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Abstract

A phase-field system of coupled Allen–Cahn type PDEs describing grain growth is an-

alyzed and simulated. In the periodic setting, we prove the existence and uniqueness of

global weak solutions to the problem. Then we investigate the long-time behavior of the

solutions within the theory of infinite-dimensional dissipative dynamical systems. Namely,

the problem possesses a global attractor as well as an exponential attractor, which en-

tails that the global attractor has finite fractal dimension. Moreover, we show that each

trajectory converges to a single equilibrium. A time-adaptive numerical scheme based on

trigonometric interpolation is presented. It allows to track the approximated long-time

behavior accurately and leads to a convergence rate. The scheme exhibits a physically

aspired discrete free energy dissipation.

Key words: Grain growth, phase-field system, well-posedness, long-time behavior, numerical

simulation.

1 Introduction

There exist a vast amount of literature concerned with the modeling and simulation of grain

growth and investigations are being continued. Especially for the improvement of modern solar-

cells, one is interested in realistic models for different kinds of re-crystallization phenomena, as

it takes very long to improve costs and efficiency in terms of the usual trial and error approaches.

Because of the large quantity of publications we refrain from giving a detailed overview of the

methods here, instead we would like to refer to one of several existing review articles, by

Moelens et al. [23], and give only a short introduction on the topic. Sharp-interface models,

e.g. those treated by the group of Kinderlehrer [20], prescribe evolution laws to the interfaces
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between neighboring grains. As this leads to a rather complicated treatment of topological

transformations or the incorporation of contributions from the bulk, phase-field approaches

have become popular in recent years. Here, the interface is smoothed out, and the transition

happens on a characteristic, small length-scale. Topological changes, such as the vanishing

of a grain and the redistribution of the interface network, happen with no additional effort.

These kind of models can be divided into two groups, those that consider an order parameter

as indicator for the crystallization in a material and an orientation indicator, which attains

for each grain a different value (see e.g. [26]), and those that assign a phase-field variable to

each of the grain orientations (see e.g. [5, 18]) - both have their pros and cons. In this work

we shall concentrate on the isotropic phase-field model from Chen and Yang [5] formulated

in terms of the latter approach. We shall perform a complete analysis on the PDE system

(well-posedness, long-time behavior) and provide a time-adaptive Fourier collocation scheme

to simulate the isotropic grain growth model. We remark that the model [5] has been extended

throughout the years, i.e. to anisotropic interfacial energies [18] or recently by incorporating

elasticity [3]. Our work lays a fundament for the analysis of those extended models, which we

plan to continue in the near future.

We assume that there are ng ∈ N grain orientations. As motivated by Chen and Yang

[5] the evolution of corresponding grain boundaries is described by the time-dependent vector

u = (ui)i=1,...,ng of order parameters. Each order-parameter field ui represents grains of a given

crystallographic orientation. As also introduced in the originating paper, the corresponding

potential energy reads

W (u) =
ω

4

ng∑
i=1

(u2
i − 1)2 +

λ

2

ng∑
i=1

∑
j>i

u2
iu

2
j . (1.1)

Here, ω and λ are phenomenological (positive) parameters. They are usually assumed to fulfill

λ > ω such that the minima of (1.1) are located at the Cartesian basis vectors ±ej ∈ Rng .
Like in the Cahn–Hilliard equation, the transition between the grains are smoothed out by

introducing suitable gradient terms in the energy functional W . Then the total energy for the

isotropic grain growth system reads

E(u) =

∫
Ω

( ng∑
i=1

νi
2
|∇ui|2 +W (u)

)
dx, (1.2)

where νi > 0 are (constant) gradient coefficients. The kinetics of a quenched system and the

relaxation of the ng order-parameter fields are described by Ginzburg–Landau type equations

(here we ignore possible noise terms, see [5]):

∂tui = −Mi
δE
δui

, i = 1, . . . , ng . (1.3)

Here Mi > 0 are constant mobilities for the grain orientations. Without loss of generality, we

simply set Mi = 1 in the remaining part of the paper, as different constant mobilities only
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lead to some more algebraic work without further mathematical difficulties. Our results hold

analogously true with these mobility terms.

Figure 1: Simulation of grain growth in three dimensions. Nuclei are put randomly into the [0, L]3 periodic box.

These grow to form a network of grains that slowly coarsens. Both stages of evoltuion are described by model

(1.4).

Thus we arrive at the following PDE system that can be viewed as a gradient flow of the

energy E , namely,

∂tui − νi∆ui = ω(ui − u3
i )− λui

∑
j 6=i

u2
j , x ∈ Ω, t ≥ 0. (1.4)

Here, we impose periodic boundary conditions on the phase functions ui in the domain Ω =

Πn
i=1[0, Li] ∈ Rn (n ≤ 3) such that

ui(x, t) = ui(x+ Ljej , t), x ∈ Ω, t ≥ 0, i = 1, . . . , ng, j = 1, . . . , n. (1.5)

Besides, the system (1.4) is equipped with the following initial conditions

ui(x, 0) = u0
i (x), x ∈ Ω, i = 1, . . . , ng. (1.6)

The periodicity assumption (1.5) is reasonable for larger bulk materials, in view of the fact that

the evolving patterns repeat statistically on the, in total, much larger material piece. In this

setting we are able to carry out numerical simulations with a pseudospectral method similar to

that in Chen and Shen [6]. As visualized in Figure 1, the periodic boundary conditions lead to

a realistic growth of the grain network. We see how nuclei grow to real grains that eventually

fill the whole rectangular domain. These coarsen on a much slower time-scale, which will be

discussed to some detail in the numerics Section 4. The isotropy of the surface energy density

and the mobility leads to circular growth of the structures, until neighboring crystalline regions
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touch. This is well visible in the magnifications of two neighboring grains in Figure 1. For

improvement of the runtimes one can implement a reassignment routine, e.g. as in [19].

The plan of the paper is as follows. In Section 2, we show the existence of weak solutions

to the system (1.4)–(1.5). Then we prove that these solutions are in fact uniquely defined

by the initial condition and that the evolution depends continuously on the data. In Section

3, we study the long-time behavior of the problem (1.4)–(1.6). We prove that it generates a

strongly continuous semigroup on a suitable phase-space and the associated dynamical system

possesses a global attractor and an exponential attractor. Besides, we show that each trajectory

converges to a single equilibrium with respect to the phase-space metric. The numerical scheme

is presented in the last Section 4. We show the existence of a discrete analogon of the free

energy and that it also dissipates in the Fourier collocation setting. Furthermore we show that

the derived analytical convergence rate corresponds well to the rate observed in simulations.

