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Abstract

This study is concerned with the topography of nanostructures consist-

ing of arrays of poly-crystalline nanodots. Guided by transmission elec-

tron microscopy (TEM) measurements of c-Si nanodots that evolved from

a ”dewetting” process of an a-Si layer from a SiO2 coated substrate, we

investigate appropriate surface energy density formulations to model these

equilibrium geometries. We explore the influence of smooth transitions be-

tween the energy density states at grain boundaries on the associated surface

morphology of the equilibrium poly-crystals. Furthermore, we introduce a

new numerical minimization formulation that allows to account for adhesive

energy from an underlying substrate. We demonstrate our approach first

for the unbounded case, where the solutions can be compared to well-known

Wulff constructions, before we treat the general case for interfacial energy

settings that support partial ’wetting’. Eventually, we use the method to

study two-dimensional shapes of poly-crystalline silicon nanodots.
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1 Introduction

The morphologies of material surfaces and interfaces are of fundamental impor-

tance for material properties. For many nano-technological applications under-

standing this relationship is the basis for designing materials with specific func-

tional properties. Of interest are the material properties that are induced by

patterns of nanodots near their equilibrium. Such patterns arise from a number of

processes; for example during the growth of nucleated crystalline silicon grains in a

matrix of amorphous silicon, or the epitaxial growth of quantum dots, or after solid

dewetting of a thin amorphous or crystalline film from a solid surface. Controlling

and optimizing such complex processes to arrive at specific stable patterns is the

topic of intensive research, we refer to the recent review by Thompson [21] for an

overview and further references.

Figure 1: (a) and (b): Angle dependent SEM images of a dewetting undoped Si

layer. Initial thickness of the a-Si: 10nm, temperature 1000◦C; (c) TEM image

of poly-crystalline nanodot (interfaces are sketched). Initial thickness of the a-Si:

20nm, temperature 700◦C.

The main focus of our study is the description of such equilibrated patterns,

with the specific interest in the formation of crystalline and poly-crystalline nan-

odots that result during the dewetting and re-crystallization of thin amorphous

silicon layers on SiO2/Si(111) substrates [23, 22, 13, 15]. An example is depicted

in Figure 1 using electron microscope imaging. Dependent on the initial thick-

ness of the a-Si layer, temperature and annealing time, the layout of the nanodots

changes. One particular such array is shown from two different angles in (a) and

(b). In Figure 1 (c) a larger dot, formed from an initially thicker a-Si layer (20nm),

is shown in a TEM image. Two grains are indicated by the sketched lines, leading
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to a faceted poly-crystalline nanodot. One can see a dark-bright tessellation in

the left grain, which appears due to twinning, which is well-known from bulk a-Si

recrystallization, see for example Batstone [2].

Figure 2: (a) Sketch of an unbounded anisotropic 2D equilibrium shape; (b) Setting

for an anisotropic nanodot located on a rigid substrate.

Any realistic mathematical model for c-Si nanodot formation needs to account

for the influence of anisotropic surface energy densities. This is clearly demon-

strated during the dewetting process of c-Si from SiO2. It is shown in [12] that the

dewetting dynamics is dependent on the orientation of artificially created edges

in the thin film. It has further been shown that the equilibrium shapes of nan-

odots that are created by c-Si annealing have a distinct faceted dome structured

equilibrium shape [1, 12]. As the anisotropy is already crucial in one-crystalline

layers, it also plays a major role in the re-crystallization and dewetting of thin a-Si

films. In order to describe and calculate anisotropic geometries of poly-crystalline

nanodots attached to a substrate, it is essential to consider an adhesive energy

with the substrate and neighboring grain boundaries.

We begin our derivation of a continuum description that includes these effects

with the fundamental problem of the energy minimization task

min
Ω

∫
∂Ω

γdS s.t. |Ω| = const . (1)

Its solution yields an equilibrium shape with minimal surface energy that has a

prescribed volume. In Figure 2 (a) such a geometry in free equilibrium is sketched.

For the isotropic case, where γ is a constant, the shape would be a sphere. Free

surface energy minimizers are typically obtained by application of the geometrical

Wulff construction [26], [9], the geometrical plot of the Cahn-Hoffmann vector, see

for example [24], or numerically in terms of gradient flows that evolve with time

to the equilibrium setting, for example using a level-set method [5]. However, the

usual Wulff construction works only for unbounded geometries. For a nanocrystal

that is attached to a solid surface, such as in solid dewetting, the geometrical idea

can be extended to the Winterbottom construction [25]. Methods for calculating
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the equilibrium geometries, extending the convexification procedure of the Wulff

and the Winterbottom constructions, for a range of configurations for anisotropic,

even multigrain, crystals and solid surfaces have been developed recently in [27].

We also note that, based on minimization methods for anisotropic crystals in an

unbounded domain, as well as attached to an isotropic surface have been discussed

in [17] and [16], using software based on [4]. A different but interesting approach

by [6] addresses the difficulty in obtaining accurate interfacial free energy densities

directly from experimental data. A method that transforms measured equilibrated

shapes in order to predict corresponding free interfacial energies is proposed and

applied to various anisotropic case studies.

Our approach differs from the previously mentioned ideas, as we directly dis-

cretize both, the objective and the constraint, to formulate problem (1) as the

following nonlinear, constrained, finite-dimensional minimization program

min
x∈RN

f(x) , (2a)

s.t. c(x) = 0 , (2b)

for x ≥ 0 . (2c)

Here x describes the chosen parametrization of the shape that will be introduced

later, f is the objective, the discretized surface integral, c describes the volume

constraint and finally we deal with bound constraints that typically can be ignored

as they are not supposed to be activated (one does not expect xj = 0 for any j in

the equilibrium configuration).

We will show how (2a)-(2c) can be formulated for the unbounded problem (1).

