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Abstract

Different types of solution behavior for equations of motion of multibody systems with
respect to deviate from the solution manifold and numerical instabilities are considered.
An algorithm is presented that reduces the index of linear and nonlinear equations of
motion of multibody systems in the usually used form by preserving all information about
the solution manifold. The reduction is obtained by analyzing only the constraint matrix,
the mass matrix and the transformation matrix. This technique allows the construction of
a strangeness-free form which is suitable for numerical integration using stiff ODE solvers.
The here presented algorithm is the generalization of the already developed algorithm for
linear equations of motion.

The obtained results are illustrated by a numerical example.
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1 Introduction and Preliminaries

In this paper we discuss an approach for the dynamic simulation of multibody systems. The
dynamic simulation is an important topic in the construction and design of machinery like
robots, cars, aircrafts, see, e.g., [1], [21], [32]. The simulation is based on the equations of
motion of multibody systems which form a system of differential equations arising from the
dynamics of the system combined with algebraic equations which represent different con-
straints. The numerical integration of such systems of differential-algebraic equations is the
topic of several publications, e.g., [5], [18], [19], [25], [26]. Numerical solution techniques for
the equations of motion of multibody systems which form a system of differential-algebraic
equations with special structure are considered, e.g., in [8], [27], [28], [34].

The multibody system approach usually yields the standard form of the equations of
motion (EoM)

p = Z(p)v, (1a)
M(p)v = f(p,v,t)—Z"(p)G"(p,t)A, (1b)
0 = g(p,t) (1c)

arising from the descriptor form

M(p)v = f(p,p,t) — G (p,1)A,
0 = g(p,t)

by order reduction and by introducing velocity variables v in an appropriate way. In addition,
initial values

Po = P(to), vo = v(to), Ao = A(to)

are necessary to uniquely determine a solution [5]. Here and in the following we will use the
dot operator as the derivative with respect to t, i.e., p = %p. The state of the multibody
system is given by the position variables p € R™ and the (generalized) velocity variables
v € R"™. Depending on the choice of the components of v, the nonsingular transformation
matrix Z(p) € R™" in (1a) may be the identity. In this paper we will not consider a quater-
nion formulation (for more details we refere to [30]). The inertia of the different bodies of the
multibody system is represented by the positive definite mass matrix M(p) € R ", The ap-
plied forces are given by f(p, v,t) € R". Furthermore, there are certain holonomic constraints
g(p,t) € R™ depending only on position and time. The constraint forces —Z” (p)GT (p, t)A
are determined by the constraint matrix G(p,t) € R™ "™ given by the Jacobian
G(p,t) = g—i(p,t).
The equations of motion (1) form a nonlinear system of differential-algebraic equations. One
of the most important quantities for differential-algebraic equations is the differentiation index
(d-index).
The differentiation index of a system of nonlinear differential-algebraic equations

0 = F(x,x,1) (3)

has been introduced by Gear (1988) in [14]. A definition is given in [7] as follows, see also [5].



Definition 1 Suppose that (3) is a solvable differential-algebraic equation on an open set €.
Let the derivative array Fi(z,%,x,t) be defined by (see [6])

F(x,x,t)
~ SF(%,x,1)

Fl(za 59 X, t) =

L
SF (%, 1)

where
z =[x k]

If x is considered locally as an algebraic variable y, and that'y is uniquely determined by X,
t, and Fi(z,y,x,t) = 0 for all consistent values. If vq is the smallest integer I such that this
holds true, then we call vgq the differentiation index of the differential-algebraic equation.

Proposition 2 The equations of motion (1) form a nonlinear system of differential-algebraic
equations with differentiation index 3 if they satisfy the condition:

G(p,t)Z(p) M1 (p)ZT (p)GT (p,t) € R™™ is nonsingular for all p,t which satisfy (1c). (4)

Proof in [2], for example.
In this paper we only consider multibody systems that satisfy (4) and thus have differen-
tiation index 3. Condition (4). implies in particular that

rank(G(p,t)) = nx for all p,¢ which satisfy (1c). (5)

Since the position variables p are restricted by n holonomic, nonredundant constraints, the
degree of freedom of the multibody system is

nf =np— N (6)

Furthermore, from (5) it follows ny < np. If ny = np, then the degree of freedom is zero and
therefore, the motion of the multibody system is completely determined by the constraints

g(p,t) =0.

Differential-algebraic equations with a d-index higher than 1 are called higher index prob-
lems. Difficulties arising in the numerical solution of higher index problems are discussed in
[5], [14], [16], [19], [29]. Furthermore, it was demonstrated in [16] that a differential-algebraic
equation in the form (3) is solvable in general, only if the d-index is at most one. An index
reduction by differentiation seems to be a way out, but then drift-off phenomenon may occur,
see [5],[19]. Another important problem is the possible order reduction in the numerical inte-
gration of DAEs of higher index, for example, by using implicit Runge-Kutta-Methods. This
phenomenon is considered in [17]. Possibilities to regularize DAEs, especially the equations
of motion of multibody systems, are discussed in [4, 9, 15, 20]

Below, we will present an algorithm that regularizes the equations of motion by reducing the
index of the equations of motion (1). This algorithm is performed in such a way that the
solution manifold is preserved.



The paper is organized as follows. First, we describe the solution manifold for special
choices of constraints in Section 3. In Section 4 we briefly consider index reduction for lin-
ear equations of motion. Afterwards, we discuss index reduction for nonlinear equations of
motion in Section 5. In Section 6 we illustrate the results of the previous sections with a
small-dimensional example.

2 Notations

Below, we will frequently use total time derivatives of some of the equations of motion, e.g.,
of the constraint equations

0= G8((0).1) = 5 a(p. ) TR0) + Sap.0)

To avoid the large effort in deriving higher derivatives and to keep the paper readable we will
use a notation for the partial derivatives introduced in the following definition.
Definition 3 Let A : (R™0! x ... x R™l) — R™", Then the komma operator defined by
aL
1 K 1 K s
A,Zil...ziL (Z yeeey L ) = mA(Z yeens Zi ) with 1k S {17 ,K} fO'I" all k’ = 1, ...,L,

denotes the partial derivatives of A(z?, ...,z%) with respect to z', ..., 7'

By using this notation the first time derivative of the constraint equations takes the form

0=g(p,t) =gp(P,1)P(t) +g+(p,1).

Furthermore, the second time derivative of g(p(t),t) would require the time derivative

i (sp(.1)p) = (ft (20(p,1))B(1) + &p(P. B(1).

The term % (g7p(p, t)) leads to a product of a tensor of third order g pp(p,t), and a vector

(tensor of first order) p

élit (gp(p, )> gpp(P:t)P(t) + 8 pt(P, 1)

which again has to be multiplied by p(¢). For more clearness and readability we introduce
a notation which describes the tensor multiplication of one tensor higher ?rder and several
vectors arising from higher time derivatives of vector valued functions like %g(p(t), t),l e N.

Definition 4 Let A(z!,...,z%) : (R™! x ... x R™&:1) — R™". Then, with respect to partial
derivatives of A(z',...,z), the operator - ® (-) is defined by

Z Z oL Azj 75.,ZK)$7{1 o fo

ri=1 rp=1 z

A7Zi1.“ziL(Z1,...,ZK) o (xh,. [
i=1,....m, j=1,....n

with i, € {1,...,K} for allk =1,...,L. Here z/ = [z{, ...,z,];bj]T and x,,z% € R™ 1. Further-
more, A i it (z',...,25) o (x!,...,xI) e R™",

By using this notation the second time derivative of the constraint equations takes the form

0=§(p,t) = gpp(P; 1) © (B(1), P(t)) + &.pt (P, 1)P(t) + & p (P, 1)B(D)-



3 Solution submanifold and deviation

Differential-algebraic equations of d-index higher than one contain hidden constraints. These
are algebraic constraints which do not appear explicitly in the original form of the system.
By differentiating the differential-algebraic equations ! times with respect to time ¢ and by
applying algebraic transformations one can determine the hidden constraints of level .

