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Perron Frobenius Theorems for the Numerical Range of
Semi-Monic Matrix Polynomials

K.-H. Förster and P. Kallus

Abstract

We present an extension of the Perron-Frobenius theory to the numerical ranges of
semi-monic Perron-Frobenius polynomials, namely matrix polynomials of the form

Q(λ) = λm − (λlAl + · · ·+A0) = λm −A(λ),

where the coefficients are entrywise nonnegative matrices. Our approach relies on
the function β 7→ numerical radius A(β) and the infinite graph Gm(A0, . . . , Al). Our
main result describes the cyclic distribution of the elements of the numerical range
of Q(·) on the circles with radius β satisfying βm = numerical radius A(β).

MSC. 15B48; 15A60; 15A22
Keywords. Perron-Frobenius theory; numerical range; matrix polynomials

1 Introduction

We consider matrix polynomials of the form

λm − (λlAl + · · ·+A0) (1.1)

where l ∈ N0 and m ∈ N. We do not assume that these polynomials are monic,
i.e. m > l. Matrix polynomials of this type have appeared in different situations
(see [2], [3], [5], [7], [14], [15]).
In [5], [6], [7] and [8] the authors considered spectral properties of matrix polynomials
of this type, where the coefficients are entrywise nonnegative. Here we consider for such
matrix polynomials properties of their numerical range.
For a single matrix A0 with nonnegative entries the Perron-Frobenius theory is ap-
plied to the spectrum (= set of eigenvalues; see [10], [17]) and the numerical range
(see [12], [16], [18]). One of the main results of this theory says that the peripheral part
of the spectrum and the numerical range of an irreducible entrywise nonnegative matrix
have the same cyclic properties, the proof thereof relying on Wielandt’s Lemma.
Properties of the numerical range of monic polynomials with entrywise nonnegtive co-
efficients were considered in [18]. The proofs are based on the linearisation by the
companion matrix CQ and by applying the Perron-Frobenius theory to CQ. Linearisa-
tion does not help in the semi-monic case, instead our analysis is based on the func-
tion R+ → R+ : β 7→ nur(A(β)) = numerical radius of A(β) and an infinite graph
Gm(A0, . . . , Al).
The presentation of the paper is arranged as follows. In Section 2 we recall notations,
definitions and include some known results for the numerical range of (entrywise non-
negative) matrices. In Section 3 we consider the function

nurA : R+ → R+ : β 7→ sup
|λ|=β

nur(A(λ)) (1.2)
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and show its relevance for the numerical range of general matrix functions analytical
in an annulus; at the ned we show that nurA(β) = nur(A(β)) when the coefficients are
entrywise nonnegative matrices. In Section 4 we define the graph Gm(A0, . . . , Al) and its
index of phase imprimitivity, where the sum A0 + · · ·+Al is an irreducible matrix. In the
semi-monic setting this index can be seen as the analogue to the index of imprimitivity of
the graph associated with an irreducible matrix in the Perron-Frobenius theory. Finally
in Section 5 we proof the main result on the number and cyclic distribution of values in
the numerical range of Q(·) on circles with radius β such that βm = nurA(β), where the
coefficients Aj of Q(·) are entrywise nonnegative matrices and their sum is an irreducible
matrix. As a related result we also prove the rotation invariance of the numerical range
of Q(·) under certain angles. We close the section with some illustrative examples.

2 Notations, Definitions and Preliminaries

We largely follow the notation used in [13].

• 〈n〉 the set of integers 1, . . . , n and 〈n〉0 = 〈n〉 ∪ {0},

• (·, ·) denotes the standard inner product in Cn,

• Tρ = {λ ∈ C : |λ| = ρ} the circle in the complex plane C centred at the origin with
radius ρ > 0,

• Aρ1,ρ2 = {λ ∈ C : ρ1 < |λ| < ρ2} the open annulus in the complex plane C centred
at the origin with radii 0 ≤ ρ1 < ρ2,

• Sn = {x ∈ Cn : ‖x‖ = 1},

• Cn,n the set of complex n× n matrices and Rn,n+ the set of entrywise nonnegative
n× n matrices,

• Σ(B) the spectrum (=set of eigenvalues) and spr(B) the spectral radius of B ∈
Cn,n,

• Θ(B) the numerical range (=field of values) and nur(B) the numerical radius of
B ∈ Cn,n,

• for x ∈ Rn+ write x� 0 iff all entries of x are strictly positive.