2 Global Weak Solutions

For the domain Ω = Πn
i=1[0, Li] (n ≤ 3) and arbitrary m ∈ N, we denote by Hm

p (Ω), m ∈ N, the

space of functions which are in Hm
loc(Rn) and periodic with the period defined by the extents

of Ω. Hm
p (Ω) is a Hilbert space for the scalar product (u, v)Hm =

∑
|κ|≤m

∫
ΩD

κu(x)Dκv(x)dx

(κ a multi-index) and its associated norm is given by ‖u‖Hm =
√

(u, u)Hm . For m = 0,

H0
p (Ω) = L2

p(Ω) and the inner product as well as the norm on L2
p(Ω) are simply denoted by

(·, ·) and ‖ · ‖, respectively. For two suitable Banach spaces V and H, we write for a vector

valued function u: u ∈ (V (0, T ;H))ng , if for each i ∈ {1, . . . , ng}, ui ∈ V (0, T ;H). In the

remaining part of the paper, we assume that ω > 0 and λ > 0.

First, we observe that the phase-field system (1.4)–(1.6) obeys a dissipative energy law,

which turns out to be important in the study of well-posedness and long-time behavior.

Lemma 1 Let u be a smooth solution to the problem (1.4)–(1.6). We have the following

dissipative energy law:

d

dt
E(u) = −

ng∑
i=1

‖(ui)t‖2 ≤ 0, ∀ t ≥ 0. (2.1)

Proof Due to the gradient structure of the system, for each i = 1, ..., ng, testing the equation

for ui in (1.3) by (ui)t, using integration by parts and adding the resultants together, we can

easily derive (2.1).

Now we state the existence of global weak solutions of problem (1.4)–(1.6).

Theorem 2 For any initial data u0 ∈ (H1
p (Ω))ng , the initial boundary value problem (1.4)–

(1.6) admits at least a global weak solution

u ∈ (C([0,+∞);H1
p (Ω)))ng ∩ (L2

loc(0,+∞;H2
p (Ω)))ng , ut ∈ (L2(0,+∞;L2

p(Ω)))ng , (2.2)
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such that for i = 1, . . . , ng and any ϕ ∈ H1
p (Ω)∫

Ω
(ui)tϕdx = ω

∫
Ω

(ui − u3
i )ϕdx− λ

∫
Ω

(ui
∑
j 6=i

u2
j )ϕdx

−νi
∫

Ω
∇ui · ∇ϕdx, for a.a. t ≥ 0, (2.3)

with ui(0) = ui0.

Based on the energy dissipation law (2.1), existence of weak solutions can be proved by using

the classical Galerkin approach (cf. e.g., [29, Chapter 3] for the scalar Allen–Cahn equation).

As the only subtlety lies is in treating the coupling nonlinearity properly, we omit the details

here.

Next, we show the continuous dependence result on the initial data, which also implies the

uniqueness of weak solutions to problem (1.4)–(1.6).

Theorem 3 Let u = (ui)i and v = (vi)i be two weak solutions to problem (1.4)–(1.6), with

initial conditions u0 = (u0
i )i and v0 = (v0

i )i, respectively. Then for t ≥ 0, it holds

ng∑
i=1

‖ui(t)− vi(t)‖2H1 +

∫ t+1

t

ng∑
i=1

νi‖∆(ui − vi)(τ)‖2dτ

≤ C

ng∑
i=1

‖u0
i − v0

i ‖2H1e
Ct, (2.4)

where C is a constant depending on ‖u0‖H1, ‖v0‖H1, λ, ω, νi, Ω, but not on t. As a conse-

quence, the global weak solutions to problem (1.4)–(1.6) obtained in Theorem 2 are unique.

Proof Denote wi = ui − vi for i = 1, ..., ng. We subtract the equations for the two solutions

u, v such that

(wi)t = νi∆wi + ω(wi − u3
i + v3

i ) + λ
(
vi
∑
j 6=i

v2
j − ui

∑
j 6=i

u2
j

)
, i = 1, ..., ng. (2.5)

Testing each equation with wi −∆wi, we obtain that

1

2

d

dt
‖wi‖2H1 + νi(‖∇wi‖2 + ‖∆wi‖2) + ω

∫
Ω

(u3
i − v3

i )widx

= ω‖wi‖2H1 + ω

∫
Ω

(u3
i − v3

i )∆widx

+λ

∫
Ω

(
vi
∑
j 6=i

v2
j − ui

∑
j 6=i

u2
j

)
(wi −∆wi)dx. (2.6)

Since ω is a positive constant, it is easy to see that

ω

∫
Ω

(u3
i − v3

i )widx = ω

∫
Ω

(u2
i + uivi + v2

i )w
2
i dx ≥ 0.
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Next, using the fact (2.2), the Sobolev embedding theorem (n ≤ 3) such that H1
p (Ω) ↪→ L6

p(Ω)

and the Hölder inequality as well as Young inequality, we have

ω

∫
Ω

(u3
i − v3

i )∆widx ≤ ω‖(u2
i + uivi + v2

i )wi‖‖∆wi‖

≤ C(‖ui‖L6 + ‖vi‖L6)2‖wi‖L6‖∆wi‖
≤ ε‖∆wi‖2 + C1ε

−1‖wi‖2H1 . (2.7)

For the nonlinear coupling terms on the right-hand side of (2.6), we observe that for every

i = 1, ..., ng, it holds

vi
∑
j 6=i

v2
j − ui

∑
j 6=i

u2
j = −wi

∑
j 6=i

v2
j − ui

∑
j 6=i

wj(vj + uj).