Thereafter, we extend the derivation for the more general setting, where a substrate

is added to the geometrical setup. In this case the problem writes as follows,

min
Ω

∫
Γ

γdS +

∫
Γi

γidS +

∫
Γs

γsdS s.t. |Ω| = const , (3)

so that one has to deal with three different interfaces Γi, Γs and Γ. The boundary

of the dot is given as ∂Ω = Γ ∪ Γi. Each interface brings in a corresponding

interfacial energy, we write γi and γs for Γi and Γs, respectively. For this setting

we treat a flat substrate as it is depicted in Figure 2 (b). In the a-Si dewetting

experiments this is the observed geometry, so we refrain from treating deformations

at the substrate, although our approach extends generically for this setting and

hence allows for more general problems.

We note that geometrical methods such as in [27] are also used in the literature.

They work efficiently in case of strong anisotropies, where in equilibrium only a
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few flat facets remain. Our method uses continuum models that rely on a certain

degree of smoothness and hence formulas that lead to slightly curved facets can

be employed, which would lead to a demanding disposal of hyperplanes in the

geometrical constructions and slows these methods down, while our minimization

method works best for theses cases.

We will show that a direct minimization of problem (3), even though compu-

tationally demanding, will brings along the benefit that one can include spatial

dependence in the formulas of the interfacial energies. This allows working with

non-homogeneities, i.e. where the Winterbottom construction fails. In our case

the surface Γ is subdivided into different grain/orientation areas. Formally this is

just a spatial dependence of γ.

The remaining parts of this work are structured as follows: First, we describe

our physical problem in Section 2, where we present methods that were used to

grow the nanodots of interest, discuss their interfacial energies and measured TEM

pictures, which we compare with our results towards the end of our study. In Sec-

tion 3 we begin with comparing the Wulff construction for well-known formulas to

our results and discuss equilibrium settings for surface energy density formulations

with jumps. We introduce a boundary layer formula to overcome the discontinuity

problem. We show by example that the minimizers converge in the limit of a small

regularization. In Section 4 we introduce the new method for equilibrium shape

calculations in two dimensions. We add the substrate in Section 5 and test the

method and explain the adjustments that need to be done in our minimization for-

mulation. In Section 6 we calculate different nanodots for different substrates and

surface energy densities. We carry out a parameter study concerning the positions

of the grain boundaries within two-grained and three-grained nanodots. We close

our work with a discussion and outlook concerning the full problem in Section 7.

2 Synthesis of silicon nanodots

The nanodot formation process by dewetting of a thin amorphous silicon (a-Si)

layer has first been discussed by Wakayama et al. [23, 22] and has been investigated

in more detail in the recent works by Malguth et al. [13] and Roczen et al. [15]. For

nanodot synthesis, a thin amorphous silicon (a-Si) layer is deposited onto a SiO2

covered crystalline Si-wafer (c-Si wafer). The a-Si/SiO2/c-Si system undergoes an

annealing step at about 600 ◦C in a UHV system. This leads to the solid phase

crystallization of the a-Si layer and thus to the growth of crystalline grains inside

the top layer. The grains continue to grow by the consumption of the surrounding
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Figure 3: (a) TEM cross section image of a crystalline silicon dot sitting on a SiO2

layer that is located on top of a Si(111) wafer. The region to the right is magnified

in (b), where characteristic orientations of the substrate and the dot are indicated

by two lines; (c) shows the Fourier transform of (b) (absolute values); the noise

refers to the background gel and SiO2 layer, the bright spots to the characteristic

orientations of the grain and the substrate.

a-Si until the former amorphous layer is fully crystallized. Due to a surface diffusion

process acting simultaneously to the recrystallization, a dewetting process takes

place and an unordered array of c-Si nanodots is formed on top of the SiO2. The

diameter, the density and the crystallinity of the nanodots is controlled by the

thickness of the initial a-Si layer. For a sufficiently large a-Si layer thickness the

nanodots become polycrystalline.

Figure 3 shows a cross sectional TEM image of a nanodot formed by the dewet-

ting of a 20 nm a-Si layer. It is located on top of a 2 nm thick SiO2 layer and it

is more than twice as high as the initial film thickness. The upper part of the

nanodot is surrounded by an amorphous adhesive used for TEM sample prepara-

tion. In the lower part of the image, the single crystalline Si substrate is visible.

A magnification of the lower right corner of the nanodot is depicted in (b) and

its Fourier transform (the absolute values) in (c) show that the nanodot is indeed

recrystallized with one orientation at this particular section of the image. While

the epoxy glue and the SiO2 lead to spherically distributed noise in the Fourier

transform, the Si(111) substrate and the dot create bright spots corresponding to

their periodicity and orientation. A similar image can be obtained from Figure

1 (c), where the additional second grain adds more spots to the Fourier domain.

From the transformations we cannot read off the exact three-dimensional orien-
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tations of the grains in the nanodots, however we can see that we have different

crystalline, periodic structures.

Figure 4: (a) TEM image of a dot array; initial thickness of the a-Si: 20 nm, dewet-

ting temperature: 700◦C. Crystalline and poly-crystalline nanodots are visible as

darker shades. Better resolved nanodots are depicted in (b)-(d) in TEM images

that allow for an interpretation of the different orientations.

Figure 4 shows further nanodots of the same sample. In (a) a cross sectional

TEM image depicts the side profile of a nanodot-array. It is not easy to extract

the exact form of the nano-islands in this resolution – this is better visible in

(b)-(d), in cross sectional TEM images of single nanodots. Wakayama et al. [22]

reported on a bimodal distribution of nanodots which was also observed in our

experiments. Figure (c) shows one of the smaller crystals next to the wall of a

bigger one and a size diagram from Figure 1 would probably show two separated

maxima at two different sizes. The other TEM images in Figures 4 (b) and (d)

show larger nanodots, they are poly-crystalline. We indicate their interfaces to the

epoxy glue with dashed lines. One clearly sees faceting while it is difficult to detect

the exact orientation of the silicon crystal grains. This is important for a detailed

comparison of the experiments and calculated equilibrium shapes. However, we

know now that the recrystallization interplays with a surface diffusion process

that together enables the dewetting and creation of crystalline nanostructures.