Recall that for a matrix B ∈ Cn,n the numerical range is defined as

Θ(B) := {(Bx, x) : x ∈ Sn}

and the numerical radius of B is defined as

nur(B) := sup{|λ| : λ ∈ Θ(B)} = sup
x∈Sn
|(Bx, x)|.

We briefly collect some well known properties of the numerical range of a matrix B ∈
Cn,n:
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• Θ(B) is compact and convex,

• if B ∈ Rn,n+ then nur(B) ∈ Θ(B) (see e.g. [16, p.51]),

• for B ∈ Rn,n+ there holds

nur(B) = sup
x∈Sn
|(Bx, x)| = sup

x∈Sn∩Rn+
|(Bx, x)|.

• for irreducible B ∈ Rn,n+ and x ∈ Sn ∩Rn+ such that (Bx, x) = nur(B), there holds
x� 0 (see e.g. [16, Theorem 3.1.(i)]).

Analogously to the spectrum the numerical range is extended to a matrix function Q(·)
via

Θ(Q(·)) := {λ : 0 ∈ Θ(Q(λ))}.

3 The Numerical Range of Semi-monic Matrix Functions

One of our main tool in analysing the numerical range of semi-monic matrix functions

Q(·) : Aρ1,ρ2 → Cn,n : λ 7→ λm −A(λ),

where m ∈ N, will be the real function

nurA : (ρ1, ρ2)→ R+ : ρ 7→ sup
|λ|=ρ

nur(A(λ)),

where
A(·) : Aρ1,ρ2 → Cn,n : λ 7→

∑

j∈Z
λjAj ,

Aj ∈ Cn,n, the domain being the open annulus Aρ1,ρ2 . We state some properties of nurA.

Proposition 3.1. For an analytic matrix function A(·) : Aρ1,ρ2 → Cn,n the function
nurA is geometrically convex, that is for all σ1, σ2 ∈ (ρ1, ρ2) and θ ∈ [0, 1] the functional
inequality

nurA(σθ1σ
1−θ
2 ) ≤ (nurA(σ1))θ(nurA(σ2))1−θ

holds.

Proof. Note that for any x ∈ Sn by [1, Lemma 3.4.6] the function log |(A(·)x, x)| is
subharmonic. By [9, Theorem 2.13] it follows that

β 7→ log sup
|λ|=β

|(A(λ)x, x)|
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is convex in log β.
This implies that for σ1, σ2 ∈ (ρ1, ρ2), θ ∈ [0, 1]

sup
|λ|=σθ1σ1−θ

2

|(A(λ)x, x)| ≤
(

sup
|λ|=σ1

|(A(λ)x, x)|
)θ(

sup
|λ|=σ2

|(A(λ)x, x)|
)1−θ

≤ nurA(σ1)θ nurA(σ2)1−θ

holds and by exchanging the suprema we obtain

nurA(σθ1s
1−θ
2 ) = sup

|λ|=σθ1σ1−θ
2

sup
x∈Sn
|(A(λ)x, x)|

= sup
x∈Sn

sup
|λ|=σθ1σ1−θ

2

|(A(λ)x, x)|

≤ (nurA(σ1))θ(nurA(σ2))1−θ.

The following proposition characterizes the behaviour of nurA on intervals.

Proposition 3.2. Let A(·) : Aρ1,ρ2 → Cn,n be an analytic matrix function and σ1, σ2 ∈
(ρ1, ρ2) with σ1 ≤ σ2 and nurA(σj) = σmj , j = 1, 2 for some m ∈ N. Then exactly one of
the following assertions is true.

(i) nurA(β) = βm for all β ∈ (σ1, σ2).

(ii) nurA(β) < βm for all β ∈ (σ1, σ2).

Proof. The proof follows from well known facts about convex functions since τ 7→
log nurA(eτ ) is convex and τ 7→ log(eτ )m is linear.

The next two results provide conditions under which the numerical range of semi-monic
matrix functions is disjoint to some annulus around the origin.