Using the above equality, the solution’s regularity (2.2), the Sobolev embedding theorem

(n ≤ 3) such that H1
p (Ω) ↪→ L6

p(Ω) and the Young inequality, we calculate for the coupling

nonlinearity

λ

∫
Ω

(
vi
∑
j 6=i

v2
j − ui

∑
j 6=i

u2
j

)
(wi −∆wi)dx

= −λ
∫

Ω
w2
i

∑
j 6=i

v2
jdx− λ

∫
Ω
wiui

∑
j 6=i

wj(vj + uj)dx

+λ

∫
Ω
wi∆wi

∑
j 6=i

v2
jdx+ λ

∫
Ω
ui∆wi

∑
j 6=i

wj(vj + uj)dx

≤ C‖wi‖‖ui‖L6

∑
j 6=i
‖wj‖L6(‖vj‖L6 + ‖uj‖L6) + C‖∆wi‖‖wi‖L6

∑
j 6=i
‖v2
j ‖L3

+C‖ui‖L6‖∆wi‖
∑
j 6=i
‖wj‖L6(‖vj‖L6 + ‖uj‖L6)

≤ C(‖wi‖+ ‖∆wi‖)
ng∑
j=1

‖wj‖L6

≤ C2

ng∑
j=1

[
ε‖∆wj‖2 + (1 + ε−1)‖wj‖2H1

]
. (2.8)

Summing up (2.6) with respect to i and taking ε in (2.7) and (2.8) sufficiently small, such that

(C2ng + 1)ε ≤ 1
2 min1≤i≤ng{νi}, we arrive at

d

dt

ng∑
i=1

‖wi‖2H1 +

ng∑
i=1

νi‖∆wi‖2 ≤ 2
[
ω + C1ε

−1 + C2ng(1 + ε−1)
] ng∑
i=1

‖wi‖2H1 . (2.9)

Then our conclusion (2.4) follows from the Gronwall inequality used for (2.9). Moreover, the

continuous dependence result (2.4) yields the uniqueness of weak solution to problem (1.4)–

(1.6).
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Before ending this section, we provide a useful observation of the order parameters ui, i.e.,

the following weak maximum principle:

Proposition 4 Suppose that the assumptions in Theorem 2 are satisfied.

(1) Assume in addition that ν1 = ... = νng = ν. If |u0|Rng ≤ 1, then the weak solution to

problem (1.4)–(1.6) verifies |u(x, t)|Rng ≤ 1 a.a. in Ω× (0,+∞).

(2) If −1 ≤ u0
i ≤ 1 (i = 1, ..., ng), then the weak solution to problem (1.4)–(1.6) verifies

−1 ≤ ui(x, t) ≤ 1 a.a. in Ω× (0,+∞).

Proof For any scalar or vector function v(x), we denote v+ to be its positive part, i.e, v+ =

max{0, v(x)}. We now consider the following two cases:

(1) Let h(x, t) = (
∑ng

i=1 ui(x, t)
2− 1)+. Testing (1.4) by uih (i = 1, ..., ng) and summing up

with respect to i, we get

1

2

∫
Ω
h
d

dt

ng∑
i=1

u2
i dx

= −ν
ng∑
i=1

∫
Ω
∇ui · ∇(uih)dx+

ng∑
i=1

∫
Ω

(
ωu2

i (1− u2
i )− λu2

i

∑
j 6=i

u2
j

)
hdx.

We infer from the definition of h(x, t) and the assumption ν1 = ... = νng = ν that

−ν
ng∑
i=1

∫
Ω
∇ui · ∇(uih)dx

= −ν
2

ng∑
i=1

∫
Ω
∇(u2

i − 1) · ∇hdx− ν
ng∑
i=1

∫
Ω
|∇ui|2hdx

≤ −ν
2
‖∇h‖2 ≤ 0,

ng∑
i=1

∫
Ω

(
ωu2

i (1− u2
i )− λu2

i

∑
j 6=i

u2
j

)
hdx ≤ ω

ng∑
i=1

∫
Ω
u2
i (1− u2

i )hdx ≤ 0.

The above estimates yields that
d

dt
‖h‖2 ≤ 0.

Since ‖h(x, 0)‖2 = 0, we infer that ‖h(x, t)‖ = 0 for t ≥ 0, which yields the required result.

(2) Denote fi(u) = ωui(1−u2
i )−λui

∑
j 6=i u

2
j . First, from the expression of the nonlinearities

fi, we easily see that

fi(u) ≤ 0, if ui ≥ 1 and fi(u) ≥ 0, if ui ≤ −1, i = 1, ..., ng.

Then using the idea in [15, Chapter 4], we denote

g(t) =
1

2

ng∑
i=1

∫
Ω

(
|(ui(t)− 1)+|2 + |(−1− ui(t))+|2

)
dx.

7



A direction computation yields that

d

dt
g(t) =

ng∑
i=1

νi

∫
Ω

[(ui(t)− 1)+ − (−1− ui(t))+]∆uidx

+

ng∑
i=1

∫
Ω
fi(u)[(ui(t)− 1)+ − (−1− ui(t))+]

= −
ng∑
i=1

νi

∫
{ui>1}

|∇ui|2 −
ng∑
i=1

νi

∫
{ui<−1}

|∇ui|2dx

+

ng∑
i=1

∫
Ω
fi(u)[(ui(t)− 1)+ − (−1− ui(t))+]dx

≤ 0.

It follows from the assumption on the initial data that g(0) = 0. Then the above inequality

implies that g(t) = 0 for t ≥ 0, which yields the required result.

3 Long-time Behavior

In the previous section, we have proved the existence and uniqueness of global weak solutions to

problem (1.4)–(1.6). Our aim of this section is to investigate its long-time behavior. Therefore

denote the solution operator

S(t) : (H1
p (Ω))ng → (H1

p (Ω))ng , u0 7→ u(t), t ≥ 0.

We infer from Theorem 2 and Theorem 3 that problem (1.4)–(1.6) generates a (strongly con-

tinuous) semigroup S(t) on the phase space (H1
p (Ω))ng .

3.1 Global Attractor

First, we show that the semigroup S(t) possesses a global attractor.

Theorem 5 The semigroup S(t) defined by problem (1.4)–(1.6) possesses a connected global

attractor A in (H1
p (Ω))ng , which is bounded in (H2

p (Ω))ng .

For this purpose, the preliminary step is to prove the dissipativity of the semigroup, namely,

S(t) possesses an absorbing set in (H1
p (Ω))ng . For any R ≥ 0, m ∈ N, we denote by Bm(R)

the bounded ball in (Hm
p (Ω))ng centered at zero with radius R.

Lemma 6 There exists R1 ≥ 0 such that the ball B1(R1) is an absorbing set in (H1
p (Ω))ng .

