT λ, (57a)

0 = Hp, (57b)

where M,C,K ∈ C1(I, Rnp,np), H ∈ C3(I, Rnλ,np), see [9]. Here the state of the
multibody system is given by the position variables p ∈ C2(I, Rnp). The inertia
of the different bodies of the multibody system is represented by the positive
definite mass matrix M and the applied forces are given by Cp+Kṗ. We assume
that the systems satisfies the holonomic constraints (57b) depending only on
position and time with Hp ∈ C3(I, Rnλ). The constraint forces −HTλ are
determined by the constraint matrix function H and the Lagrange-multipliers
λ ∈ C(I, Rnλ). To avoid redundant constraints we assume that H has full row
rank in I. Furthermore, nf = np−nλ denotes the number of degrees of freedom
of the multibody system.

Typically the system is transformed to first order form by introducing the
(generalized) velocity variables v = ṗ ∈ C1(I, Rnp), one has to be careful,
however, in doing this transformation, see [33, 39, 47]. The resulting first order
form of the equations of motion (57) is a system of strangeness index 2, see [27],
and can be easily formulated as system with factored leading term




Inp 0
0 M

0 0





︸ ︷︷ ︸

F

d

dt





[
Inp 0 0
0 Inp 0

]

︸ ︷︷ ︸

D





p

v

λ





︸ ︷︷ ︸

x



 =





0 Inp 0
C K −HT

H 0 0





︸ ︷︷ ︸

G





p

v

λ





︸ ︷︷ ︸

x

.

(58)
For systems in this form it is easy to obtain the strangeness-free formulation
(21) without much computational effort, see [2, 44]. In matrix notation it has
the form









Sp 0 0
0 SvM 0
0 0 0
0 0 0
0 0 0









︸ ︷︷ ︸

Ê





ṗ

v̇

λ̇





︸ ︷︷ ︸

ẋ

=









Spv

Sv(Cp + Kv − HT λ)
Hp

hI(p, v, t)
hII(p, v, λ, t)









︸ ︷︷ ︸

Âx

(59)

with hI(p, v, t) = d
dt

(Hp) and hII(p, v, λ, t) = d2

dt2
(Hp).

Here, the so-called selectors Sp and Sv are chosen such that
[

Sp

H

]

,

[
SvM

H

]

(60)
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are nonsingular.
Introducing smooth matrix functions H− ∈ C(I, Rnp,nf ), S−

p , S−
v ∈

C(I, Rnp,nλ) that satisfy

span(H−) = kernel(H),

span(S−
p ) = kernel(Sp),

span(S−
v ) = kernel(SvM)

we can form the transformation matrix

W =





H− 0 S−
p 0 0

0 H− 0 S−
v 0

0 0 0 0 Inλ



 .

Here, the nonsingularity of
[

H− S−
p

]
and

[
H− S−

v

]
follows from (60)

and the positive definiteness of M .
We can then factorize the leading term in (59) as Ê = (ÊW )W−1 with

ÊW =









SpH
− 0 0 0 0

0 SvMH− 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









and

W−1 =









(SpH
−)−1Sp 0 0
0 (SvMH−)−1SvM 0

(HS−
p )−1H 0 0

0 (HS−
v )−1H 0

0 0 Inλ









,

and employing the zero structure of ÊW we obtain

Ê =









SpH
− 0

0 SvMH−

0 0
0 0
0 0









︸ ︷︷ ︸

F̂

[
(SpH

−)−1Sp 0 0
0 (SvMH−)−1SvM 0

]

︸ ︷︷ ︸

D̂

,

leading to a strangeness-free reformulation of (59) with factored leading term

F̂
d

dt
(D̂x) = (Â + F̂

d

dt
D̂)x (61)

and we immediately obtain the following corollary.

Corollary 25 Consider the equations of motion of a multibody system in the
form (59) and the strangeness-free form (61). Then, the maximal solution space
is given by

C1
D̂

= {x ∈ C(I, Rn) | D̂x ∈ C1(I, R2nf )}.

For other structured systems such as electrical circuits the maximal solution
spaces are characterized in an equally easy way, see [11, 45].
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C1 : space of classical solutions, cf. Def. 1
|∩
C1

D : enlarged solution space for DAEs with p.s.l.t., cf. (6) and (34)
||

C1
E+E

: enlarged solution space for general DAEs, cf. (35)
|∩
S : largest space of strong solutions for DAEs with f.l.t., cf. (37)
|∩

Ŝ : largest space of strong solutions for general DAEs, cf. (22)
|∩

Š : space of solutions with in the DAE sense weak derivative, cf. (41)

Cimp : solution space of impulsive smooth distributions, cf. (42)

Figure 1: Overview of solution concepts. ‘p.s.l.t.’=‘properly stated leading
term’, ‘f.l.t.’=‘factored leading term’. The space Cimp is in general not a subset
nor a superset of the other solution spaces.

7 Conclusion

We have discussed different weak formulations for linear differential algebraic
systems with variable coefficients, in particular systems with factored leading
term. We have shown how to characterize the maximal solution set that has
the minimal smoothness requirements for the solution x. In summary, we have

C1 ⊆ C1
D = C1

E+E ⊆ S ⊆ Ŝ ⊆ Š.

An overview over the spaces and their properties is given in Figure 1.
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