Proposition 3.3. Let A(·) : Aρ1,ρ2 → Cn,n be an analytic matrix function and Q(·) its
corresponding semi-monic matrix function for a m ∈ N. Let σ1, σ2 ∈ (ρ1, ρ2), σ1 < σ2,
such that nurA(β) < βm for all β ∈ (σ1, σ2). Then

Θ(Q(·)) ∩ Aσ1,σ2 = ∅.
Proof. Assume there exists λ0 ∈ Θ(Q(·)) ∩ Aσ1,σ2 . This means that

0 ∈ Θ(Q(λ0))

⇔ 0 ∈ Θ(λm0 −A(λ0))

⇔ λm0 ∈ Θ(A(λ0)).

Additionally we have |λ0| ∈ (σ1, σ2). It follows that

|λ0|m ≤ nur(A(λ0))

≤ sup
|λ|=|λ0|

nur(A(λ))

= nurA(|λ0|)
< |λ0|m,
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which is a contradiction.

Theorem 3.4. Let A(·) : Aρ1,ρ2 → Cn,n be an analytic matrix function and Q(·) its
corresponding semi-monic matrix function for a m ∈ N. Let σ1, σ2 ∈ (ρ1, ρ2), σ1 < σ2,
with nurA(σj) = σmj , j = 1, 2. If there exists a β ∈ (σ1, σ2) such that nurA(β) < βm then

Θ(Q(·)) ∩ Aσ1,σ2 = ∅.

Proof. Proposition 3.2 implies that nurA(β) < βm for all β ∈ (σ1, σ2). The assertion
then follows from Proposition 3.3.

Up until now we did not pose any requirements on the coefficients of A(·). In the sequel
we will require the Aj to be entrywise nonnegative, i.e. Aj ∈ Rn,n+ . In this case we can
give a simpler representation of the function nurA.

Proposition 3.5. Let A(·) : Aρ1,ρ2 → Cn,n be an analytic matrix function with coeffi-
cients Aj ∈ Rn,n+ . Then

nurA(β) = nur(A(β)), β ∈ (ρ1, ρ2).

Proof. Since the Aj are entrywise nonnegative we have for λ ∈ Aρ1,ρ2 and x ∈ Sn

|(A(λ)x, x)| ≤ (A(|λ|)|x|, |x|)

noting that |x| ∈ Sn whenever x ∈ Sn. It follows for β ∈ (ρ1, ρ2)

nurA(β) = sup
|λ|=β

sup
x∈Sn
|(A(λ)x, x)|

≤ sup
|λ|=β

sup
x∈Sn

(A(|λ|)|x|, |x|)

= sup
x∈Sn

(A(β)|x|, |x|)

≤ sup
x∈Sn
|(A(β)x, x)|

= nur(A(β)) ≤ nurA(β).

In [8] the author considered the function sprA : Aρ1,ρ2 → R+ : ρ 7→ sup|λ|=ρ spr(A(λ)),
where spr(B) denotes the spectral radius of a B ∈ C, and proved corresponding results
for the spectrum of Q(·). Additionally different classes of coefficients were treated, e.g.
where the Aj are positive semidefinite. It is easy to see that Proposition 3.5 holds when
the coefficients are positive semidefinite.

4 The Infinite Graph Gm(A0, . . . , Al)

Our second tool is the infinite graph Gm(A0, . . . , Al) for matrices A0, . . . , Al ∈ Rn,n+ and
m ∈ N; we define the set of vertices of Gm(A0, . . . , Al) by

V = {(r, p) : r ∈ 〈n〉, p ∈ Z}
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and the set of its edges

E = {[(r, p), (s, q)] : Am−p+q(r, s) > 0},

where Am+p−q(r, s) denotes the entry with coordinates (r, s) in the matrix Am+p−q. For
(r, p) ∈ V we call r the phase and p the level of the vertex. A sequence of edges

[(r0, p0), (r1, p1)], [(r1, p1), (r2, p2)], . . . , [(rw−1, pw−1), (rw, pw)]

is called a path of length w connecting (r0, p0) with (rw, pw) and we might also write

(r0, p0)→ (r1, p1)→ · · · → (rw, pw).