That is, given any R ≥ 0, there exists a time t1 = t1(R) such that

S(t)B1(R) ⊂ B1(R1), ∀ t ≥ t1(R). (3.1)
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Proof Testing system (1.4) with ui, summing over all i (i = 1, ..., ng) and adding the resultant

with (2.1), we obtain that
d

dt
E1(t) +D1(t) =

ng
4
ω|Ω|, (3.2)

with

E1(t) = E(u) +
1

2

ng∑
i=1

‖ui‖2,

D1(t) =

ng∑
i=1

[
‖(ui)t‖2 +

∫
Ω
ω
(
u2
i −

1

2

)2
+ λu2

i

∑
j 6=i

u2
jdx+ νi‖∇ui‖2

]
.

By the Young inequality, we easily see that

c1

ng∑
i=1

‖ui‖2H1 ≤ E1 ≤ C(‖ui‖H1 , ω, λ, νi,Ω), (3.3)

where c1 is a constant depending on ω, λ, νi, Ω, but not on ui. Moreover, using the Young

inequality once more and (3.2), we can find a sufficiently small constant γ ∈ (0, 1] that may

depend on ω, λ, νi, Ω, but not on ui such that γE1 ≤ D1 + 1. As a result, we have

d

dt
E1(t) +

ng∑
i=1

‖(ui)t‖2 + γE1(t) ≤ C(ω, λ,Ω, ng), (3.4)

which easily yields

E1(t) +

ng∑
i=1

∫ t+1

t
‖(ui)t(τ)‖2dτ ≤ E1(0)e−γt +

C(ω, λ,Ω, ng)

γ
, ∀ t ≥ 0. (3.5)

The desired H1-absorbing property follows from the above estimate and (3.3).

Next, we show the existence of a compact absorbing set. The calculations performed in

hereafter is formal and can be easily justified by the Galerkin approximation.

Lemma 7 With assumptions and terminology as in Lemma 6, there is a positive constant R2

independent of the initial data and time and, for any R > 0, there exists t2 = t2(R) > 0 such

that for any u0 ∈ B1(R),

‖S(t)u0‖H2 ≤ R2, ∀ t ≥ t2. (3.6)

Proof Here and in what follows C stands for a positive constant that is independent of t and

of the initial data. This constant may vary from line to line. Besides, Q denotes a positive

nondecreasing monotone function that is independent of t.
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For the sake of simplicity, here we denote f(ui) = u3
i − ui, i = 1, ..., ng. Testing the system

(1.4) by −(∆ui)t, after integration by parts, we get

νi
2

d

dt
‖∆ui‖2 + ‖∇(ui)t‖2

= −ω
∫
f ′(ui)∇ui · ∇(ui)t dx− λ

∫
Ω
∇(ui

∑
j 6=i

u2
j ) · (∇ui)t dx

=: I1 + I2. (3.7)

The right-hand side of (3.7) can be estimated as follows

I1 + I2 ≤ ω‖f ′(ui)‖L3‖∇ui‖L6‖∇(ui)t‖+ λ‖∇(ui
∑
j 6=i

u2
j )‖‖(∇ui)t‖

≤ C‖∇(ui)t‖
( ng∑
j=1

‖uj‖2L6 + 1
) ng∑
j=1

(‖∆uj‖+ ‖∇uj‖)

≤ 1

2
‖∇(ui)t‖2 + C

( ng∑
j=1

‖uj‖4H1 + 1
) ng∑
j=1

(‖∆uj‖2 + ‖∇uj‖2). (3.8)

Define the energy E2(t) =
∑ng

i=1 νi‖∆ui‖2. We deduce from (3.7) and (3.8) that

d

dt
E2(t) +

ng∑
i=1

‖∇(ui)t‖2 ≤ g(t)E2(t) + h(t) ,

with

g(t) = 2ng

( ng∑
j=1

‖uj‖4H1 + 1
)

and

h(t) = 2ng

( ng∑
j=1

‖uj‖4H1 + 1
) ng∑
j=1

‖∇uj‖2.

Using the equation (1.4), the dissipative estimates (3.5) and (3.3), we infer that∫ t+1

t
‖∆ui(τ)‖2dτ

≤ ν−2
i

∫ t+1

t

(
‖(ui)t‖2 + ω‖f(ui)‖2 + λ‖ui

∑
j 6=i

u2
j‖2
)
dτ

≤ Cν−2
i

∫ t+1

t

(
‖(ui)t‖2 + ‖ui‖6L6 + ‖ui‖2 + ‖ui‖2L6

∑
j 6=i
‖uj‖4L6

)
dτ

≤ Q(R)e−γt + C, for i = 1, ..., ng, (3.9)
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as well as ∫ t+1

t
g(τ) + h(τ) dτ ≤ Q(R)e−γt + C. (3.10)

Take t̃2 = t̃2(R) ≥ t1(R) (t1(R) is the time as in Lemma 6) such that Q(R)e−γt̃2 ≤ 1. Then

using the so-called uniform Gronwall lemma (see, e.g., [25, Chap. III, Lemma 1.1]), we infer

from (3.9), (3.10) that

E2(t+ 1) ≤ C, ∀ t ≥ t̃2, (3.11)

sup
t≥t̃2

∫ t+1

t

ng∑
i=1

‖∇(ui)t‖2dτ ≤ C. (3.12)

The above estimates together with (3.3) and (3.5) yield the existence of constant R2 and

t2 = t̃2 + 1 such that (3.6) holds.

Proof of Theorem 5 On account of Lemma 7, we see that the dynamical system (S(t), (H1
p (Ω))ng)

has a compact absorbing set B2(R2) ⊂ (H2
p (Ω))ng . Hence, recalling that S(t) is a strongly con-

tinuous semigroup in (H1
p (Ω))ng , we conclude Theorem 5 from a well-known result for infinite

dimensional dynamical systems (cf. e.g., [25]).

3.2 Exponential Attractors

We will show that the fractal dimension of the global attractor A is in fact finite. This

property results from the existence of an exponential attractor which is a finer attracting set.

The terminology used below can be found in [25].

Theorem 8 The semigroup S(t) possesses an exponential attractor

M⊂ (H2
p (Ω))ng , namely,

(i) M is compact and semi-invariant with respect to S(t), i.e., S(t)M⊂M, for t ≥ 0.