Furthermore, from recent c-Si dewetting experiments [1, 12], we know that the

nanodots have a clearly described faceted form in the ideal one-crystalline case. For

the recrystallized nanodots we need to treat orientation rotations, grain boundaries

and probably other defects to fully describe nanodots in equilibrium.
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3 Wulff shapes

We begin with the discussion on results obtained with a well-established geometri-

cal procedure, the Wulff construction [26]. We investigate a jump-formula and its

regularization for the poly-crystalline case and describe the difficulties with this ap-

proach. Typical formulas for the surface energy density have to be extended if one

plans to describe possibly poly-crystalline nanodots on SiO2 substrates. Assuming

a sharp interface at the grain boundaries one has to deal with a discontinuous

surface energy formula at the surface of the object of interest. Our first idea was

to allow the surface energy jump at a certain orientation. This discontinuity can

be regularized to form a smooth approximation. There is, however, a major prob-

lem with this approach. Due to missing orientations, the equilibrium shape has

its transition from one facet to the next often at a different angle than the angle

prescribed in the surface energy formula.

(a) (b) (c)

Figure 5: Polar plots (dashed lines) of the surface energy (4) with p = 4 and

the corresponding equilibrium shapes (white areas) constructed with the Wulff

construction for the weak anisotropy strength G = 0.05 in (a) and the strong

anisotropy G = 0.3 in (b); (c) shows a nonzero tilt ϕ = π/6 in (4).

The geometrical construction for jump formulas When a formula for the

surface energy density is given as function of an angle θ, equilibrium shapes can

be constructed geometrically. Typically, for materials with a cubic symmetry such

as silicon, one can find the following 2D reduced, formula for the surface energy

density description

γ(θ;ϕ,G, p) = 1 +G cos(p(θ + ϕ)) (4)

with p = 4 (the number of minima of γ). Here ϕ is a phase shift describing a rota-

tion from a reference orientation. For ϕ = 0 we calculated the equilibrium shapes
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for two different anisotropy strengths G by application of the Wulff construction

and plotted them in Figure 5. They turn out to be square shaped as expected and

with smoothed corners in the weak case (a), G = 0.05, or real cusps for G = 0.5

as in (b). In (c) we observe the same shape as in (b), rotated by ϕ = π/6.

The nanodots from the dewetting experiment as in Figure 1 have many different

facets. As they may be composed of several grains that are differently oriented, the

rotation parameter ϕ is important and differs in the phases/facets corresponding

to the individual grains. At the surface where these grains touch, a discontinuity

in the surface energy density is introduced.

Our first approach for the multiple grain case is to divide the angle interval

[0, 2π) into m parts, say m = 2 and m = 3, so that the surface can be composed

of two or three portions that each have different shifts ϕk, k = 1, . . . ,m, for now

considered in the surface energy density (4). It turns out that these angles are not

the angles at which the equilibrium shapes have their orientation transition. We

ignore this lack of detail in this section and just assume that certain angle intervals

correspond to certain prescribed orientations.

For m = 2 we divide the angle domain into [0, π) ∪ [π, 2π), for m = 3 it is

[0, 2/3π)∪ [2/3π, 4/3π)∪ [4/3π, 2π) and we deal with either two or three shifts ϕk.

We write the composed surface energy formula as

γm(θ) =
m∑
j=1

1[θj−1,θj)γ(θ;ϕj, G, p), θj =
2π

m
j, (5)

a valid formula on the whole angle interval, using the characteristic function

1A(x) =

{
1, x ∈ A
0, x /∈ A .

Now we can use the composed formula (5) to carry out Wulff constructions with

different strengths G and with m different orientations ϕj. However, note that

the formula introduces jumps in the polar plots due to the shifts. The proof for

Wulff’s construction giving correct shapes relies on a surface energy density that

is continuous [9]. We can calculate the equilibrium geometries as we did in Figure

6, but we have to think about the validity of these images due to the lack of

regularity. The figure shows two grain calculations in (a) and (b) for weak and

strong anisotropy (G = 0.05 and G = 0.5, respectively), while (c) and (d) depicts

the three orientation case m = 3 with the same values for G as in (a) and (b). The

dashed lines are the polar plots and it is clearly visible that they have jumps at
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−1.5 0 1.5
−1.5

0

1.5
(a)     2 grains, G=0.05

−1.5 0 1.5
−1.5

0

1.5
(c)    3 grains, G=0.05

−1.5 0 1.5
−1.5

0

1.5
(b)    2 grains, G=0.5

−1.5 0 1.5
−1.5

0

1.5
(d)   3 grains, G=0.5

Figure 6: Wulff shapes for 2 grains in (a) and (b) with ϕ1 = 0, ϕ2 = π/3, and

3 grains, (c) and (d) with ϕ1 = 0, ϕ2 = 2/7π, ϕ2 = 3/7π; the angle domains are

divided in an equispaced way; (a) and (c) are calculations with a weak anisotropy

G = 0.05, while (b) and (d) show the equilibrium shapes for G = 0.5, a strong

anisotropy that induces corners. The dashed curved lines are the polar plots.

the positions, where the orientations change. The white areas are the equilibrium

shapes.

To show that the Wulff shapes are indeed minimizers for the jump formula

(5) we introduce a boundary layer formula that smoothes out the jumps in the

surface energy density on a characteristic small length-scale ε. As this formula

is continuous its Wulff shapes are correct minimizers. It is an extension of the

boundary layer model discussed before by several authors [11, 19] and applied

successfully for dynamical models describing the self-assembly of heteroepitaxially

grown quantum dot arrays [20, 10]. Thus we shortly write γj = γ(θ;ϕj, G, p) and

define

γbl,j(θ; ε) =
1

2
(γj+1 + γj) + (γj+1 − γj)

1

π
arctan(

θ − θj
ε

) .

It has to be assumed that ε� minj{|θj+1 − θj|}, then the formula

γmbl (θ) =
m∑
j=1

1[θj−∆θj ,θj+1−∆θj+1)γbl,j, ∆θj =
θj + θj−1

2
, (6)

is indeed a smoothed regularization. There is still a possible discontinuity at the

new angle boundaries θj−∆θj, the former medians of the angle intervals. However,

the tails of the neighboring arctan function converge exponentially fast to the same

constant far-field values, so that we ignore this lack of regularity, which vanishes

in the ε→ 0 limit.