Let us consider the equations of motion (1). Here, the explicit constraints are the so-called
constraints on position level (1c). Since we have assumed that

Jg

%(pv t) = G(p> t)

has full row rank nj, the constraints on position level are n nonredundant restrictions.

Therefore, the position variables p are restricted to the (np + np)-dimensional time varying
position manifold

Mp(t) := {(p,v,A) : 0=g(p,t)} C R"PTPH™ (7)

by the position constraints
0=g(p,1). (8)
Differentiating the constraint equations (1c¢) with respect to time and substituting p by Z(p)v

using (la), we get the hidden constraints on level one, the so-called constraints on velocity
level

0 = g(pvt)
= gpPt)p +g:(p,t)
= G(p,t)p +g.:(p;t) 9)
= G(p,t)Z(p)v +g4(p,t) = g’ (p,V.1). (10)
Since
og!

W(p’v’w =[x, G(p,t)Z(p)]

has full row rank ny, the constraints on velocity level are n nonredundant restrictions which
(particularly) restrict the velocity v on an additional (np + np)-dimensional time varying
velocity manifold

My(t) :={(p,v,A) : 0=g'(p,v,1)} C R™F e

by the wvelocity constraints

0= gI(p,V,t). (11)



Furthermore, if we differentiate the constraint equations (1c) twice, replace p again by Z(p)v,
and replace v by (1b), we get the so-called constraints on acceleration level

0 = gp,t)

= ((GZ)p®(P)+(GZ)s)v+GZV +gpp+ 81
= ((GZ)p ®(Zv)+ (GZ) 1) v+ GZV + g1pZv + g u

= GZv+g"(p.v,1) (12)
= ((GZ)p®(Zv) +(GZ))v+GZM '(f - Z"GT'N) + g 1pZv + g1

= S(GZv+GIM (- 2T GTN + S (p) (13)
= gl(p,v,\1). (14)

Here and in the following, we will often omit the dependencies, (e.g., of G) on p, v, A, and ¢
unless we want to focus on some of them.

Now g’ (p, v, A, t) represents the hidden constraints on second level which allow the compu-
tation of the Lagrange-multiplier by given positions p and velocities v at a certain time ¢.
Since

I
M;T/\T]T(p,v,x,t) =[x, ¥, GZM 'ZTG"]
has full row rank ny, the constraints on acceleration level are n nonredundant restrictions
and, again, represent an additional (np 4+ np)-dimensional time varying acceleration manifold

Ma(@t) :={(p,v,\) : 0=gl(p,v,\ 1)} Cc RreFmetnr,
by satisfying the acceleration constraints

0= gﬂ(pava)‘at)' (15)

In summary, the solution (p, v, ) has to satisfy the constraints on position level, on velocity
level as well as the constraints on acceleration level, i.e.,

(p(1). ¥(1). A1) € M(1)

where the solution manifold M(t) is the intersection of all manifolds
M(t) = Mp(t) Ma(t) (16)
g(p.1t)
(p,v,A) = 0= | g/(p,v,1)
” (P.v. A1)
Since
T G 0 0
olg" )" )] | T ay 0
o™ vT AT «  « GIM'ZTGT

has full row rank 3ny, all constraints together are 3n nonredundant restrictions. Therefore,
the solution manifold has the dimension (np +np +nx) — 3nx = 2ny.



The classical approach (see, e.g., [11]) for modelling and simulating multibody systems
is using minimal coordinates q. In this approach a minimal number of coordinates is used
to describe the motion of the multibody system. Possible kinematic constraints resulting for
example from joints which restrict the motion are eliminated. Therefore, in the equations of
motion modeled in minimal coordinates, no constraints and no constraint forces appear. The
equations of motion arise in the state space form

M(q)a = f(q,q,1). (17)

This is an ordinary differential equation (ODE) of second order that can be reduced to a
first order ODE. Then it can be treated in the usual way given by the theory and numerical
methods for ODEs.

The determination of the state space form plays a key role in the classical approach. In [§]
it is described how to determine and to compute the state space form for linear or linearized
equations of motion. Furthermore, the determination and computation of the state space
form of general equations of motion are considered in [13] and [32]. Here, it becomes clear,
that for general nonlinear mechanical systems, especially those with closed loops, the state
space form can only be established locally, and that the complete process of reduction to state
space form is quite laborious and therefore time consuming.

Therefore, in modern approaches (see e.g. [8], [10], [33], [34], [35]) multibody systems are
modeled by using constraints and nonminimal coordinates. The equations of motion then
appear in descriptor form (2).

In the following, we consider the different formulations of the equations of motion and
analyse when the conditions (8),(11), and (15) are satidfied, which describe the solution
manifold (16). These different formulations of the equations of motion are the underlying
ordinary differential equation (uODE), the equations of motion using acceleration constraints
(15) (EoM; ), the equations of motion using velocity constraints (11) (EoM2), and the original
equations of motion using position constraints (8) (EoM).

3.1 Underlying ordinary differential equation
Differentiating of the constraints (1c) three times yields

d3
0 = @g(pi)

d VA
- = At
8 (P, Vv, A, t)

d
- = (((GZ),p © (Zv) + (GZ),)v + GZM ' (f — Z'GTA) + g ipZv + g,tt)

d
= 3 (((G.Z),p ® (Zv) + (GZ) ) v + GZM ™ 'f + g, Zv + g,tt)

—% (GZM—lzTGT)A — GZM'ZTGTA
= glp,v,\t)—GZM'ZTGTA (18)
= gm(p7V?A7A7t)?



by using (1a) and (1b). Replacing the constraints (1c) in the equations of motion (1) by their
third derivatives yields the underlying ordinary differential equation (WODE)

p = Zv, (19a)
v = M (f-2Z"G")), (19Db)
A = (GzM'z"GT)"'gl. (19¢)

By setting v(t) = g(p(t),t) (compare with [12]), the last equation of the uODE corresponds
to the ODE

d3
@’Y(t) =0

which has the solution

1(E) = 7(t0) + 3 (to)t + 33(0)2

with 'Y(tO) = g(pO) tO)v
'Y(tO) = gl(p()) Vo, t0)7
'Y(tO) = gﬂ(p()) Vo, AO) tO)

Since 7(t) represents the residual of the position constraints, the solution behavior when using
the underlying ODE is described in the following proposition.

Proposition 5 The uODE (19) has a solution for every set of initial values pg, vo, and Ag.
If the initial values po, Vo, and Ao are consistent with the EoM (1), i.e., if

g(p(]at()) = 07
g’ (po,vo,to) = 0,
g’ (po,vo, Ao, to) = 0,
then it follows that
v(t) = gp(t),t) = 0Vt
A(t) = gl(p(t),v(t),t) = 0Vt
() = gl(p(t),v(t),A(t),t) = 0Vt

The analytic solution satisfies all constraints and, consequently, it lies in the solution mani-

fold.
If the initial values po, Vo, or Ay are not consistent with the EoM (1), then it follows that

v(to) # 0, ¥(to) # 0, ¥(to) #0

and thus
Y(t) = ~(to) + (o)t + 35(to)t* = g(p(t),t) £ 0,
A(t) = Alto) +F(to)t = gl(p(t),v(t),1) £ 0,
) = Al(to) = gl(p(t),v(t),A(t),t) # 0



In this case the analytic solution does not satisfy the constraints and consequently, it does not
lie in the solution manifold. In particular, the solution is deviating from the position manifold
Mp(t), such that the residual of the constraints on position level has quadratic behavior in
time t. Likewise, the solution is deviating from the velocity manifold M (t) with a residual
of constraints on velocity level behaving linearly in time t. The residual of the acceleration
constraints is constant.