For the above path the number pw − p0 is called its level displacement. Furthermore
we call a path (r0, p0) → · · · → (rw, pw) a phase cycle if r0 = rw. Then the index
of phase imprimitivity of the graph Gm(A0, . . . , Al) is defined as the greatest common
divisor (g.c.d.) of the level displacements of all of its phase cycles. In the case where
every phase cycle has level displacement 0 (which can happen, see [6, Example 4.3]) the
index of phase imprimitivity is defined as 0. Moreover the index of phase imprimitivity
is defined to be nonnegative.

A concept similar to the infinite graph above was considered in [7, p.132]. Note that the
graph associated with a single matrix A0 ∈ Rn,n+ can be expressed by G1(A0). Then the
index of phase imprimitivity of G1(A0) coincides with the usual index of imprimitivity
of A0 used in the Perron-Frobenius theory. Thus the graph Gm(A0, . . . , Al) can be seen
as an extension of the usual graph associated with an entrywise nonnegative matrix.
In the unpublished doctoral thesis of N. Hartanto [8] the infinite graph was used to derive
results for the spectrum of semi-monic Perron-Frobenius polynomials similar to our main
result for the numerical range in the following section. We collect some properties of
these infinite graphs which will be needed in the proof of our main result. The proofs
are straight forward and can be found in [8, pp. 66].

Lemma 4.1. For the graph Gm(A0, . . . , Al) we have that [(r, p), (s, q)] ∈ E implies that
[(r, p+ u), (s, q + u)] ∈ E for all u ∈ Z.
Moreover for any u ∈ Z the paths (r0, p0)→ (r1, p1)→ · · · → (rw, pw) and (r0, p0 +u)→
(r1, p1 + u)→ · · · → (rw, pw + u) have the same level displacement.

Lemma 4.2. Let A0, . . . , Al ∈ Rn,n+ and m ∈ N. Then for r, s ∈ 〈n〉 the following
assertions are equivalent:

(i) There exists a path from r to s in the directed graph associated with the matrix
A0 + · · ·+Al ∈ Rn,n+ .

(ii) For all p ∈ Z there exists a q ∈ Z such that there is a path from (r, p) to (s, q) in
Gm(A0, . . . , Al).

(iii) For all q ∈ Z there exists a p ∈ Z such that there is a path from (r, p) to (s, q) in
Gm(A0, . . . , Al).
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Lemma 4.3. Let A0, . . . , Al ∈ Rn,n+ and m ∈ N. Then the following assertions are
equivalent:

(i) A0 + · · ·+Al ∈ Rn,n+ is irreducible.

(ii) For all r, s ∈ 〈n〉 and p ∈ Z there exists a q ∈ Z such that there is a path from (r, p)
to (s, q) in Gm(A0, . . . , Al).

(iii) For all r, s ∈ 〈n〉 and q ∈ Z there exists a p ∈ Z such that there is a path from (r, p)
to (s, q) in Gm(A0, . . . , Al).

We will need one more lemma which is usually attributed to I. Schur. A proof can be
found in [4, Lemma 3.4.2].

Lemma 4.4. Let M be a nonempty set of integers which is closed under addition and
let d ∈ N be the greatest common divisor of M . Then we have kn ∈M for all but finitely
many k ∈ N.

5 Main Result

In the remainder we will restrict ourselves to matrix polynomials with entrywise non-
negative coefficients, i.e. functions of the form

A(·) : C→ Cn,n : λ 7→
l∑

j=0

λjAj ,

where Aj ∈ Rn,n+ , l ∈ N and the corresponding semi-monic1 polynomial

Q(·) : C→ Cn,n : λ 7→ λm −A(λ) = λm −
l∑

j=0

λjAj

for some m ∈ N. Note that Q(·) gives rise to an associated infinite graph Gm(A0, . . . , Al).
We also give one more definition that extends the concept of irreducibility from matrices
to matrix polynomials.

Definition 5.1. Let A(·) be a matrix polynomial with entrywise nonnegtive coefficients.
Then we say the polynomial A(·) is irreducible if the matrix A(β) ∈ Rn,n+ is irreducible
for one (and then for all) β > 0.

Theorem 5.2. Let A(λ) =
∑l

j=0 λ
jAj be an irreducible matrix polynomial with en-

trywise nonnegative coefficients and Q(λ) = λm − A(λ) its corresponding semi-monic
polynomial for some m ∈ N. Let further d be the index of phase imprimitivity of the
associated graph Gm(A0, . . . , Al). Then for all β > 0 with

βm = nur(A(β))

the following statements hold:

1Here ’semi-monic’ refers to the fact that we do not require for m to be greater than l.
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(i) If d = 0 then Tβ ⊆ Θ(Q(·)).