Figure 7 (a) depicts how a sequence of decreasing values for ε influences the

polar plot of γmbl . The discontinuities are approximated more precisely with smaller

ε. The shapes in (b) show that even for the larger regularization coefficient ε = 0.1
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the equilibrium shape nearly matches that for the discontinuous γm. For very small

ε the difference is marginal. Note that here we have a rather extreme case, where

the discontinuities are large and we deal with a nonconvex surface energy density

due to a large anisotropy coefficient G. We conclude that the approximation (6)

works well and that the jumps in (5) are not a major problem. However, Figure 7

(c) explains why our idea fails. While the angle at the jump is supposed to describe

the location of the material change, it does not in general. We will show a better

way to treat the interface position in the following sections.

(a) (b) (c)

Figure 7: Polar plots for γm and γmbl with m = 2, anisotropy strength G = 0.5

from (5) and (6) with ε = 0.1, 0.01, 0.001 in (a). The left discontinuity at θ = π is

magnified and one sees the smoothing effect of the boundary layer formula. The

shifts are ϕ1 = 0 in [0, π) and ϕ2 = π/3 in [π, 2π); The image in (b) shows the

equilibrium shape for the non-continuous version (filled area) and the shapes for

ε = 0.1 (dashed line) and ε = 0.001 (solid line); (c) sketch for the difference between

the jump angle in the surface energy and in the angle of the parametrization of

the actual equilibrium shape

So far we have not considered the interaction with a substrate and this can

affect the equilibrium shapes significantly. In the next Section we proceed with

the numerical discretization method for the unbounded case first, then, in Section

5 the method is extended to the substrate case. There we show how we deal with

orientation transitions at the surface for a fixed parametrization angle. We are not

aware of a Wulff construction based method that could resolve the position of the

interface as in our method.
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4 Numerical optimization formulation for the un-

bounded case

For our numerical method we derive the discretized minimization formulation that

transforms the original problem (1) to the mathematical form (2a)-(2c). We first

assume that the equilibrium shape is star-shaped. We assume that the equilibrium

shape is star-shaped and show how the continuous domain shape will be related

to the finite-dimensional variable x in this formulation. Let us note that the

optimization routine will change the discretized Γ in each iteration. Therefore

we introduce the following parametrization of the shape in the jth iterate during

optimization

Γ : [0, 2π)× N→ R2, (θ, j) 7→ (Γ1(θ, j),Γ2(θ, j)) . (7)

For the outward unit normal of the sphere we write n = n(θ), the tangent is defined

by t = t(θ), θ ∈ [0, 2π) and to indicate the actual shape in the jth iterate Γ(θ, j)

we use Γ superscripts, nΓ = nΓ(Γ(θ, j)), tΓ = tΓ(Γ(θ, j)) (see also Figure 8).

Problem (1) requires to treat the free energy and the mass constraint that both

can be expressed in terms of integrals. Parametrization (7) changes these integrals

in the following way, the mass constraint reads

M =

∫ 2π

0

∫ |Γ(θ,j)|

0

ρdρdθ =

∫ 2π

0

1

2
|Γ(θ, j)|2dθ (8)

and the objective J(Ω) =
∫
∂Ω
γdS becomes

J(Γ) =

∫
Γ

γ(Θ)ds =

∫ 2π

0

γ(Θ(Γ(θ, j))) |∂θΓ(θ, j)|dθ . (9)

Note that ∂θΓ = tΓ. We use the initial condition Γ(0) = Γ0 = {x ∈ R2 : |x| = 1}
that can be discretized equidistantly on the grid 0 = θ0 < θ1 < . . . < θN < 2π,

with θk = kdθ, k = 0, 1, . . . , N, dθ = 2π/(N + 1) via

θk 7→ (Γ0)k = (cos(θk), sin(θk)) (10)

and one reads off the normals and tangents

nk = n(θk) = (Γ0)k, tk = t(θk) = (∂θΓ0)k = (− sin(θk), cos(θk)) .

The shape described by Γ is related to the discretization angles θ. However, the

objective, i.e. the surface energy γ, will depend on angles that Γ forms to some ref-

erence orientation eref , which differ from θ, we denote them by Θ. More precisely,
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these are the angles the tangents at the surface form with eref . In the discretized

case we write γk = γ(Θk), where the Θk are the angles determined by the actual

discrete geometry of the 2D crystal, i.e. neighboring points. Therefore, we consider

ak = ((ak)1, (ak)2) = ((Γk+1)1, (Γk+1)2), bk = ((bk)1, (bk)2) = ((Γk)1, (Γk)2) (11)

with Γk = Γ(θk, j) and we define wk = ak − bk, where we use periodicity at the

boundaries of definition. We calculate the angle that the vector wk forms with the

first Cartesian basis element (0, 1). Doing so for the whole shape, we get a vector

of angles,

Θk = arccos(wk · (0, 1)T/|wk|), k = 1, . . . , N . (12)

We could work with a discretized shape Γ that is free to be changed in whole

R2 by the optimization procedure. However, this leads to certain problems, i.e.

the nodes can separate strongly and destroy the anticipated accuracy expected by

the theory. Hence we proceed in the following much more efficient way: Instead

of optimizing for ((Γk)1, (Γk)2)k=1,...,N in R2, we reduce one free parameter by

allowing change only along beams outgoing from the origin. Therefore we rewrite

all quantities by introducing polar coordinates.

The surface is interpreted as a mapping from the sphere (and initial condition)

Γ0,

Γ(θ, j) = x(θ, j)Γ0(θ) = xn

and we optimize for x instead of Γ. The derivative becomes

∂θΓ(θ, j) = tΓ = x′n+ xt

and its 2-norm becomes due to the orthogonality property of normal and tangent

of the sphere

|∂θΓ(θ, j)| = (x2 + (x′)2)1/2 .