(ii) The fractal dimension of M with respect to the H1 metric is finite.

(iii)M attracts exponentially fast any bounded ball B1(R) ⊂ (H1
p (Ω))ng , that is, there exist

a positive nondecreasing monotone function Q and a constant α > 0 such that

distH1(S(t)B1,M) ≤ Q(R)e−αt, ∀ t ≥ 0.

Here distH1 denotes the Hausdorff distance between sets in (H1
p (Ω))ng .

As a direct consequence of Theorem 8, we conclude that

Corollary 9 The global attractor A obtained in Theorem 5 has finite fractal dimension.

In order to prove Theorem 8, we first show certain smoothing property of weak solutions

to problem (1.4)–(1.6).
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Lemma 10 Suppose that B1(R1) is an absorbing ball of (H1
p (Ω))ng such that S(t)B1(R1) ⊂

B1(R1) for all t ≥ t2(R1), where t2(R1) > 0 is such that (3.6) holds. Let u = (ui)i and

v = (vi)i be two weak solutions to problem (1.4)–(1.6), with initial conditions u0 = (u0
i )i, v

0 =

(v0
i )i ∈ B1(R1). We have the following smoothing estimate

ng∑
i=1

‖ui(t)− vi(t)‖2H2 ≤ CeLt
ng∑
i=1

‖u0
i − v0

i ‖2H1 , ∀ t ≥ t2 + 1, (3.13)

where C and L are positive constants that only depend on R1, Ω and on the structural param-

eters ω, λ, νi.

Proof As in the proof of Theorem 3, we denote wi = ui − vi for i = 1, ..., ng and w = (wi) =

u − v. For i = 1, .., ng, differentiating (2.5) with respective to time and testing the resultant

by (wi)t, we obtain

1

2

d

dt
‖(wi)t‖2 + νi‖∇(wi)t‖2

= −ω
∫

Ω
[f(ui)− f(vi)]t(wi)tdx+ λ

∫
Ω

(
vi
∑
j 6=i

v2
j − ui

∑
j 6=i

u2
j

)
t
(wi)tdx

:= I4 + I5. (3.14)

For t ≥ t2, we can use the estimate (3.6). Applying the Sobolev embedding H2 ↪→ L∞ (n ≤ 3)

and the Hölder inequality, the right hand side of (3.14) can be estimated as follows

I4 + I5

≤ C‖f ′(ui)‖L∞‖(wi)t‖2 + C‖f ′(ui)− f ′(vi)‖L3‖(vi)t‖L6‖(wi)t‖

+C
∑
j 6=i

[
‖vi‖L6‖wj‖L6(‖vj‖L6 + ‖uj‖L6‖)‖(wi)t‖+ ‖uj‖2L∞‖(wi)t‖2

]
+C

∑
j 6=i

(‖vi‖L6‖wj‖L6 + ‖wi‖L6‖uj‖L6)‖(vj)t‖L6‖(wi)t‖

+C
∑
j 6=i
‖ui‖L∞‖uj‖L∞‖(wi)t‖

≤ C‖(wi)t‖2 + C‖(wi)t‖
ng∑
j=1

‖(vi)t‖L6

ng∑
j=1

‖wj‖L6

≤ C
(

1 +

ng∑
j=1

‖(vj)t‖H1

)(
‖(wi)t‖2 +

ng∑
j=1

‖wj‖2H1

)
.

Then summing (3.14) over i = 1, ..., ng, we obtain that

1

2

d

dt

ng∑
i=1

‖(wi)t‖2 +

ng∑
i=1

νi‖∇(wi)t‖2

12



≤ C
(

1 +

ng∑
i=1

‖(vi)t‖H1

)( ng∑
i=1

‖(wi)t‖2 +

ng∑
i=1

‖wi‖2H1

)
, ∀ t ≥ t2. (3.15)

On account of (3.12) and (2.1), we have

sup
t≥t2

∫ t+1

t

ng∑
j=1

‖(vj)t‖H1dτ ≤ sup
t≥t2

∫ t+1

t

(
ng +

ng∑
j=1

‖(vj)t‖2H1

)
dτ ≤ C(R1). (3.16)

On the other hand, we infer from the uniform estimate (3.6) that

‖wi − u3
i + v3

i ‖+ ‖
(
vi
∑
j 6=i

v2
j − ui

∑
j 6=i

u2
j

)
‖ ≤ C

ng∑
i=1

‖wi‖H1 .

Then it follows from the equation (2.5) and the standard elliptic regularity theory that

‖(wi)t‖ ≤ νi‖∆wi‖+ C

ng∑
i=1

‖wi‖H1 , ‖wi‖H2 ≤ C
(
‖(wi)t‖+

ng∑
i=1

‖wi‖H1

)
. (3.17)

Using the estimate (3.16) and the continuous dependence result (2.4), we deduce from (3.15)

and the uniform Gronwall inequality that for arbitrary but fixed t ≥ t2
ng∑
i=1

‖(wi)t(t+ 1)‖2

≤ C sup
s∈[t2,t]

∫ s+1

s

[ ng∑
i=1

‖(wi)t‖2 +
(

1 +

ng∑
j=1

‖(vj)t‖H1

) ng∑
i=1

‖wi‖2H1

]
dτ

≤ C sup
s∈[t2,t]

∫ s+1

s

ng∑
i=1

ν2
i ‖∆wi‖2dτ + C sup

s∈[t2,t+1]

ng∑
i=1

‖wi(s)‖2H1

≤ CeL(t+1)

ng∑
i=1

‖u0
i − v0

i ‖2H1 , (3.18)

Our conclusion (3.13) follows from (3.18) and the elliptic estimate (3.17).

Next, we state the Hölder continuity with respect to time of the trajectories defined by the

semigroup S(t).