(ii) If d ≥ 1 then Θ(Q(·)) ∩ Tβ = {ei 2πd k : k = 0, . . . , d− 1}.

Proof. (ii) We first proof the second part of the theorem by showing both inclusions.
”⊆”: Take an element of Θ(Q(·)) ∩ Tβ, i.e. an element that can be written as βω with
ω ∈ T1. Then there exists some x ∈ Sn such that

(βω)m = (A(βω)x, x). (5.1)

Now we define y = |x|, and show that

βm = (A(β)y, y).

To see this write

βm = |(βω)m| = |(A(βω)x, x)| ≤ (A(|βω|)|x|, |x|) = (A(β)y, y) ≤ nur(A(β)) = βm

Since A(·) is irreducible it then also follows that |x| = y � 0 (see Section 2).
We proceed by breaking down the above equalities.

βm = (A(β)y, y)

=

l∑

j=1

βj(Ajy, y)

=

l∑

j=1

n∑

r=1

n∑

s=1

βj ȳrAj(r, s)ys

and dividing by the left-hand side we arrive at

1 =

l∑

j=1

n∑

r=1

n∑

s=1

βj−mȳrAj(r, s)ys. (5.2)

Here the terms of the sum on the right-hand side are all nonnegative. Doing the same
for (5.1) we get

1 =
l∑

j=1

n∑

r=1

n∑

s=1

(βω)j−mx̄rAj(r, s)xs

=
l∑

j=1

n∑

r=1

n∑

s=1

[
βj−mȳrAj(r, s)ys

] [
ωj−m

x̄r
ȳr

xs
ys

]
. (5.3)

Moreover ∣∣∣∣ωj−m
x̄r
ȳr

xs
ys

∣∣∣∣ =
∣∣ωj−m

∣∣
∣∣∣∣
x̄r
ȳr

∣∣∣∣
∣∣∣∣
xs
ys

∣∣∣∣ = 1. (5.4)
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Due to (5.2) we now see that (5.3) is a convex combination of numbers with absolute
value 1 whose sum is equal to 1. This is only possible if for all j, r, s where Aj(r, s) > 0
we have that

1 = ωj−m
x̄r
ȳr

xs
ys

or equivalently

ωj−m
xs
ys

=
ȳr
x̄r
. (5.5)

Now take any phase cycle (r0, p0) → . . . → (rw, pw) in Gm(A0, . . . , Al) and denote its
level displacement by d̃. Then r0 = rw and Am−ph−1+ph(rh−1, rh) > 0 for h ∈ 〈w〉.
Setting jh = m− ph−1 + ph we can then write d̃ =

∑w
h=1 jh−m and with (5.5) it follows

that

ωd̃ =
w∏

h=1

ωjh−m
xrh
yrh

w∏

h=1

yrh
xrh

=
w∏

h=1

ȳrh−1

x̄rh−1

w∏

h=1

yrh
x
h

=
w∏

h=1

ȳrh−1
yrh−1

x̄rh−1
xrh−1

=
w∏

h=1

|yrh−1
|2

|xrh−1
|2 = 1

where the third equality follows from r0 = rw. Thus ωd̃ = 1. In order to see that then
also ωd = 1 consider the set

M =

{
the set of all level displacements of phase cycles

in Gm(A0, . . . , Al) and their sums

}

which is closed unter addition. Obviously for an element d̂ ∈M there still holds ωd̂ = 1.
Moreover the index of phase imprimitivity d is the greatest common divisor of M . Now
by Lemma 4.4 there exists a k ∈ N such that kd and (k + 1)d are both in M , i.e.
ωkd = ω(k+1)d = 1. Thus the increment d must also fulfil ωd = 1. It follows that

βω ∈ {ei 2πd k : k = 0, . . . , d− 1}.