The integrals are transformed in the following way∫
Γ

γdS =

∫ 2π

0

γ(Θ(x))
√
x2 + (x′)2dθ,

∫
Ω

dV =

∫ 2π

0

1

2
x2dθ . (13)

The angle the surface forms at the position θ with some fixed orientation is Θ(x) =

Θ(x(θ)), and it can still be calculated as before. Now we have an expression for

the two quantities in terms of the radial coordinate x. When we discretize θ

equidistantly, we march along the equally distributed normals of a circle until

crossing Γ to get the approximations Γj. This is sketched in Figure 8. The iterates
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Ω

Γ (θ ) 
j

n
xn

nΓ

tΓ

 θj

 θjΓ(   ) t

Γ :[0,2π]     IR2

Figure 8: The thick red line is given by the parametrization Γ. For the discretiza-

tion we intersect Γ with equidistantly distributed normals of the sphere.

are bound to those directions prescribed by the normals, i.e. the discretized angle

domain.

The discretization gives in each iteration the values (xk)k = (x(θk))k. We

approximate the integrals in (13) with an appropriate integration rule that relies

on these values. We apply Simpson’s rule that gives for a function f on a [0, 2π)

interval∫ 2π

0

fdθ ≈ dθ

3

[
f(θ0) + f(θN)

2
+

N−1∑
k=1

f(θk) + 2
N−1∑
k=0

f

(
(θk+1 + θk)

2

)]
. (14)

We use it with f(θ) = γ(Θ(x))
√
x2 + (x′)2 and f(θ) = 1

2
x2.

For the discretization x = (xk)k=0,1,...,N ≥ 0 we can use any finite difference ma-

trix D to obtain the discretized derivative Dx. We use a simple forward difference,

as central differences can lead to zig-zagging effects here.

Summarizing, we can formulate the nonlinear equality constrained optimization

problem with bound constraints on the variables as written down in (2a)-(2c). The

initial guess is xj = 1, j = 0, 1, . . . , N , which is feasible by construction when the

volume constraint is set to that of the unit ball, M = π, else one needs to scale the

xj accordingly. Using Matlab’s fmincon routine (from the Optimization Toolbox)

one finds, that the positivity inequalities may be ignored in the cases presented

here. As expected the final, but also the intermediate shapes, do not violate the

inequality constraints, so that it may be sufficient to practically work with (2a)

and (2b) and ignore (2c).

Comparisons to Wulff shapes Now we have two methods at hand that both

lead to equilibrium shapes of anisotropic crystals.
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Figure 9: Comparison between Wulff shapes (white areas) and solutions with the

minimization procedure (inside solid curve) calculated with N = 256 grid points.

Formula (4) with (a) (p,G, ϕ) = (4, 0.1, 0); (b) (p,G, ϕ) = (8, 0.02,−π/16); (c)

(p,G, ϕ) = (8, 0.05, 0);

Figure 9 shows Wulff constructions for various formulas of the surface energy

density. The solid lines depict the equilibrium shapes calculated with the numerical

method described above. The shapes in (a)-(c) are exactly the same. We have

chosen a volume in the minimization procedure that is slightly smaller than that

of the Wulff shape to be able to see the solid line well on the white shape. We

applied our procedure to formula (4) with different values of p,G and ϕ. In (a)

the standard values (p,G, ϕ) = (4, 0.1, 0) have been chosen and show the square-

shaped equilibrium; In (b) and in (c) we used an 8-fold symmetry, p = 8; in (b) a

rotation of ϕ = −π/16 is well captured and in (c) (here ϕ = 0) the increase of the

anisotropy strength from G = 0.02 to G = 0.05 is shown.

5 Numerical optimization for nanodots on a rigid

substrate

We now take into account an adhesive force due to the contact of the nanodots

with the substrate. We work with the energies between the vacuum phase (or gas)

and the nanodot, γ acting on Γ, the substrate and the nanodot, γi belonging to Γi,

and the substrate and the vacuum, γs related to Γs. As depicted in Figure 2 (b)

we consider the case where Γs and Γi are flat. For comparison with experimental

measurements, as depicted in Figure 1, 3, 4, we need to extend the minimization

problem (1) and treat (3) in this Section. We will show how to adjust the previously

introduced optimization procedure to solve the problem. As the substrate is rigid,
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the two additional integrals in (3) become very simple. We can rewrite the problem

in this case as

min
Ω

∫
Γ

γdS + xr(γi − γs) + xl(γs − γi) s.t. |Ω| = const, (15)

where xr is the x-coordinate of the right triple point and xl is the corresponding

left value. The same reformulation has been used to derive the Winterbottom

construction [25]. We assume that xl ≤ 0 and xr ≥ 0. As sketched in Figure

10, we can discretize similarly as before for Γ, only that now we use only half the

sphere, i.e. angles in [0, π], and we lose periodicity.

Γ :[0,π]     IR2

Γ :[0,π]      IR2

i
Γ

s Γ
s

Ω

(a) Γ(θ ) = x n

Γ (       )
i s

j j

x ,x
1 n Γ (   )x 

1s
Γ (   )x 

n

Ω

j(b)

Figure 10: (a) All three interfaces, Γ,Γi,Γs are mappings from [0, π] to R2; (b)

shows the discretization for all three interfaces in terms of polar coordinates.

The parametrization of the surface Γ is as in (7), restricted to the domain [0, π],

with the volume and objectives, i.e. in (8) and (9), adjusted to the shorter interval

[0, π].

We work with similar expressions as in (13) and solve

min
x≥0

f(x) =

∫ π

0

γ(Θ(x))
√
x2 + (x′)2dθ + xr(γi − γs) + xl(γs − γi) (16)

subject to the mass constraint

c(x) =
1

2

∫ π

0

x2dθ −M = 0 (17)

and the bound constraint x ≥ 0. Note that we can use a spatial dependence

of γ by adding an additional separate dependence on the parametrization angle

γ = γ(Θ, θ), and hence we are able to use different orientations of one basis formula

at different intervals of θ.