Remark 6 Aside from numerical aspects of the solution of ODEs, no problems arise from
initial values or computed solutions at intermediate steps.
3.2 Equations of motion using acceleration constraints

If one substitutes constraints on position level (1c) in the equations of motion (1) by the
constraints on acceleration level (14), then one gets the equations of motion in the form

p = Z(p)v, (20a)
M(p)v = f(p,v,t)—Z"(p)G" (p, 1), (20b)
0 = g”(p,v,)\,t) (20c)

which have d-index 1. We will use also the abbreviation EoM; for (20). By setting ~(t) =
g(p(t),t), we obtain from (20c) with (14) the ODE

5(t) = 0.

The solution of this ODE is given by

v(t) = ~(to) + (to)t

with  v(to) = g(po, to),
A(to) = gl(po,Voato)-

Since v(t) still represents the residual of the position constraints, we get the solution behavior
for the d-index 1 equations of motion using acceleration constraints as follows.

Proposition 7 If the initial values Ao are not consistent, then the d-index 1 equations of
motion (20) has no solution.
Furthermore, if the initial values po and vo are consistent with the EoM (1), i.e., if

g(po.to) = 0,
g’ (po,vo,t0) = 0,

then it follows that

v(t) = gPp()
y(t) = gl(p(t

The acceleration constraints (14)

g’ (p(t), v(t), A(t), 1) 0Vt



are enforced by using these constraints explicitly in (20). If the initial values are consistent,
then the analytic solution satisfies all constraints (using (20)) and, consequently, lies in the
solution manifold.

If the initial values Ao are consistent and po or vo are not consistent with the EoM (1), then

v(to) # 0, ¥(to) #0
and thus

v(t) = ~(to) +(to)t
(@) = (to) = g (p(

The acceleration constraints (20c), i.e.,
g’ (p(t),v(t),A(t),t) = 0V,

are enforced by using these constraints explicitly in (20). Provided with inconsistent initial
values po, vo, the analytic solution deviates from the position manifold My (t) with a lin-
ear behavior with respect to the residuals and lies with a constant residual near the velocity
manifold My (t). The solution itself lies in the acceleration manifold Ma(t).

I
o)
N
§e)
—~
.
~~

Remark 8 Since the d-index 1 formulation (20) of the EoM has no solution if the initial
values A are not consistent, one would expect numerical problems. Actually, if these initial
values are inconsistent then no solution exits but it is easy to compute consistent initial
values Ag by solving the constraints (20c). Furthermore, in all subsequent integration steps
the solutions p;, v;, and A; at time t; satisfies the constraints (20c). Consequently, the
intermediate solution A; is consistent in each intermediate step. The consistency of p; and
v; is not important for numerical aspects. Therefore, neglecting numerical aspects of the
solution of ODEs, no problems arise from initial values or computed solutions at intermediate
steps.

3.3 Equations of motion using velocity constraints

If we use the constraints on velocity level (10) instead of the constraints on position level (1c)
in the equations of motion (1) then we get the form

P = Z(p)v, (21a)
M(p)v = f(p,v,t)—Z"(p)G" (p, 1), (21b)
0 = gl(p,V,t) (210)

which has d-index 2. We will use also the abbreviation EoMs for (21). Again, by setting
~(t) = g(p(t),t) it follows from (21c) with (10) that

Y(t) = 0.
The solution of this ODE is given by
7(t) = (o) = g(Po, to)-

The following proposition reflects the solution behavior for the d-index 2 equations of motion
using velocity constraints.



Proposition 9 If the initial values vo or Ao are inconsistent then the EoMy (21) has no
solution.
If the initial values po are consistent with the EoM (1), i.e., if

g(p()vt()) = 07
then it follows that

The velocity constraints (21c)
g'(p(t),v(t),t) = 0V,
and also their first time derivative, i.e., the acceleration constraints (14)
glp(t),v(t),A(t),t) = 0Vt

are enforced by using the velocity constraints explicitly in (21). With consistent initial values,
the analytic solution satisfies all constraints even in the form (21) and, consequently, it lies
in the solution manifold.

If the initial values v and Ao are consistent and py are not consistent with the EoM (1),
then it follows that

v(to) # 0
and thus

V() = () = glp()t) # 0.
The velocity constraints (21c)
g'(p(t),v(t),t) = 0Vt
and also their first time derivative, i.e., the acceleration constraints (14)
g’ (p(t), v(t), A(t),t) = 0Vt

are enforced by using the velocity constraints explicitly in (21). By using inconsistent initial
values po the analytic solution lies near the position manifold Mp(t) with a constant residual,
but the solution lies in the velocity manifold My (t) and in the acceleration manifold Ma(t).

Remark 10 Since the d-index 2 formulation (21) of the EoM has no solution if the initial
values vg and Ag are not consistent, one would expect numerical problems. Actually, if these
initial values are inconsistent then no solution exits. But it is only possible to compute initial
values vo by solving the constraints (21c). Furthermore, if one provides consistent initial
values, after every numerical integration step the consistency of the solution components v;
is guaranteed by the explicit appearance of the constraints on velocity level (21c). But, in
general, the solution components A; are not consistent because of rounding errors. If one uses
a method which is not L-stable (see [19]), like the implicit trapezoidal rule or the implicit
midpoint rule, one can observe oscillations in the Lagrange-multipliers A;. See Figure 3.
Therefore, in addition to the numerical aspects of the solution of ODEs, it is not possible to
guarantee a convergent behavior for Lagrange-multipliers in general. The consistency of p; is
not important for the numerical solvability.

10



3.4 Original equations of motion (using position constraints)

Consider the original equations of motion (1). Since the position constraints are satisfied by
their explicit appearance in the original EoM, also their first and second time derivative, i.e.,
the constraints on velocity level and the constraints on acceleration level are satisfied.

0 = g(p(t),t) Vvt
=0 gp(t),t) = g'(p(t),v(t),1) vt
=0 gp(t),t) = glp),v(t),At),t) Vi

Proposition 11 If the initial values pg, vo, and Ao are consistent, then the analytic solution
lies within the solution manifold.
If the initial values po, vo, or Ao are inconsistent, then the original equations of motion (1)
with d-index 3 have no solution.

Remark 12 Since the original EoM (1) have no solution if the initial values po, vo, and Ag
are not consistent, numerical problems are to be expected. Actually, if these initial values are
inconsistent, then no solution can be found but it is only possible to compute initial values
po by solving the constraints (1c). Therefore, if one provides consistent initial values after
each numerical integration step, the consistency of solution components p; is enforced by the
explicit appearance of the constraints on position level (1c). On the other hand, the solution
components v; and A; are not consistent in general because of rounding errors. If one use
methods which are not L-stable (see [19]), like the implicit trapezoidal rule or the implicit
midpoint rule, one can observe oscillations in the velocity v; and in the Lagrange-multipliers
A, see Figure 4. Therefore, in addition to the numerical aspects of the solution of ODEs,
it is not possible to guarantee a convergent behavior for the velocity components and the
Lagrange-multipliers in general.

Table 1 summarizes all results obtained above. Here, it becomes clear that none of the
formulations above is ideally suited as a base of numerical integrations. Either the analytical
solution deviates from the solution manifold with quadratic behavior but without possible
numerical oscillations by using uODE, or by using the original EoM the solution does not
deviate from the solution manifold but the numerical integration may yields numerical oscil-
lations with respect to A and v or a trade-off something between oscillations and deviation
by using EoM; or EoMs.