Lemma 11 Let B1(R) be a bounded ball in (H1
p (Ω))ng . Then there is a positive nondecreasing

monotone function Q and t∗ = t∗(R) > 0 such that

‖S(t)u0 − S(t̄)u0‖H1 ≤ Q(R)|t− t̄|
1
2 , (3.19)

for any t > t̄ ∈ [t∗,+∞) and u0 ∈ B1(R).
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Proof It follows from (2.1) that
∑ng

i=1

∫ +∞
0 ‖(ui)t‖2dt ≤ E(0) ≤ C(R). On the other hand,

Lemma 7 yields that there exist t∗ = t∗(R) > 0 such that (3.6) holds. Using the above estimate,

standard interpolation inequalities, and the Hölder inequality, we have for t > t̄ ∈ [t∗,+∞)

‖ui(t)− ui(t̄)‖2H1

≤ C‖ui(t)− ui(t̄)‖‖ui(t)− ui(t̄)‖H2

≤ C(‖u‖H2)

∫ t

t̄
‖(ui)t‖dτ ≤ C|t− t̄|

1
2

(∫ t

t̄
‖(ui)t‖2dτ

) 1
2

≤ Q(R)|t− t̄|
1
2 ,

which easily yields (3.19).

In order to prove Theorem 8, we will employ a well-known result from Efendiev et al. [7]

that shows under which assumptions one expects an exponential attractor with finite fractal

dimension for discrete semigroups generated by the iterations of a proper map S. We state the

result and apply it for our needs in a second step for the semigroup S(t) with continuous time.

Lemma 12 (cf. [7]) Let H and H1 be two Banach spaces such that H1 is compactly embedded

into H. Suppose that B is a bounded closed subset of H. Let us give a map S : B → B such

that

‖Sb1 − Sb2‖H1 ≤ L‖b1 − b2‖H, ∀ b1, b2 ∈ B, (3.20)

where the constant L depends on B but is independent of b1 and b2. Then, the discrete semi-

group {S(n), n ∈ N} generated on B by the iterations of the map S possesses an exponential at-

tractor in H, that is, a compact set with finite fractal dimension such that SMd ⊂Md andMd

attracts exponentially the images of B under the iterations of the map S: distH(S(n)B,Md) ≤
CBe

−κn. The positive constants CB and κ are independent of n, with the former depending on

B.

Proof of Theorem 8 Set H = (H1
p (Ω))ng and H1 = (H2

p (Ω))ng . Using Lemma 7 and Lemma

10, we can find a bounded subset B ⊂ H and a sufficiently large time t̂ = t̂(B) > 0 such that,

the mapping S =: S(t̂) : B → B satisfies the smoothing property (3.13). It follows from

Lemma 12 that there exists a compact setMd ⊂ H of finite fractal dimension (with respect to

H1-metric) that satisfies SMd ⊂ Md and (3.20). Then we can conclude that the exponential

attractor M with continuous time is given by the standard expression M =
⋃
t∈[t̂,2t̂] S(t)Md

(cf. [8]). Finally, we infer from the continuity of S(t) (cf. (2.4) and (3.19)) that M satisfies

the properties (i)(ii)(iii) stated in Theorem 8.

3.3 Convergence to equilibrium

The dissipative energy law (2.1) (see Lemma 1) implies that E(u) is a (global) Lyapunov

functional for the semigroup S(t) defined by problem (1.4)–(1.6). As a consequence, the
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associated dynamical system (S(t), (H1
p (Ω))ng) is a gradient system. We notice that u∞ =

(u∞i ) ∈ (H1
p (Ω))ng belongs to the set of steady states S if and only if it is a solution to the

elliptic system subject to periodic boundary conditions

−νi∆u∞i + ω[(u∞i )3 − u∞i ] + λu∞i
∑
j 6=i

(u∞j )2 = 0, (3.21)

u∞i (x) = u∞i (x+ Lkek), x ∈ Ω, i = 1, . . . , ng, k = 1, . . . , n. (3.22)

It is not difficult to check that the stationary problem (3.21)–(3.22) possesses at least one

solution in (H1
p (Ω))ng by using the method of minimizing sequence for the associated energy

E . Moreover, by the standard elliptic regularity theory, the stationary solution u∞ is smooth.

Recall that Lemma 7 implies the relative compactness of any trajectory in (H1
p (Ω))ng . Then

we conclude from the well-known results in dynamical system (cf. e.g., [25, Lemma I.1.1]) that

Proposition 13 For any u0 ∈ (H1
p (Ω))ng , the ω-limit set ω(u0) ⊂ S is a nonempty compact

connected subset of (H1
p (Ω))ng . Furthermore, we have (i) ω(u0) is fully invariant for S(t); (ii)

E(u) is constant on ω(u0); (iii) as t→ +∞, it holds distH1(S(t)u0, ω(u0))→ 0.

We see that the global attractor A obtained in Theorem 5 coincides with the unstable

manifold of the set S of the stationary points (cf., e.g., [25, Chapter 7, Section 4]). In addition

to the equilibria, A also contains heteroclinic orbits connecting different equilibria. However,

the global attractor in general does not provide information on the asymptotic behavior of single

trajectories. In particular, the set S can be a continuum (cf., [13]) and the ω-limit set ω(u0)

may not consists of a single point. However, since the nonlinearities of problem (1.4)–(1.6)

are real analytic (polynomials), using the fact that the dynamical system (S(t), (H1
p (Ω))ng)

is a gradient system, we can apply the  Lojasiewicz–Simon technique (cf. [15, 16] and the

references therein) to show that each trajectory does converge to a unique stationary state.

This constitutes the main result of this section. The detailed proof is similar to the scalar

parabolic equations [14, 16, 29] (see also generalized result on parabolic systems in [15, Chapter

4, Section 3]) and thus is omitted here.

Theorem 14 For any initial data u0 ∈ (H1
p (Ω))ng , the unique global weak solution to problem

(1.4)–(1.6) converges to a single equilibrium u∞ in the topology of H1. Moreover, there exist

θ ∈ (0, 1/2) depending on u∞ and C ≥ 0 depending on u0, u∞ such that

‖u(t)− u∞‖H1 ≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ 0. (3.23)

Remark The convergence rate (3.23) follows from the argument in [14, 29] (for the L2-norm)

and energy estimates (for higher-order norms, like e.g., in [27]). It is worth noting that, by

using the smoothing property of the solutions to parabolic systems, the convergence result as

well as the convergence rate estimate (3.23) can be demonstrated with respect to higher-order

norms Hm (for t ≥ δ > 0).
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4 A time-adaptive Fourier collocation scheme

In the rest of the paper we show how the discussed system can be simulated numerically with

a global interpolation method. Besides, due to an adaptive time-stepping procedure we are

able to simulate its long-time behavior accurately.