Aspects of the discretization To be able to calculate equilibrium shapes that

adhere to a substrate as sketched in Figure 2 (b), we have formulated the min-

imization procedure in terms of Γ,Γi,Γs, γ, γi and γs and simplified it by using
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polar coordinates to get problem (16) with the constraint (17). The integrals at

the rigid interfaces Γs and Γi were further simplified to tractable algebraic expres-

sions. Note that xl and xr in the rewritten objective (16) are the boundary points

of the unknown vector x, i.e. x|θ=0 = xr and x|θ=π = −xl.
When we apply Simpson’s rule to (14), we need derivative approximations for

x′ and the angles Θ for the surface energy density evaluation. We proceed in the

following way: With an equidistant discretization of the angle domain,

{θj}j=0,1,...,N , θj =
π

N
j, {xj}j=0,1,...,N , xj = x(θj),

we have a problem defining the same number of forward derivatives. Therefore we

work with averaged quantities {(θ̄j, x̄j)}j=1,...,N , here the arithmetical mean over

neighboring points. We define the corresponding N derivatives {x̄′j}j=1,...,N just as

the finite differences x̄′j = (xj − xj−1)/dθ and finally we approximate xr ≈ x̄1 and

xl ≈ x̄N . Note that the angles Θj are calculated as in (12), with the caveat, that

the vectors in (11) are now defined by the averaged variables {x̄j}j. The main

integral in the objective is now interpreted in terms of the bar variables and again

it can be evaluated with Simpson’s approximation (14).

For the initial condition we use a half-sphere

Γ0(M) = {r(cos(θ), sin(θ)) : θ ∈ [0, π],

∫ r

−r
r sin(θ)dθ = M} ,

which we can do because the initial contact angles do not need to be accurate in

this method. For given volume, the integral constraint directly gives r =
√

2M/π

and for the discretized case we use an initial vector xj = r for all components.

For the parameter studies that will follow in Section 6 we always used the gained

solution of the last parameter set as initial condition, when continuing for different

parameters close-by.

Comparisons of the results of our new optimization method with results of the

well-understood isotropic case, where equilibrium contact angles are known when

the constant energy densities γ, γi and γs are prescribed (see e.g. [7]), showed good

agreement. We obtain the hemispherical shapes as expected, with correct contact

angles and the observed quantities converge to the expected limit. We next extend

our method to the anisotropic case.

The anisotropic case – academic, single grained Figure 11 shows our results

for surface energy density γ defined by formula (4), where we increase γi from 0.5

to 1.5, while keeping γs constant. Note that there are more choices to make in
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Figure 11: Equilibrium structures for γ = 1 + G cos(pθ) for γs = 1 and three

different values of γi; top row: p = 4 with G = 0.05 (dashed line) and G = 0.1

(solid line); bottom row: p = 8 with G = 0.01 (dashed line) and G = 0.05 (solid

line); (a), (e) γi = 0.5; (b), (f) γi = 0.7; (c), (g) γi = 1; (d), (h) γi = 1.5.

formula (4). In the upper row of the figure, we have chosen p = 4, while the lower

row is calculated for p = 8. Each subplot shows two equilibria due to different

anisotropy strength, G = 0.05, G = 0.1 in (a)-(d) and G = 0.01, G = 0.05 in (e)-

(h). Similarly as in liquid droplets, as the interface energy density γi grows, the

creation of the Γi interface is less preferred, the structures are squeezed to shorten

this interface. An additional effect due to the anisotropy is visible in (d) and (h),

where the adhesive equilibrium structures create additional facets to minimize the

overall surface free energy. Note that the facets get more pronounced for the same

values of G, when p is increased. Sharp facets are introduced when γ + γ′′ < 0.

As p grows, a larger quantity is subtracted from γ explaining this observation and

the stronger influence of the anisotropy parameter G.

The anisotropic case – academic, multiple grains We can proceed as in the

unbounded case and calculate equilibria with several orientational shifts. In each

of the angle sections within the [0, π] domain we prescribe a different orientation

ϕ in formula (4). Figure 12 shows the result for p = 4 and G = 0.1. In all three

subfigures we see three islands, as we varied the interfacial energy as before, here

γi takes on the values 0.5, 1 and 1.5. While increasing the values, the structures

reduce the length of their base and grow vertically. In (a) only a single orientation

as before was used, but here ϕ = π/3, introducing already some asymmetry. In (b)

and (c) we added one, respectively two, orientations, ϕ = 0, ϕ = π/6. We divided

the angle interval [0, π] into two and three, respectively, equally large sections of
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the parametrization domain for which we used the different shifts. Note, that in

this way the angular domain is equispaced but not the surface areas. Hence the

surface areas of the islands with varying orientations may be different in these

figures. To obtain an equilibrium that allows the interface of neighboring grains

to be free, one can iterate through all orientations as we do in the next section for

a more realistic formula for γ.

−2 −1 0 1 2

0

1

−2 −1 0 1 2

0

1

−2 −1 0 1 2

0

1

(a) (b) (c)

Figure 12: Equilibria for γ = 1 +G cos(4θ + ϕ) for γs = 1, in each plot with three

different values of γi and anisotropy strength G = 0.1; discretization with n = 257

points; (a) one orientation, ϕ = π/3; (b) two orientations, ϕ = π/3 for θ ∈ [0, π/2)

and ϕ = 0 for θ ∈ [π/2, π]; (c) three orientations, ϕ = π/3 for θ ∈ [0, π/3), ϕ = 0

for θ ∈ [π/3, 2π/3) and ϕ = π/6 for θ ∈ [2π/3, π].

6 Experimental shapes and comparisons

We now return to the experimental results involving poly-crystalline silicon nan-

odots. The surface energy density derived from experimental measurements from

a void in a particular plane of silicon is plotted in Figure 13 (a), where we see the

normalized energy γ/γ(111) with γ(111) = 1.23 · 10−4J/cm2, see [8]. The extrema

are actually quite different from each other in shape and in magnitude, hence

the previously used formula (4) differs qualitatively from the realistic setting, no

matter which values of G, p or ϕ are chosen.