Different ways out of this dilemma are regularization techniques. For example the approach
of Baumgarte [4] manipulates the constraint equations and introduces a control term to the
equations of motion which controls or steers a perturbed nonconsistent solution back to the
solution manifold M. The dimension of the obtained system is preserved. The index of the
Baumgarte-stabilized equations of motion is reduced to d-index 1 but the manifold defined
there has a larger dimension as the original solution manifold M and contains the solution
manifold M. The main drawback is that the choice of the introduced control term to make
the system robust has been unclear in practice, see [3].

An other important approach is the Gear-Gupta-Leimkuhler-formulation [15] which add the
constraints on velocity level (11) to the equations of motion and introduce new Lagrange-
multipliers whose purpose is to insure that the constraints on velocity level are satisfied. The
dimension of the system is increased by ny. The advantage of the Gear-Gupta-Leimkuhler-
formulation is the reduced index from d-index 3 to d-index 2 and that the manifold defined

11
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UOIJOUW JO SUOIJRNDO JO SULIO] JUSISHIP JO JIOTARYQ(Q [ROLIOWINU PUR UOIPRIAD(] :T O[qRL,

used form uODE (19) EoM; (20) EoM, (21) original EoM (1)
last equations in 0=gl(p,v,\, A, 1) 0=gl(p,v,\ 1) 0=g/(p,v,t) 0=g(p,t)
used form
d-index 0 1 2 3

Deviation caused
by inconsistent
initial values

deviate from ...

M, - quadratic in time
M, - linear in time
Mg - constant in time

deviate from ...
M, - linear in time
M, - constant in time

deviate from ...
My, - constant in time

no deviation

Existence of always Ao Vo, Ao Po; Vo, Ao
solution must be consistent must be consistent must be consistent
Numerical no oscillations no oscillations oscillations w.r.t. A oscillations w.r.t. A, v
behavior

Dimension of
solution manifold

ng+ng+nx+nx+nx

ng+ng+nx+ny

ng+nfg+mnx

ng+mny




there is identical to the solution manifold M, and in addition to the constraints on position
level the constraints on velocity level occur explicitely. The disadvantages are the higher
index, i.e., larger than 1, and the hidden constraints on acceleration level.

A third approch was introduced by Fiihrer [12],[13] and just adds the constraints on velocity
level (11) and the constraints on acceleration level (15) and yields an overdetermined system
with 2n) equations which are redundant to the others. The d-index is not defined for overde-
termined systems and the manifold defined there is identical to the solution manifold M and
all necessary information is contained in the system in an explicit way.

The index of a differential-algebraic system and the way how all information of the solution
manifold is given have an essential influence on the quality and the success of numerical in-
tegration. Here, a small index, i.e., if possible d-index 0 or d-index 1 (see [16]), is preferred.
Furthermore, there should be no hidden constraints, i.e., all information of the solution man-
ifold should be given in an explicit way inside the system which has to be integrated.

Since a d-index 0 formulation would be an ODE of dimension 2n , it corresponds to the state
space form (17), which we will not focus on in this paper. We follow the ideas introduced in
[22] and [23]. There, the differential-algebraic system is transformed such that the regularized
system is of d-index 1 and contains all information of the solution manifold in an explicit way.
In [22] and [23] the described strategy is developed for general differential-algebraic equations
without a certain structure and of arbitrary index. But the equations of motion of multibody
systems have a certain structure (see (1)) and a fixed d-index 3 (see Proposition 2).

The exploitation of this special knowledge about the equations of motion makes it possible to
adapt the strategy introduced in [22] and [23] such that the regularization of the equations
of motion becomes more efficient. This approach will be considered in the following sections.

4 Index Reduction for Linear Equations of Motion

Usually, multibody systems are described by nonlinear equations of motion as in (1). But in
some cases or under special assumptions, e.g., linear behavior of springs and dampers, the
equations of motion may appear in linear form

p = Z(t)V, (22&)
M(t)v = Ct)p+D(t)v—Z(t)TGT(t)A, (22b)
0 = G()p. (22¢)

In other cases the motion of the bodies may be assumed to be very small such that the
linearized equations of motion (22) reflect a similar but sufficiently accurate behavior of the
multibody system as it would be described by the nonlinear equations of motion (1). For the
linearization itself we refer to [8] or [2]. For the sake of simplicity we will omit the dependen-
cies on t.

Since the linear equations of motion also have d-index 3, we have a higher index prob-
lem and it is clear that the standard formulation (22) is not well suited for the numerical
integration. An equivalent formulation of d-index 1 or 0 which explicitly contains all infor-
mation about the solution manifold would be ideal for the numerical integration since all
constraints including the hidden constraints can be numerically satisfied. Such a form of a
differential-algebraic equation is called strangeness-free [22]. Here, ”equivalent” means that
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both formulations have the same solution set.

In [22] Kunkel and Mehrmann presented an algorithm that reduces the index of general
time varying linear differential-algebraic equations of the form

E(b)x(t) = A(t)x(t) + £(t) (23)

of arbitrary index with E(¢), A(t) € R™", x(t),f(t) € R" sufficiently smooth. This algorithm
is based on the linear derivative array

&(t)z(t) = A(t)z(t) + Fi(t) (24)

for a particular [, where

@) = (5) B = (1) Aiga®), ij=0,..1,

R Al(t) for i = 07 7l7 J = 07 .
ey = {0 0 =0
(F(t)i = fO), i=0,...1,
(z(t); = xD(1), i=0,..,1.

We use the convention that (;) =0fori<0, j<0orj>i.

The derivative array of a linear differential-algebraic equation (23) was originally introduced
by Campbell [6] and contains all time derivatives of the linear differential-algebraic equation
(23) up to order .

The algorithm starts with the linear derivative array (24), where | = v4— 1 (see Definition
1), and creates two essential projectors, namely Pq(t) € R"®™ which extracts the differential
part of ng differential equations from (23) and Py(t) € R™™(+1) which extracts the algebraic
part of n, (hidden) algebraic equations from (24). Finally, the equivalent strangeness-free
differential-algebraic equation has the form

PT(1)A(1)
I,
PIOE®) ], o | | [PTOE
[ 0 ](“‘ PT(HAW) | | (tH[Pg(t)f(t)]'
L 0 .

This algorithm is implemented in the code GELDA, see [25], which is applicable for the nu-
merical integration of general time varying linear differential-algebraic equations of arbitrary
index. Furthermore, it is also the basic idea of the code GENDA, see [26], for the numerical
integration of general nonlinear differential-algebraic equations with arbitrary index. In prin-
ciple, this ideas also allow the consideration of over- and underdetermined systems, too, see
[24].

Its generality provides no exploitation of structures which are possibly known for many prob-
lems.
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In [2] it is shown how to create the equivalent strangeness-free formulation for linear
equations of motion exploiting their special structure. There the matrices S, € R"/"p and
Sy € R"#™ are used which we will use in the following algorithm as well. These matrices
select a certain linear combination of the kinematic and dynamic equations of motion. There-
fore, we will call the matrices Sy, and Sy as selectors or, more precisely, kinematic selector
and dynamic selector, respectively.

Algorithm 13 (Solution manifold conserving strangeness deletion of linear EoM)

The linear equations of motion are given in form (22). The index reduction is done by
choosing two selectors S, and S in the following way.

1. Determination of the kinematic selector S,

(a) Determine G~ € R™™f such that the columns of G~ span ker(G).

(b) Determine the kinematic selector S, € R™/™ such that S, G~ is nonsingular.
2. Determination of the dynamic selector S,

(a) Determine G, € R™ "/ such that the columns of G, span ker(GZ).