”⊇”: For the inclusion choose an ω ∈ T with ωd = 1. Since A(·) is irreducible we can
find a strictly positive y ∈ Sn satisfying βm = (A(β)y, y). Our goal is to construct
an x ∈ Sn satisfying (βω)m = (A(βω)x, x). Set x1 = y1. For s ∈ 〈2, n〉 take a path
(r0, p0) → . . . → (rw, pw) in Gm(A0, . . . , Al) such that r0 = 1 and rw = s (which is
possible by Lemma 4.3). Further by Lemma 4.1 we can assume w.l.o.g. that pw = 0.
Thus the path will have level displacement −p0.
Now define xs recursively via

xrh = yrh
ȳrh−1

x̄rh−1

ωph−1−ph , h ∈ 〈w〉.
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Claim: The above construction is well defined, i.e. it is independent of the specific
path.
To see the claim note that it can be easily shown via induction that |xrh | = |yrh |, h ∈ 〈w〉0
and we can thus write

xrh = yrh
ȳrh−1

x̄rh−1

ωph−1−ph = yrh
xrh−1

yrh−1

|yrh−1
|2

|xrh−1
|2ω

ph−1−ph = yrh
xrh−1

yrh−1

ωph−1−ph .

Then

xs = ys
xrw−1

yrw−1

ωpw−1−pw

= ys
yrw−1

yrw−1

xrw−2

yrw−2

ωpw−2−pw−1ωpw−1−pw

...

= ysω
p0−pw = ysω

p0

Now take another path (r̃0, p̃0)→ . . .→ (r̃w̃, p̃w̃) satisfying r̃0 = 1 and r̃w̃ = s and again
w.l.o.g. p̃w̃ = 0 (so that this path has level displacement −p̃0). This path gives rise to a
x̃s and by the same calculation as above we get

x̃s = ysω
p̃0 .

In the last step consider a third path from (s, 0) to (1, d̂) with level displacement d̂ (any
such path will do). Attaching this path to any of the previous two paths gives phase
cycles with level displacements d̂− p0 and d̂− p̃0 respectively. We can now divide xs by
x̃s to get

xs
x̃s

= ωp0−p̃0 = ω−(d̂−p0)ωd̂−p̃0 = 1,

where the last equality holds because both exponents are level displacements of phase
cycles and thus divisible by d. The claim is proved.
The vector x was constructed in a way that whenever Aj(r, s) > 0 relation (5.5) is
satisfied. We can thus write

(A(βω)x, x) =
l∑

j=0

(βω)j(Ajx, x)

=
l∑

j=0

n∑

r=1

n∑

s=1

(βω)j x̄rAj(r, s)xs

=
l∑

j=0

n∑

r=1

n∑

s=1

[
βj ȳrAj(r, s)ys

] [
ωj−m

x̄r
ȳr

xs
ys

]
ωm

= (A(β)y, y)ωm = (βω)m

which shows βω ∈ Θ(Q(·)) ∩ Tβ.
(i) Note that d = 0 implies that in the proof of the reverse inclusion above we can choose
any ω ∈ T1. It then follows that Tβ ⊆ Θ(Q(·)).
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Remark 5.3. The angles of rotation invariance in Theorem 5.2 only depend on the
index of phase imprimitivity d of the graph Gm(A0, . . . , Al). This implies that if there
are several β > 0 satisfying βm = nur(A(β)), then the values of the numerical range
lying on Tβ will be distributed along the same angles.

Remark 5.4. An equivalent result to Theorem 5.2 holds for the spectrum of Q(·)
(see [8, Theorem 4.23]). The eigenvalues are distributed along the d-th roots on the
circle Tρ where ρm = spr(A(ρ)). Clearly in general ρ does not coincide with β (satisfying
βm = nur(A(β))) and thus the eigenvalues and values of the numerical range of a semi-
monic matrix polynomial Q(·) can be rotation invariant on different circles Tρ and Tβ
but with the same number of values d.

Remark 5.5. Theorem 5.2 can be seen as an extension of [18, Corollary 5.6] for monic
Perron-Frobenius polynomials. We have shown that the number of the maximal elements
of Θ(Q(·)) is given by the index of phase imprimitiviy of Gm(A0, . . . , Al).

Theorem 5.6. Let A(λ) =
∑l

j=0 λ
jAj be an irreducible matrix polynomial with en-

trywise nonnegative coefficients and Q(λ) = λm − A(λ) its corresponding semi-monic
polynomial for some m ∈ N. Let further d be the index of phase imprimitivity of the
associated graph Gm(A0, . . . , Al) and assume d ≥ 1. Then Θ(Q(·)) is invariant under
rotation with the angle θ = 2π

d , i.e.