4.1 Global interpolation and time-adaptivity

To implement a semi-implicit scheme for the simulation of the isotropic grain growth model

(1.4) that is capable to deal with the periodic boundary conditions (1.5), we decompose the

system into linear contributions Li and nonlinear parts Ni,

∂tui = Liui + Ni(u), i = 1, . . . , ng

with

Li = ω + νi∆ , Ni(u) = −ωu3
i − λui

∑
j 6=i

u2
j . (4.1)

Systems of this kind have been simulated frequently in a semi-implicit fashion, e.g. [1, 17, 22],

and here we explain how we exploit this structure. By treating the linear derivatives implicitly

and all nonlinearities in an explicit fashion we can get sufficient stability and accuracy with help

of an adaptive SBDF1/SBDF1-2step method. We apply a trigonometric interpolation method

(or Fourier collocation approach, see [4]). For simplicity we treat the two-dimensional case

here, i.e., n = 2, the extension to the three-dimensional case is straightforward, but requires

more notational inconvenience. The images shown in the introduction, Figure 1, have been

calculated by extending the following approach generically.

We consider the domain Ω = [0, L1] × [0, L2] and N1 × N2 equidistant grid points in x1

and x2 directions, respectively. Then we use the two-dimensional discrete Fourier transform

(DFT)

ûk =
1

N1N2

∑
j1

∑
j2

uje
−ik·xj = N−1

∑
j

uje
−ik·xj , (4.2)

where

j = (j1, j2), k = (k1, k2), xj =

(
2π

N1
j1,

2π

N2
j2

)
, jl ∈ {0, . . . , Nl − 1}

and N = N1N2 is the overall number of grid points. The inverse is

u(xj) =
∑
k1

∑
k2

ûke
ik·xj =

∑
k

ûke
ik·xj , (4.3)

Note that the weights can be defined differently, as long as the concatenation of both transforms

yields the identity. Replacing xj in (4.3) by a general two dimensional vector x ∈ [0, L1]×[0, L2],

the inverse discrete Fourier transform brings along the trigonometric interpolant

Inu(x) =
∑
k

ûke
ik·x, where n = (N1, N2). (4.4)
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Now if u is sufficiently smooth, the derivatives of Inui are spectrally accurate, as shown for

example in the book by Canuto et al. [4].

The wave-number pairs k have to be chosen in a suitable set of wave numbers K that has

to be ordered correspondingly to the implementation of the DFT/FFT we used. We work with

the set

K =
{

(k1, k2) : kj ∈ {0, 1, . . . ,
Nj

2
,−Nj

2
+ 1, . . . , . . . ,−1}2π

Lj
, j = 1, 2

}
.

The above interpolation operator In allows for a simple differentiation procedure that gives

spectrally accurate derivative approximations. In particular we can calculate the Laplacian as

∆Inu(x) =
∑
k

−|k|2(ûi)ke
ik·x, |k| =

√
k2

1 + k2
2 ,

which becomes, as one can see, a multiplication with squared wave-numbers in the transformed

space. We use the approximation Inui(x) instead of the function itself and for the nonlinear

contributions we interpolate the polynomial nonlinearities as follows

Liui ≈ ωInui(x) + νi∆Inui(x) =
∑
k

(ω − νi|k|2)(ûi)ke
ik·x

Ni(u) ≈ −ωIn[u3
i ]− λIn

[
ui
∑
j 6=i

u2
j

]
= −ω

∑
k

(η̂i)ke
ik·xj − λ

∑
k

(ξ̂i)ke
ik·x

=
∑
k

(
−ω(η̂i)k − λ(ξ̂i)k

)
eik·x .

Here we used the transforms for the nonlinear parts such that

η̂i = F(u3
i ) and ξ̂i = F

(
ui
∑
j 6=i

u2
j

)
.

Inserting these expressions into the grain growth system (1.4), we derive that∑
k

∂t(ûi)ke
ik·x =

∑
k

(
(ω − νi|k|2)(ûi)k − ω(η̂i)k − λ(ξ̂i)k

)
eik·x (4.5)

for each i ∈ {1, . . . , ng}.
This yields the following ODE system for the coefficients,

∂t(ûi)k =
(

(ω − νi|k|2)(ûi)k − ω(η̂i)k − λ(ξ̂i)k

)
, k ∈ K , i = 1, . . . , ng . (4.6)

Treating the nonlinear parts explicitly and the linear ones implicitly allows easily to obtain a

numerical approximation to the coefficients. The matrices of coefficients are typically arranged

in vectors for theoretical aspects of the numerical schemes, i.e. ûi(k, l) ↔ Ui(p), so that the

linear operator L becomes a diagonal matrix. With this notation the linear and nonlinear parts

are

Li = diag(ω − νi|k|2,k ∈ K) (4.7)
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and

Ni(U) = (−ω(η̂i)k − λ(ξ̂i)k)k∈K, (4.8)

respectively, for i = 1, . . . , ng.

Similarly as the Euler/Euler-2-step method one can define a SBDF1/SBDF1-2-step variant.

Therefore we use superscripts for the indication of the time level we are at and calculate two

updates, one for the vectors Un+1
i

(I − dtLi)Un+1
i = Uni + dtNi((U

n
i )i) , i = 1, . . . , ng

and a double update for V n+1
i(

I − dt

2
L
)
V
n+1/2
i = V n

i +
dt

2
Ni((U

n
i )i) ,(

I − dt

2
L
)
V n+1
i = V

n+1/2
i +

dt

2
Ni((V

n+1/2
i )i) , i = 1, . . . , ng .

Under the assumption that we start with a correct value, for a single PDE for u ↔ U, V, one

can calculate the residual approximation

R = ‖Un+1 − V n+1‖ ≈ dt2

2
‖Lu′(t)− 1

2
u′′(t)‖ .

With a tolerance ε one then proceeds as follows: If R ≤ ε update via U+ = 2V n+1 − Un+1,

else, R > ε, repeat time-step starting from Un with smaller dt. In both cases we use the typical

stepsize update

dt← ν

√
ε

R
dt .

Here ν < 1 is a safety factor which we set to ν = 0.9.