(b) Determine the dynamic selector S, € R"/"P such that S, MG, is nonsingular.
Both selectors Sy and Sy depend on time ¢, i.e., S, = Sp(t) and Sy = Sy (t).

3. Strangeness-free form of the equations of motion
By appending the constraints on velocity level (10) and the constraints on acceleration
level (14) in the linearized form, the strangeness-free form of the equations of motion is

Spp = SpZv, (25a)
SyMv = S,Cp+SyDv—S,ZTGT), (25b)
0 = Gp, (25¢)

0 = GZv+Gp, (25d)

0 = (c"; + GZM—lc)p + (2c';z +GZ+ GZM—lD)v (25¢)

— (GZM—lzTGT) A.

Remark 14 1) The algebraic equations (25d) and (25e) correspond to the first and second
time derivative of the constraints on position level (25c). Therefore, roughly speaking, one
can say that the index reduction algorithm is performed by appending the first and second
time derivative of the constraints contained in the original EoM and removing some of the
kinematic equations of motion (22a) and some of the dynamic equations of motion (22b) in
an appropriate way, i.e., by determining and applying the selectors S, and S, as described
in (25).

2) Since the matrix GZM'ZTGT is assumed to be nonsingular by (4), the Lagrange-
multipliers A are completely determined by the last equation (25e) and by the position and
velocity variables. Therefore, there is no freedom in the choice of the Lagrange-multipliers.
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5 Index Reduction for Nonlinear Equations of Motion

In this section we will consider the regularization of the nonlinear equations of motion (1)
via index reduction. As shown in Section 3, it is important to preserve and to determine
all information about the solution manifold, i.e., in the regularized form, in addition to the
current explicit given constraints (1c), all hidden constraints (11) and (15) should occur in
an explicit way.

Before we are able to investigate the process of index reduction, we need some technical
preparations. An ,important task is the possibility to determine a smooth frame of the
tangent space of the position manifold. This is provided by Theorem 2 in [31] which we will
recall in Lemma 16 and adapt to our situation in Lemma 18.

Definition 15 Let F € C"(S,R™), let S open in R™, and let n > m. A point xg € S is called
regular if the first derivative F ,(zo) of F(x) with respect to x evaluated at the point xo has
Sfull rank m.

Lemma 16 Let F' € C"(S,R™), let S open in R™, and let p = n —m > 0. Furthermore, let
Ny be an open subset of the manifold N defined by

N={zeS : F(z) =0, x regular}.

For any © € Ny, let U(x) be an orthonormal basis matriz of the tangent space TN =
ker(F ,(x)). Then it is possible to compute an orthogonal matriz Q = Q(x) (e.g. by using
Algorithm 3.3 in [31]) such that the map x — U(x)Q(x) € L(RP™), x € Ny is of class C"*
on Ny and defines an orthonormal moving frame on Nj.

Proof: See [31]. O

Definition 17 Let F : S1 X So — R™, S1 open in R™, Sg open in R™ and ni > m, then
F € C™2(Sy) x So,R™) if F(-,y) € C"'(S1,R™) w.r.t. the first component and F(z,-) €
C"2(Sq,R™) w.r.t. the second component.

Lemma 18 Let F' € C"™"2(Sy x S9,R™), r1,r9 € Ng. Furthermore, let No(y) C Ny be an
open subset of the y-dependent manifold N (y) defined by

Ny)={x €S, : F(x,y) =0, x reqular} C N.

For any x € Ny(y), let U(x,y) be an orthonormal basis matriz of the tangent space T, N (y) :=
ker(F ,(x,y)). Then it is possible to compute an orthogonal matriz Q = Q(z,y) (e.g. by using
Algorithm 8.3 in [31]) such that the map x — U(z,y)Q(x,y) € L(RP™), x € Ny(y) is of class
Cr=br2 on Ny and defines an orthonormal moving frame on Nj.

Proof: The proof is analogous the proof of Lemma 16 in [31] generalized to parameterized
manifolds. O

Lemma 19 Let B € C""2(S; x Sg,R™"), 1,72 € Ng, m > n and rank(B(x,y)) = n for all
(x,y) € S1xSy. Then there exists V€ C"™"2(S1 X Sg, R™™) such that for every (x,y) € S1 xSy

V(z,y)B(x,y) is nonsingular for every (x,y) € S X Ss. (26)
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Proof: Setting V(z,y) = BT (x,y) € C""2(S; x Sy, R™™) we obtain that V(z,y)B(z,y) =
BT (z,y)B(x,y) is nonsingular for every (z,y) since B(z,y) has full rank for every (x,y) €
Sl X SQ. O

In the following let N be a manifold in R", then N := {z € R" : Jy € N with ||z —y| <
€}

Lemma 20 For allt € 1 C R let every p € My (t) be regular, i.e., G(p,t) has full rank, and
let the constraints (1c) be continously differentiable with respect to p and continuous in t.
Then g € Cl’o(/\/l; x I,R™) and furthermore, there exists a nonsingular possibly orthogonal
G~ € CPO(MS x I R™ "™~} such that the columns of G~ (p,t) define an orthonormal
moving frame on Mg, continuous in p andt, i.e.,

G(p, )G~ (p,1) = 0 for every (p,1) € M5 X [to, L), (27)
Proof: The proof follows directly from Lemma 18. g

Lemma 21 Let G~ € CO’O(ME, x [, R™"~"X) have full column rank for every (p,t) €
Mg, x 1. Then a map Sp € CO’O(M; x I, R™"™"="x) can be chosen such that

Sp(p,t)G™ (p,t) is nonsingular for every (p,t) € My x L.

Proof: The proof follows directly from Lemma 19. 0

Lemma 22 For allt € I C R let every p € My(t) be regular, i.e., G(p,t) has full rank,
let the constraints (1c) be continously differentiable with respect to p and continuous in time
t, and let Z(p) be nonsingular and continuous with respect to p. Then there exists G, €
CO’O(M; x I, R™™~") - such that the columns of G, (p,t) span the kernel of G(p,t)Z(p),
i.e.,

G(p,t)Z(p)G4(p,t) = 0 for every (p,t) € M; X [to, tn]. (28)

Proof: Lemma 20 provides the existence of G~ & CO’O(M; x I,R™"p~"x) such that
equation (27) holds. From this we obtain

G(p,t)Z(p)Z~ ' (p)G ™ (p,t) = O for every (p,t) € M, X [to, ]
and we get G (p,t) = Z'(p)G~ (p,t) € COO (Mg, x I, R"P"p="r), 0

Lemma 23 Let Gz € C™O(MS x LR™ "™ ~"\) have full column rank for every (p,t) €
M5, X 1. Furthermore, let M(p) be nonsingular and continuous with respect to p. Then a
map Sy € COO(ME x I, R"»"P~"%) can be chosen such that

Sv(p,t)M(p)Gz(p,t) is nonsingular for every (p,t) € M, x 1.

Proof: Since MG, € C%° (M5 x I, R™"p="x) and has full rank, the result follows directly
from Lemma 19. U

In preparation for the index reduction of the nonlinear equations of motion (1) we need
in addition the following two lemmas. Here we use ny = ny — na.
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Lemma 24 For allt € T C R let every p € Mg(t) be regular and let the columns of
G~ (p,t) € R™" span ker(G(p,t)) with G(p,t) € R™ "™ . Furthermore, let the kinematic
selector Sp(p,t) € R™ ™ be chosen such that Sp(p,t)G~(p,t) is nonsingular. Then

Sp(p,t)} : :
s nonsingular.
[ G(p.t) g

Proof: For every (p,t) € Mj, X I the columns of G™(p, ) span ker(G(p,t)). Furthermore,
let G~ (p,t) be such that the columns of G™(p,t) span coker(G(p,t)).