Θ(Q(·)) = ei
2π
d Θ(Q(·)).

Moreover if there exists a β > 0 such that nur(A(β)) = βm then θ is the smallest such
angle.

Proof. The proof is conceptually very similar to the second inclusion in part (ii) of the
proof of Theorem 5.2. Let λ ∈ Θ(Q(·)) and ω ∈ T1 such that ωd = 1. Then there
exists an y ∈ Sn such that λm = (A(λ)y, y). We will construct an x ∈ Sn such that
(λω)m = (A(λω)x, x). Set x1 = y1. For s ∈ 〈2, n〉 take a path (r0, p0)→ . . .→ (rw, pw)
in Gm(A0, . . . , Al) such that r0 = 1 and rw = s (which is possible by Lemma 4.3).
Further by Lemma 4.1 we can assume w.l.o.g. that pw = 0. Thus the path will have
level displacement −p0.
Now define xs recursively via

xrh =

{
yrh

ȳrh−1

x̄rh−1
ωph−1−ph , x̄rh−1

6= 0

yrhω
p0−ph , x̄rh−1

= 0
, h ∈ 〈w〉.

Claim: The above construction is well defined, i.e. it is independent of the specific
path.
To see this note that it can be easily shown via induction that |xrh | = |yrh |, h ∈ 〈w〉0
and we can thus write

xrh = yrh
ȳrh−1

x̄rh−1

ωph−1−ph = yrh
xrh−1

yrh−1

|yrh−1
|2

|xrh−1
|2ω

ph−1−ph = yrh
xrh−1

yrh−1

ωph−1−ph

11



if x̄rh−1
6= 0. Then

xs = ys
xrw−1

yrw−1

ωpw−1−pw

= ys
yrw−1

yrw−1

xrw−2

yrw−2

ωpw−2−pw−1ωpw−1−pw

...

= ysω
p0−pw = ysω

p0

Note that the above recursive expansion of xs might stop early if the vector y has a zero
entry, but the result will remain the same. Now take another path (r̃0, p̃0) → . . . →
(r̃w̃, p̃w̃) satisfying r̃0 = 1 and r̃w̃ = s and again w.l.o.g. p̃w̃ = 0 (so that this path has
level displacement −p̃0). This path gives rise to a x̃s and by the same calculation as
above we get

x̃s = ysω
p̃0 .

Consider a third path from (s, 0) to (1, d̂) with level displacement d̂ (any such path will
do). Attaching this path to any of the previous two paths gives phase cycles with level
displacements d̂− p0 and d̂− p̃0 respectively. We can now divide xs by x̃s to get

xs
x̃s

= ωp0−p̃0 = ω−(d̂−p0)ωd̂−p̃0 = 1,

where the last equality holds because both exponents are level displacements of phase
cycles and thus divisible by d. This ends the proof of the claim.
The vector x was constructed in a way that whenever Aj(r, s) > 0 the following relation
(which is the equivalent to relation (5.5)) is satisfied:

ωj−mx̄rxs = ȳrys. (5.6)

In the following equation we will use
∑′ to denote that we leave out all elements of the

sum that are equal to zero. We can then write

(A(λω)x, x) =
l∑

j=0

(λω)j(Ajx, x)

=

l∑′

j=0

n∑′

r=1

n∑′

s=1

(λω)j x̄rAj(r, s)xs

=

l∑′

j=0

n∑′

r=1

n∑′

s=1

[
λj ȳrAj(r, s)ys

] [
ωj−m

x̄r
ȳr

xs
ys

]
ωm

= (A(λ)y, y)ωm = (λω)m

which shows λω ∈ Θ(Q(·)).
The second assertion follows immediately from Theorem 5.2 since a smaller angle would
imply that we would get additional elements of the numerical range on the circle Tβ.
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Example 5.7. We consider the polynomial A(λ) = λ2A2 +A0 where

A2 =

[
0 1
0 0

]
, A0 =

[
0 0
4 0

]
.

It is obvious that A(·) is irreducible. Moreover there exists exactly one phase cycle in
the infinite graph Gm(A0, A2) for m ∈ N starting in phase 1 and level 0.