By employing above update the truncation error is reduced by one order. While u(t+dt) =

V n+1 +O(dt2), the new update corresponds to u(t+ dt) = 2V n+1 −Un+1 +O(dt3). However,

we deal with a system of PDEs. We carry the same approach over for this case, only that now

R = max
i=1,...,ng

‖Un+1
i − V n+1

i ‖

and then we use the higher order update for each grain,

U+
i = 2V n+1

i − Un+1
i , i = 1, . . . , ng .

Note that one could define U = (U1, . . . , Ung) in one vector and the operators for Ut as rep-

etitions of (4.7) and (4.8). The two-step method applied to this system would just yield the

presented individual updates.

Figure 2 below shows a result calculated with the above approach, here employing an L1

approximation of the norm for the residual calculation (via Riemann sums), for N1 = 256, N2 =

128 grid points, νi = 1, ω = 1, λ = 2, ng = 60.
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To visualize individual grain orientations with different shades of gray, we introduced the

following visualization function Ψ(ui) =
∑

i(log(i)ui)
2. After a transient time where the nuclei

grow (given as spatially randomly distributed Gaussians in the initial data) and where the

time steps are small, as topological changes can be fast, they become much larger after full

re-crystallization. Then a comparably slow evolution phase, the coarsening of the grains, takes

place. Until a first grain collapses more time can pass as for the initial re-crystallization

transient. As for the last moments of a collapse the evolution becomes faster, each time the

time-step automatically becomes small to capture the rate change. This is well reflected by

the many spikes. Using these one could easily count the number of grains that vanished. In

the evolution depicted in Figure 2 we are able to calculate for very long times, ending with a

state with five grains only.

Figure 2: Nucleation, growth, coarsening with the adaptive time-stepping method. (d) time-step size over

time; (a) and (a’) initial re-crystallization phase; the circle in (a’) shows a small amount of not yet crystallized

material; (b) and (b’) depict two coarsening events (circled regions) and show that as the collapse is fast, the

time-step is automatically decreased. The corresponding minimum in (d) is in fact a double kink for the two

vanishing grains; (c) and (e) later stages of coarsening.

4.2 Discrete energy descent

In the following section we close this work by showing that our global interpolation method

yields a discrete energy descent, theoretically in a semi-discrete approach, and practically by

plotting a discrete energy in each time point of one particular simulation run. This shows that

the numerics conserves the important property from the physics, descent of the free energy.

We consider a semi-discrete approach, similarly as by Ye [28] in a work on the Cahn–Hilliard

equation, to show descent of a discrete energy. Ignoring the treatment of the temporal part of
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the PDE under consideration, our numerical method aims on finding a set of functions

u = (ui)i=1,...,ng , ui ∈ Sn = span
{
eik·x, k ∈ K

}
,

such that

∂tui(x, t) = νi∆ui − Inφi(u), x ∈ X , i = 1, . . . , ng

with

φi(u) = ω((ui)
3 − ui) + λui

∑
j 6=i

(uj)
2

and

ui(x, 0) = ui0(x), x ∈ X , i = 1, . . . , ng .

Here the discrete spatial grid for Ω = [0, L1]× [0, L2] is denoted by

X =
{

(x1
j1 , x

2
j2) : xljl =

Ll
Nl
jl, jl = 0, 1 . . . , Nl − 1, l = 1, 2

}
.

Algebraically this system is indeed equivalent to (4.5) with the corresponding initial conditions.

In terms of the scalar product (·, ·)n defined as

(u, v)n =
|Ω|
N

∑
x∈X

u(x)v(x)

the semi-discrete formulation is also equivalent to

(∂tui, v)n = νi(∆ui, v)n + (Inφi(u), v)n, ∀ v ∈ Sn
ui(x, 0) = ui0(x), x ∈ X , i = 1, . . . , ng .

This gives a generic tool for the numerical analysis as one gains the equality (u, v)n = (u, v)L2

for all u, v ∈ Sn. We can replace the scalar products by the L2 versions. With the corresponding

norm ‖ · ‖n we define the discrete analogon of the natural free energy (1.2) of the system as

follows

E(u) =

ng∑
i=1

(
νi
2
‖∇ui‖2n +

∑
x∈X

Ψi(u(x, t))
|Ω|
N

)
(4.9)

with the nonlinearity

Ψi(u) =
ω

2
((ui)

2 − 1)2 +
λ

2

∑
j>i

(ui)
2(uj)

2 .

Then we can see that

Proposition 15 The discrete version of the free energy dissipates as its continuous counter-

part, namely,
d

dt
E(u) ≤ 0 . (4.10)
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Proof By a direct calculation, we have

d

dt
E(u) =

ng∑
i=1

νi(∇ui,∇(ui)t)n + (φi(u), (ui)t)n

=

ng∑
i=1

(−νi∆ui + Inφi(u), (ui)t)n = −
ng∑
i=1

‖(ui)t‖2n ≤ 0 ,

which yields our conclusion (4.10).

For the last result we check by example that the descent (4.10) is valid for the adaptive

time stepping scheme presented in Section 4.1. Furthermore, also by example, we pick up the

convergence rate estimate derived in (3.23) and show that it corresponds well to our numerical

findings. In fact, it describes the coarsening behavior even qualitatively.

Figure 3 below shows two characteristic quantities during the re-crystallization process

and the subsequent coarsening for the same parameter settings as in the previous subsection.

Figure 3(a) shows how that the discrete energy (4.9) indeed decreases monotonically with each

iteration. After full re-crystallization, the decrease becomes much slower. We are content with

this observed quality of our scheme. Figure 3(b) shows the approximated H1-norm of the

difference between u and some ũ∞, which is assumed to be the state with only one existing

grain (chosen randomly) and all other order parameters being zero. This is not exact, but

sufficiently close to the real numerical u∞ to analyze the convergence rate. The added curve,

with a ‘good guess’ of θ = 1
5 , the function 9000(1 + t)

−θ
1−2θ , shows the good quality of result

(3.23). Note that the difference grows in the first stages as the order parameters are zero

except of small regions with the nuclei. Although initially the H1 distance to the equilibrium

state ũ∞ is small it grows in the early stage of evolution. In this way the energy is strongly

decreasing as the minima of the multiple-well
∑

i Ψi are adopted. Only later the H1 distance

as predicted in the asymptotic limit.
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Figure 3: (a) Energy decrease for E as in (4.9), (a’) magnification of the small slope region; (b) rate of

convergence and comparison to the rate estimate (3.23).
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