} is nonsingular

~~

G
< (e s [3 0

_ | SpG7(p,t) SpGT(p,t) | . .
= [ 0 GG~(p,1) is nonsingular
o Sp(p,t)G~ (p,t) € R™™f is nonsingular and
G(p,t)G~(p,t) € R™ " is nonsingular

Sp(p, )G~ (p,t) € R™™ was assumed to be nonsingular. G(p,t)G(p,t)~ € R"™ "™ is
nonsingular, since

rank(G(p,t)G™(p, 1)) = rank([0 G(p,#)G™(p,1)]) = rank(G(p,?) [G™ (p,t) G™(p,1)])

non singular

= rank(G(p,t)) = nx.

Lemma 25 For allt € T C R let every p € /\/l;(t) be regular and let the columns of
G, (p,t) € R™"f span ker(G(p,t)Z(p)) with G(p,t) € R™ " and Z(p) € R" ", and sup-

pose that the dynamic selector Sy (p,t) € R™/" is chosen such that Sy (p,t)M(p)G,(p,t) is
nonsingular. Then

s nonsingular.
G(p.t)Z(p, 1) 9

18



Proof: For every (p,t) € Mj, x I the columns of G (p,t) span ker(G(p,t)Z(p,t)). Fur-
thermore, let G7(p,t) be such that the columns of G7, ( t) span coker(G(p,t)Z(p,1)).

Sv(p,t)M(p,t) 1 . .
[ G(p,t)Z(p,1) ] is nonsingular.
So D OMB) | e o
- [ G(;t)z(pr,)t) ] [ GZ(p,t) GZ(p.t) |

non singular
Sv(p, t)M(p, )G Sv(p,t)M(p, t)G7(p,t) ]
G(p.1)Z(p,t)Gy (p,t) G(p,t)Z(p, t)G7(p,1)
Sv(pvt)M(pat)GZ (p7t) Sv(pvt)M(pat)GZ(p7t)
0 G(p,t)Z(p, t)GZ(p,1)
- { Sv(p,t)M(p,t)G,(p,t) € R"/"™ is nonsingular and
G(p,t)Z(p,t)G7 (p,t) € R™"*is nonsingular.

} is nonsingular

Sv(p.t)M(p,t)G4(p,t) € R™™ was assumed to be nonsingular. G(p,t)Z(p,t)G7(p,t) €
R™ " is nonsingular since
rank(G(p,t)Z(p,t)Gz(p,t)) = rank([0 G(p,t)Z(p,t)GZ(p,t)])
= rank(G(p,t) [Z(p,1)][GZ (P, t) GZ(p,1)])

non singular

= rank(G(p,t))

= nx.

O
Now we have presented all the tools to perform the solution manifold preserving index
reduction of the nonlinear equations of motion as shown in the following theorem.

Theorem 26 For allt € I C R let every p € M,(t) be regular and let the constraints (1c) be
continously differentiable with respect to p and continuous in t, i.e., g € Cl’o(/\/l; x [, R™).
Furthermore, let Z(p) and M(p) be nonsingular and continuous with respect to p, i.e., Z,M €
CO(/\/l6 R me). Then there exists a kinematic selector Sp € C% 0(/\/16 x 1 R”P’"P_”’\) and a
dynamic selector Sy € COO(./\/l6 x I, R™"="X) such that the dzﬁerentzal algebraic system

Sp(p,t)p = Sp(p,t)Z(p)v, (29a)
Sv(P.t)M(p)v = Su(p.t)f(p,v,t) — Sv(p,)Z" (p)G” (P, 1), (29b)
0 = g(p,t), (29¢)

0 = glip,v,1), (29d)

0 = gﬂ(p,v,)\,t) (29¢)

has the same solution set as the equations of motion (1) and is of differentiation index one,
i.e., strangeness-free.

Proof: In the following, we will omit the dependencies on p, v, A, and ¢. The existence of
the kinematic selector Sy, € CO’O(M; x I, R™:"p~"x) is proved in Lemma 21 and the existence
of the dynamic selector S, € C%° (M; x I, R™"p~"x) ig proved in Lemma 23. The rest of the
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proof is partitioned into two parts. In the first part we will show that the solution set of (29)
is identical to the solution set of (1). In the second part the index of the system (29) will be
examined.

a) It is obvious that a solution of (1) is also a solution of (29). The other direction will be
discussed in the following.

With the trivial equation SpZv = SpZv and (29d) in form of (10) we get

SpZv - SpZv
GZv o —8t
which is equivalent to
-1
S SpZv
Zv = P P . 30
] 1% &
On the other hand, it follows from (29a) and the from time derivative of (29¢) in form (9)
that
[Spp} B [Sva}
Gp —8
which is equivalent to
-1
) Sp SpZv }
= . 31
p - | o] |3 (31)

Therefore, from (30) and (31) we get the kinematic equations of motion (1a)

p = Zv.
Furthermore, with the trivial equation Sy (f — ZTGTA) = Sy (f — ZTGT ) and (29¢) in form
of (13) we get

Sy(f —ZTGTX) ] _ [ So(f —ZTGT ) ]
GZM~l(f —ZTGT\) ~4(GZ)v — Lg!

which is equivalent to

(32)

M-1(f - Z7GTA) = [SVMT[ Sy(f — ZTGT ) }

GZ - 4(GZ)v — L8’

On the other hand, it follows from (29b) and from the time derivative of (29d) in form (12)
that

[vav} _ [ Sy(f —ZTGTX) ]
GZv -4(Gz)v - Lg!

which is equivalent to

. S\M 7' [ Sy (f—ZTGT))
V7 | gz —d(GZ)v—dg! |-
#(GZ)v — 58
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Therefore, from (32) and (33) we get the dynamic equations of motion (1b)
Mv = f-Z"G"A

In addition, the constraint equations (29c) are identical with the constraint equations (1c).
Hence, a solution of (29) is also a solution of (1).

b) It remains to show that the system (29) has differentiation index one. Let us compute
the underlying ODE of (29). Replacing the equations (29¢), (29d), and (29e) by their first
time derivatives using (9), (12), and (18),

d )
ag(p7t) = G(pvt)p+g,t(p7t)a
d ..
Egl(p7v7t) = GZV—Fg”(p,V,t),
& @V AD = g'(p,v, A1) - GZM'ZTGTA,
we obtain
Spp = SpZv,
SyMv = S.f—-S,Z"GTx,
Gp = _g,tv
GZV = _gﬂ(p7v7t)a

GZM'ZTGTA = gl(p,v, A t).

From Lemmas 24 and 25 we obtain that

Sp SyM :
[ G ] and [ G7 ] are nonsingular.

Furthermore, it is assumed that condition (4) holds. Therefore, we get the underlying ODE

o 3]
G —8¢
o _ [ SyM ]‘1 [ Sof — SyZTGTA }
GZ —gl(p,v,t) ’
A = [GzZM'Z7GT] ' g% (p,v, A1)

after only one differentiation of the constraint equations (29c), (29d), and (29e). Hence, the
system (29) has differentiation index one. O

Algorithm 27 (Solution manifold conserving strangeness deletion of EoM)

The equations of motion are given in form (1) and it is assumed that for all ¢ € I C R every
P € M(t) is regular, i.e., G(p,t) has full rank, and g € Cl’o(/\/l; x I, R™). Furthermore,
let M(p) and Z(p) are nonsingular for all (p,t) € MS x I, and let M € C°(Mg, R™") and
Z € CO(Mg, R"pP).