The polar plot and the corresponding Wulff shape are depicted in (b), which

is shown again together with a TEM image taken from Eaglesham et al. [8] in (c).

It shows that the trigonometric interpolant which we have implemented indeed

defines the equilibrium void geometry, which has to be expected as the original

formula has been extracted from this geometry. To set up the interpolant, N

discrete values uk = γ(θk) have been read off from the original work, these allow

to define the trigonometric function

INγ(θ) =
∑
k∈K

ûke
ikθ,
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where the coefficients ûk are discrete Fourier coefficients and K is a suitable set of

wavenumbers. This interpolant enables an evaluation of the surface energy density

formula approximation for arbitrary θ. The equilibrium shape corresponding to

this formula differs from that relying on the typically used cosine model with p = 4.

We obtain multiple facets that are rather rounded than pronounced planar parts.

Two grain calculations can now be carried out by employing the physically derived

1

1.1

0 3 6

measured data
trigonometric interpolant

(d)(c)

polar 
plot Wulff shape

Figure 13: (a) Surface energy density of silicon, γ(θ)/γ(111); discrete values read

off from Eaglesham et al. [8], who determined γ(111) = 1.23J/m2; solid line: ap-

proximation of the surface energy density of silicon for all angles via trigonometric

interpolation; (b) the corresponding polar plot and Wulff plot for the equilibrium

shape; (c) Equilibrium shape by Eaglesham et al. (adaptation) and one half of the

Wulff shape, calculated by using the trigonometric interpolant; (d) Polar plot and

equilibrium shape for two rotated grains (π/5 misorientation) with trigonometric

interpolation of measured data.

formula, see Figure 13 (d). Thus, we use Inγ(θ) for the angles in the range θ ∈ [0, π)

and Inγ(θ+θrot) in [π, 2π), where θrot = π/5 is the rotation of the second grain. In

comparison to the one-orientation case the symmetry is lost and indeed suggests

that the asymmetric nanodots from the experiments can result from the different

orientations of neighboring grains.

To add a substrate we need to quantify values for γi and γs, the interfacial

energies between SiO2 and crystalline silicon, and between SiO2 and vacuum. For

the interface energy between crystalline silicon and the SiO2 a much smaller value

is given in [18], γi = 5 · 10−6J/cm2. The interfacial energy of SiO2 to the vacuum

has been cited in [14] to be between 40 and 50 mN/m, which corresponds to

γs = 4 · 10−6J/cm2 − 5 · 10−6J/cm2, where we used γs = 4 · 10−6J/cm2 for all

of our subsequent simulations. After normalization with γ(111) we take γi ←
γi/γ(111) = 0.0407 and γs ← γs/γ(111) = 0.0325.

To fix the interface position in a poly-crystalline nanodot, we prescribe the

corresponding angle in the parametrization. We then iterate through all possible
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interface positions, calculate the corresponding energy value and pick the smallest

one to indeed have the most preferred equilibrium shape. The nanodots under

consideration are relatively big and additional effects that are not considered here

can fix the interface to a position that does not correspond to the position of

the global surface energy minimum over all interface position angles. It is quite

common that while during recrystallization the interfaces move fast, they stagnate

once they meet, or at least move on a very slow time scale. These states, with

rather stable interface positions, are then of practical interest.

Figure 14: Five nanodots calculated with Eaglesham’s formula and the rotations

φ = θrot = 0, π/5, 2π/5, π/2, 3π/5, successively in (a)-(e).

We first consider a single crystal nanodot located on the SiO2. To generate

Figure 14, a range of orientations for the crystalline phase has been tested. All the

nanodots depicted in (a)–(e) show states with different rotation from the Si(111)

formula φ = θrot = 0, π/5, 2π/5, π/2, 3π/5. The symmetry from the plot in Figure

13 (a) is visible in Figure 14 (c) and (e) as the surface energy density is locally

symmetric around the state in (d) – i.e. the {110} mirror plane – and 2π/5 and

3π/5 are both π/10 from π/2 away. We are not in the position to make one-to-one

comparisons between the calculated shapes and e.g. TEM images of nanodots, as

these do not give the exact orientation of the crystal and because we do not have

formulas of the surface energy density for all planes of silicon at hand. However,

the images show that the used formula and the parameters work well together and

that the contact angles are close to those observed in experiments – and so is the

asymmetric multi-faceted appearance. Also, the typical slopes of the nanodots at

the substrate are large. However, let us mention that the new works [1, 12] obtained

one-crystalline nanodots that exhibit more facets, hence additional minima in the

formula of the surface energy density. The formula we use might still not be precise

enough. We will investigate this further in future.

Next, we applied the method for two-grained nanodots. For the results in

Figure 15 we fixed the orientation of the two grains, θrot = π/3 and θrot = π/5, and

iterated over all angles θ ∈ [0, π] at which the interface between the two phases can

be located. For each we solved the minimization problem and calculated the value

of the objective of the minimizer constrained to this particular angle. In Figure 15
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Figure 15: Two grain results: (a) shows the objective dependent on the orientation

of the interface between two grains, one rotated by θrot = π/3 and the other one

by θrot = π/5 from the Si(111) state given by Eaglesham. The indicated letters

belong to the nanodots calculated in (b)-(f).

(a) the objective values are plotted against the interface angle and the letters at the

markers on the curve indicate, which of the following nanodots in (b)-(f) belong to

the particular values of interface angle and objective value. Interestingly one sees

three local minima in (d), (e) and (f), though one would rather expect (e) and (f)

to appear in experiments, as (d) is on the high plateau and seems unstable. There

is another minimum for a one grain nanodot in (a) that corresponds to Figure

14 (b), while the other one-grain nanodot is located on a maximum – so that a

two grain nanodot would in fact be preferred for this nanodot with this specific

orientation. In (c) one example of a nanodot that is not in an equlibrated state is

depicted.