Then the regularization by index reduction is done by choosing a kinematic selector Sy, €
COOME x I, R™""p~"2) and a dynamic selector Sy € C%0 (M x I, R"P"»~"1) in the following
way.
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1. Determination of a kinematic selector S

(a) Determine G~ (p,t) € R""f such that the columns of G~ (p, ) span ker(G(p,t))
for every (p,t) € Mj, x L.

(b) Determine a kinematic selector Sp(p,t) € R™ " such that Sp(p,t)G~(p,t) is
nonsingular for every (p,t) € Mg, x L.

2. Determination of a dynamic selector S,

(a) Determine G (p,t) € R™"f such that the columns of G (p,t) span ker(G(p,t)Z(p, t))
for every (p,t) € Mg x L.

(b) Determine a dynamic selector Sy (p,t) € R"/"" such that Sy (p,t)M(p,t)G,(p,?)
is nonsingular for every (p,t) € M x L.

3. Strangeness-free form of the equations of motion (sfEoM)
By appending the constraints on velocity level (10) and the constraints on acceleration
level (14), the strangeness-free form of the equations of motion is (29).

With this algorithm we are able to determine an equivalent strangeness-free form of the
equations of motion (29) which contains all information of the solution manifold (16). The
strangeness-free form created in this way is analytically equivalent to the original equations
of motion in the sense that both have the same solution set. Furthermore, this form is
suitable for numerical integration using stiff ODE solvers like implicit Runge-Kutta-Methods
or BDF-Methods.

6 Examples

In this section we want to consider a small-dimensional example consisting of just one body
of mass 1 in two dimensional space is moving on the unit circle. The equations of motion are
defined as

LA I ] (34a)
L P2 | L V2
~—— ~——
P v
1 [ 01 ] [ —p1 — 2p1vivg } [ 2p1 ]
. = — A, 34b
[ 1 } | V2 | | v+ 2p1p3 2p2 L,l_l (34b)
—_—— —— - ~—
M v f(p,v) GT(p)
0 = [pi+p3—-1], (34c)
~——
g(p)
or in matrix form
p = v,
Mv = f(p,v) -G’ (p)A,
0 = gp),



with initial values
vaz[éyxwza (35)

The solution is given by

sin(t)

o) = | S | v =b = | 20| v =pr= | Zom0 |,

A(t) = [sin(t) - cos(t)].

(36)

In Section 3 we have worked out the behavior of the analytic solution depending on the
consistency of the initial values, in particular, the deviation from the solution manifold,
and we discussed numerical aspects. Furthermore, in Section 5 we presented Algorithm 27
to determine an equivalent strangeness-free form of the EoM preserving the information of
the solution manifold. In the following we will support the obtained results by numerical
experiments based on the different formulations of the EoM: the uODE (19), EoM; (20),
EoM;y (21), EoM (1) and finally the sfEoM (29).

The numerical integration of the different forms is done by using the implicit trapezoidal rule
for the differential equations and solving the algebraic equations at discretization point i + 1.
We use the implicite trapezoidal rule since it is not L-stable. Therefore, one can observe
oscillations because of the higher index of certain forms of the equations of motion.

To obtain the numerical solutions p, v, and X, the considered time interval ¢ € [0,5] is
discretized in 1000 equidistant steps of length h = 5/1000. To compute the next iterates
Dit1, Vir1, and Ajp1, the discretized forms of the equations of motion are solved using the
Newton-Method with a tolerance 10~ with respect to the residual of the discretized equations
of motion. We start the integrations with nonconsistent initial values

_ 0.0001 1 _ 0.999 ] «
which yields initial residuals
v(to) = g(Po,to) = 0.00020002,
Y(to) = &' (Po,Vo,to) = 0.0022,
F(to) = g"(Po, Vo, Ao to) = —0.0013956.

In the following figures, the numerical results using the nonconsistent initial values (37) are
compared to the analytical solution (36) using the consistent initial values (35).

Underlying ordinary differential equation:
First we consider the uODE (d-index 0) of the form (19). The discretization using the
implicit trapezoidal rule yields

_ _ h, _ _
0 = DPit1—Di— §(V7L+1 + Vi),
_ _ h _ _
0 = M(Vit1 — Vi) — 5((fz’+1 — G/ A1) + (f — GIAY)),
~ o - L - L
0 = Aif1—Ai— 5((G2~+1M 'l el + (MGl gl
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Figure 1: Solution behavior using uODE (d-index 0)

where

£; =£(Pj, vj, Aj ),

Since the uODE is an ODE, no numerical problems are expected but deviation. In fact,
in the last column of Figure 1, the computed (dark line) residual g of the constraints on po-
sition level reflects the predicted (bright line) deviation g(t¢) from the position manifold with
a quadratic behavior. Furthermore, also the predicted linear deviation of the residual g’ (t)
is seen in the numerical solution g/. Finally the residual of the constraint on acceleration
g” level is (almost) constant as predicted. As anticipated, one cannot detect any oscillating

behavior.

Gj = G(p;,t;),

m _ sl BN
i — 8

(D), Vi, Aji tj)-

d-index 1 equations of motion using acceleration constraints:

The second considered form is EoM; (20). Here the constraints on acceleration level (14)
are used instead of the constraints on position level (1c).
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Discretization of (20) using the
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0 2 4 't
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gl (t) = 4(to)
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100 ‘ 2( ) ‘ 2 \
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1
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0
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o x107
10 1
107 0.5 gl
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10 B —osle’ (1) =0
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10 -1
0 2 4 0 2 4 t "o 2 4 t
Figure 2: Solution behavior using EoM; (d-index 1)
implicit trapezoidal rule yields
_ _ h,_ _
0 = Piy1 —Di— §(Vi+1 + Vi),
. - h T X Ty
0 = M(Vit1 — Vi) — 5((fi+1 — G i) + (Fi— Gj N)), (38)
' ~ _
0 = g " (Pit1, Vit1, Ait1,tit1),
where
f; =£(pj, vj, ), t5), G, = G(pj, ;).

Here again, we start the numerical integration by using the nonconsistent initial values
(37). The results are depicted in Figure 2. The considerations in Section 3 show that we
cannot expect a solution, since the consistency of the Lagrange-multiplier is necessary. But
with respect to consistency the Lagrange-multiplier A; plays no role in the i-th integration
step (38). Therefore, the approximated Lagrange-multiplier A;y; is consistent, independent
of the consistency of the previous Lagrange-multiplier A;. This fact results in a jump from
g (Po, Vo, Ao, to) = —0.0013956 to gZ(py,¥1,A1,¢1) = 0 which is not visible in Figure 2.
Since all iterates of the Lagrange-multiplier are consistent, in the following steps no oscilla-
tions occurs.
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But again, we can recognize the predicted deviation g(t) from the position manifold M
with a linear behavior of the residual of the constraint on position level reflected by g and
also the constant residual g/ with respect to the velocity manifold. The constraints on ac-
celeration level are exactly satisfied with respect to the precision used by the Newton-Method.

d-index 2 equations of motion using velocity constraints:

Num. & Anal. Solution Absolute Error x 10~ Constraints
1 0
10 _
— 4
05 Ip1(t) — Pl .
3 g
0
2
-0.5 /
1
-1
0
0 2 4 1
x10"
1
of ()~ 05 g
10 2\ 2 ~
- 0
-0.5
-5
10 [v1(t) — 01
-2 -1
0 2 4 1 0 2 4 t 0 2 4 't
5
=T
0.5 1076 [A1(t) — A1
oy ) _ -‘ 0
)\1 10 0.7
-0.5
10—0.8 .
0 2 4 1 0 2 4 t 7o 2 4 1

Figure 3: Solution behavior using EoMs (d-index 2)

The next considered form is obtained from (1) by replacing the constraints on position
level (1c) by the constraints on velocity level (10). The corresponding discretized form using
the implicit trapezoidal rule is

0 = DPit1—Pi— g(vi+1 + Vi),
0 = M(Vip1 — Vi) — g((fi—i-l — G{ A1) + (f— GI X)),
0 = g (Pis1, Vis1,tit1),
where
f; = £(Dj, Vi, Aj, 1), G; = G(pj,tj).
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Again, we use the nonconsistent initial values (37) for the numerical integration. Since

the constraints on velocity level appear explicitly, the approximated solutions for the veloc-
ities v1 and all following v;, ¢ > 1, are consistent after the first step. But the constraints
on acceleration level are only contained as hidden constraints. Therefore, they cannot be
satisfied after one integration step. We have to expect numerical problems with respect to
the Lagrange-multiplier as can be observed in Figure 3.
On the other hand, we can observe the deviation behavior of the solution. The constraints on
velocity level are enforced because they appear explicitly in the current form of the equations
of motion. The constraints on acceleration level are not satisfied, because of the oscillating
behavior of the Lagrange-multiplier. The predicted behavior of the residual of the constraints
on position level g(t) is reflected by the numerical solution g.

d-index 3 original equations of motion using position constraints:

Num. & Anal. Solution Absolute Error L x 10 ' Constraints
lp1(t) — p1
T~ 0.5
-05 g
. o 2 4t

10°} A1 () = Al

0
10
2 4 t o0 2 4 t o 2 4

Figure 4: Solution behavior using the original EoM (d-index 3)

The original equations of motion (1) discretized via implicit trapezoidal rule yield

h
0 = Dit1—Pi— 5(‘7i+1 + Vi),
h _ _
0 = M(Vit1 — Vi) — 5((fi+1 — Gl Air1) + (i — GT ),
0 = g(Pit1,tit1),
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where

£; =£(pj,vj, Aji t5), Gj = G(pj,1)-

The use of the nonconsistent initial values (37) leads to an extremely oscillating behavior

which appears mainly in the Lagrange-multiplier and which is (also) not negligible in the
numerical solution of the velocities as is visible in Figure 4.
Because of the oscillating behavior of the numerical solution of the velocities and the Lagrange-
multipliers, the satisfaction of the constraints on velocity level and on acceleration level is
violated. On the other hand the constraints on position level are satisfied because of their
explicit appearance in the equations of motion. Aside from the numerical oscillations, no
deviation can be observed.

The considered forms of the equations of motion up to now do not show an acceptable
behavior. We get more or less pronounced deviation up to quadratic behavior and we get
more or less extreme oscillations. Sections 4 and 5 offered a possibility to transform the EoM
into an equivalent strangeness-free form of the equations of motion as demonstrated in the
following.

Strangeness-free form of equations of motion (d-index 1): The procedure to trans-
form the EoM of d-index 3 into the equivalent strangeness-free form is given in Algorithm 27
for nonlinear systems and in Algorithm 13 for the linear case. Both are in principle the same.
Following Algorithm 27 we first have to determine the matrix G~ (p) such that its columns
span the kernel of the constraint matrix

Gp)=[2n 2p2 .
E.g., we get
c =] .

Afterwards, the kinematic selector Sp(p) has to be determined such that Sp(p)G~(p) is
nonsingular. We can choose the kinematic selector in the following way.

[1 0], ifpa#0
Sp(p) = (39)
[0 1], ifp1 #0

In general, one can choose Sy(p) to be
Sp(p)=[a 6], if (Bp1 —apz) #0. (40)

Since for all & and /3 there exist p1 and py such that p; and ps satisfy the constraint p?+p3 = L?
(34c) but violate the condition (8p1 — apz) # 0 in (40), the choice of the kinematic selector
Sp(p) is not independent of the state p.

Since in our example the transformation matrix Z(p) is the identity and the mass matrix
is a nonsingular diagonal matrix, the kinematic selector Sy (p) can be chosen in the same way
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as the dynamic Sy (p).

[1 0], ifpa#0
Sv(p) = (41)
[0 1], ifpi #0

The strangeness-free form of the equations of motion is given by (29). In particular, by
choosing the strategy typified by (39) and (41) we get

(] = [v]

SN—— S——"
(1 0]p (1 Ov
[1 0][1)1} = [ —p1—2p1viva | = [ 2p1 ] [ M1 ]
~—— | V2 —— N —
(1 oM Hv’_’ (1 0]f(p,v) (1 0JGT(p) A
0 = [pi+p3—1] (42)
|
g(p)
0 = [ 2p1v1+2povs |
g’ (p,v)
0 = [ 207+ 2pi(—p1 — 2p1v1v2 — 2p1 A1) + 203 + 2pa(—v1 + 2p1p3 — 2pa)1) |
gl (p,v,2)
if po #£ 0, or
[p2] = [v2]
N—— S——
[0 1]p [0 1]v
(0 1] = [-u+wm]- [2m] (]
~—— | V2  —— N —
oM T [0 11£(p,v) 0 UGT(PR) A
0 — [per-1] (43)
N—_———
g(p)
0 = [ 2p1v1 + 2pavs |
gl(p,v)
0 = [ 2’[)% + 2p1(—p1 — 2p1v1ve — 2p1)\1) + 2U% + 2p2(—’U1 + 2p1p% — 2p2)\1) ]
gl(p,v,2)
if P1 75 0.

The discretization of the strangeness-free form of the equations of motion (29) using the
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Figure 5: Solution behavior using the strangeness-free form (d-index 0)

implicit trapezoidal rule yields

1 . o B hoo o
0 = 5(8;“ +85)(Pi+1 — Pi) — §(S§+1Vz‘+1 +S,vi),
1 . ) B B oo ) _ ) o
0 = 5(53/+1 +8Sy)M(Vit1 — ;) — 5((S@+1fi+1 — S G M) + (SLE — SLGT X)),
0 = g(Pir1,tit1), (44)
0 = g'(Pit1, Vi1, tiv1),
0 = g"(Pit1, Vis1, Nig1,tit1)

where

f; = £(p;, v;, Aj, ), Gj = G(Pj.t;), S, =Sp(ps), S, =Sv(pj).
Using the selectors

Sp(p) =Sv(p) =[10] if p; <1/2 (corresponding to (42)),

Sp(p) =Sv(p) =[01] if p1 > 1/2 (corresponding to (43)),

we get the numerical results depicted in Figure 5.
Since all information about the whole solution manifold is contained explicitly in the strangeness-
free form of the equations of motion, the formulation does not contain any hidden constraints
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and the solution has no deviation from the solution manifold. Because of this, the noncon-
sistent initial values are corrected to consistency and we do not get any numerical problems.
Figure 5 exactly shows this behavior - no deviation and no oscillations.

7 Summary

In this paper we have studied the solution behavior of different forms of the equations of
motion by using nonconsistent initial values. We have illustrated the arising deviation as well
as the arising numerical instabilities depending on the choice of the form of the equations of
motion. Alltogether, the properties of the different formulations of EoM cover the range from
quadratic deviation in time and no possible oscillations by using the underlying ODE with
d-index 0 to no deviation and extreme oscillations by using the originally equations of motion
with d-index 3.

Furthermore, a possibility to avoid these disadvantages by transforming the equations of mo-
tion into an equivalent strangeness-free form is presented. We have constructed an algorithm
to determine an equivalent strangeness-free form of the equations of motion which is suitable
for numerical integration using stiff ODE solvers like implicit Runge-Kutta-Methods or BDF-
Methods.

The index reduction algorithm is based on the determination of two selectors by mainly an-
alyzing the constraint matrix and also the transformation matrix and the mass matrix. The
strangeness-free form created in this way is analytically equivalent to the original equations
of motion in the sense that both have the same solution set.
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