The last Figure 16 shows our study for nanodots with three differently oriented

phases, i.e. ϕ1 = π/3, ϕ2 = 0 and ϕ3 = π/5 and we iterate the first interface over

the possible positions θ1 ∈ [0, π] and the second one correspondingly in dependence

of a fixed θ1 as θ2 ∈ (I1, π]. We obtain a parameter plane in θ1 and θ2. Figure 16 (a)

shows the values of the surface energy corresponding to the particular positions

of the interfaces in a contour plot. Four spots in the contour plots are marked

and the corresponding three-grain nanodots are plotted in (b)-(e). The size of the

right (blue) grain always belongs to the x-axis in (a), the y-axis gives the size of

the middle (red) grain and if π− θ1− θ2 > 0 one has also the third grain with that

measure in orientations. There are several extrema given in the parameter contour

plot. At the axes one has a situation as in Figure 15, two grains with varying

interface, and hence with different extrema already there. But also in the inner
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domain as near (b) and (c) one finds local minima. While (e) is near a minimum

at the boundary (d) depicts the local maximum. The nanodot is not even convex,

hence not a Winterbottom shape. We assume that if such a nanodot is formed

during annealing, it destabilizes to form one of the preferred states.

Figure 16: (a) Parameter plane: angle ranges determining the interfaces of three-

grained nanodots (the angle range of third can be calculated by π − θ1 − θ2)

and the corresponding contour plot for the objective; (b)-(e) Particular nanodots

corresponding to the markings in (a); (d) is in a local maximum while (b), (c) and

(e) are near local minima.

7 Conclusions and outlook

We have introduced a new pathway to calculate equilibrium structures on a rigid

substrate. We used a polar description of the interface of interest that allows also

for contact angles larger than 90◦ and discretized the integrals. Optimization with

respect to the radii belonging to equidistantly distributed angles yields the desired

results. The main advantage of the method is a rather straight forward way of

incorporating spatial dependence into the interfacial energy γ.

Any reliable finite-dimensional constrained optimization tool seems applicable

to our new formulation. We used Matlab’s fmincon package, where we typically

used the SQP algorithm. It is interesting to note that the introduced numerical

optimization procedure can yield the same results as the Wulff construction for

the usual unbounded and adhesive case. However, for multiple grains the interface

can be fixed to a certain angle of the parametrization, so that the resulting shape

is not necessarily a Wulff shape. The analysis of this kind of states is interesting

for a future model describing the re-crystallization/dewetting phenomenon.
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Our calculations in this study suggest that surface energy is indeed a main

driving factor in the dewetting process. The differently oriented grains are mainly

responsible for the asymmetric appearance of final nanodots. We have demon-

strated that the problems not only have a global minimum, but also local minima

corresponding to multiple-grain nanodot geometries. From the single-crystal case

to the poly-crystalline setting we obtain nanodots that qualitatively mirror the

experimentally observed structures. We note however that it is difficult to obtain

reliable parameter values for the interfacial energies.

The long-time aim for our work is to understand and model the complete

dewetting process to be able to design geometries that are optimized with re-

spect to optical properties. The dynamics seems indispensable, in particular for

realistically capturing the position of the interfaces. In our upcoming work, the

insights concerning the interfacial energies for poly-crystalline nanodots derived in

this study will be used for the evolution equations modeling the surface diffusion

driven dewetting dynamics.

We note that it is possible to extend our method to the three-dimensional case

and is part of our ongoing work, such as the incorporation of further influences that

will appear as additional energy terms, such as for example elastic contributions

and twinning effects, which is well-known from bulk a-Si recrystallization, see for

example [2] and [3].

Finally, we note that the direct minimization approach can be used for crys-

talline nanodots, but also for droplets on rigid substrates and it can be easily

extended, for example for droplets located on a second liquid or on nonhomoge-

neous substrates.
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Töfflinger, A. Schöpke, M. Schmidt, H. S. Leipner, F. Ruske, M. R. Phillips,

A. Hoffmann, L. Korte, and B. Rech. Structural investigations of silicon

nanostructures grown by self-organized island formation for photovoltaic ap-

plications. Appl. Phys. A, 108(3), 2012.

[16] E. J. Siem and W. C. Carter. Orientation-dependent surface tension functions

for surface energy minimizing calculations. J. Mat. Sci., 40:3107–3113, 2005.

[17] E. J. Siem, W. C. Carter, and D. Chatain. The equilibrium shape of

anisotropic interfacial particles. Philosophical Magazine, 84:991–1010, 2004.

[18] T. R. E. Simpson, Z. Tabatabaian, C. Jeynes, B. Parbhoo, and J. L. Keddie.

Influence of Interfaces on the Rates of Crosslinking in Poly(dimethyl siloxane)

Coatings. J. Poly. Sci. Part A: Poly. Chem., 42(6), 2004.

[19] B. J. Spencer. Asymptotic solutions for the equilibrium crystal shape with

small corner energy regularization. Phys. Rev. E, 69:011603, 2004.

[20] W. T. Tekalign and B. J. Spencer. Evolution equation for a thin epitaxial film

on a deformable substrate. J. Appl. Phys., 96(10):5505–5512, 2004.

[21] C. V. Thompson. Solid-state dewetting of thin films. Annu. Rev. Mater. Res.,

42:399–434, 2012.

[22] Y. Wakayama, T. Tagami, and S. i. Tanaka. Formation of Si islands from

amorphous thin films upon thermal annealing. J. Appl. Phys., 85(12), 1999.

[23] Y. Wakayama, T. Tagami, and S. i. Tanaka. Three-dimensional islands of

Si and Ge formed on SiO2 through crystallization and agglomeration from

amorphous thin films. Thin Solid Films, 350:300–307, 1999.

[24] A. A. Wheeler. Cahn-Hoffman ξ-Vector and Its Relation to Diffuse Interface

Models of Phase Transitions. J. Stat. Phys., 95(5/6), 1999.

[25] W. L. Winterbottom. Equilibrium shape of a small particle in contact with a

foreign substrate. Acta Metallurgica, 15:303–310, 1967.

[26] G. Wulff. Zur Frage der Geschwindigkeit des Wachstums und der Auflösung
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