(1, 0)→ (2, 2−m)→ (1, 2− 2m)

It follows that the level displacement of all phase cycles in Gm(A0, A2) is equal to 2−2m
and thus the index of phase imprimitivity is

d = |2− 2m|. (5.7)

We proceed by calculating the values ρ, β ∈ (0,∞) for which spr(A(ρ)) = ρm and
nur(A(β)) = βm. The eigenvalues of A(ρ) ∈ Rn,n+ are located at

λ± = ±2ρ

and thus spr(A(ρ)) = 2ρ. Assuming m ≥ 2 we then have

spr(A(ρ))
!

= ρm

for ρ ∈ {0, 2 1
m−1 }. Since we require ρ > 0 we conclude that the only solution is ρ = 2

1
m−1 .

We can now calculate the eigenvalues of the semi-monic polynomial Qm(λ) = λm−A(λ)
on the circle Tρ. Take a complex ω with |ω| = 1. Then the eigenvalues of A(ρω) ∈ Cn,n
are located at λ± = ±2ρω. In order for ρω ∈ Σ(Qm(·))∩Tρ to hold we need ω to satisfy

(ρω)m
!

= ±2ρω

⇔ ωm = ±ω
⇔ ωm−1 = ±1. (5.8)

We will now treat the numerical range of Qm(·). For β ∈ (0,∞) by [11, Lemma 1.3.3]
the numerical radius of A(β) ∈ Rn,n+ is equal to 2 + 1

2β
2 and the elements of Θ(A(β))

with maximal modulus are located at ±(2 + 1
2β

2). In order for nur(A(β)) = βm to hold
we thus need β to satisfy

nur(A(β)) = 2 +
1

2
β2 !

= βm. (5.9)

Elements in Θ(Qm(·)) ∩ Tβ will be of the form βω with |ω| = 1. We claim that
Θ(A(βω)) = ωΘ(A(β)). To see this write

Θ(A(βω)) = {(A(βω)x, x) : x ∈ Sn} = {ω2β2x̄1x2 + 4x1x̄2 : x ∈ Sn}

=
{
ωβ2x1ω1/2x2ω

1/2 + ω4x1ω1/2x2ω1/2 : x ∈ Sn
}

= ω

{(
A(β)

(
x1ω1/2

x2ω
1/2

)
,

(
x1ω1/2

x2ω
1/2

))
: x ∈ Sn

}

= ωΘ(A(β)),

13



where the last equality follows because

Sn =

{(
x1ω1/2

x2ω
1/2

)
: x ∈ Sn

}
.

Therefore the elements of maximal modulus of Θ(A(βω)) are located at ±ω(2 + 1
2β

2).
It follows that βω ∈ Θ(Qm(·)) ∩ Tβ if

(βω)m
!

= ±ω(2 +
1

2
β2)

⇔ ωm = ±ω
⇔ ωm−1 = ±1 (5.10)

(note that this is the same condition as for the eigenvalues).
We will now look at some specific values for m:

• m = 2: First note that by the above calculations ρm = spr(A(ρ)) and βm =
nur(A(β)) are both satisfied for ρ = β = 2. By equations (5.8) and (5.10) it then
follows that

Σ(Q2(·)) ∩ T2 = Θ(Q2(·)) ∩ T2 = {±1}.
This is consistent with Theorem 5.2 as the index of phase imprimitivity ofG2(A0, A2)
is d = 2 (by equation (5.7)).

• m = 4: Here we have ρm = spr(A(ρ)) for ρ = 21/3 and by numerical approximation
βm = nur(A(β)) for β ≈ 1.298. In particular ρ < β.
Nonetheless we get the same cyclic distribution for the spectrum and the numerical
range, i.e.

Σ(Q4(·)) ∩ Tρ = {ρ exp(
2πik

6
) : k = 0, . . . , 5},

Θ(Q4(·)) ∩ Tβ = {β exp(
2πik

6
) : k = 0, . . . , 5}.

This is again consistent with Theorem 5.2 since by equation (5.7) the index of
phase imprimitivity is d = 6.

Example 5.8. Continuing from the previous example we want to choose m = 1 (im-
plying d = 0). However for m = 1 equation (5.9) has no real solutions. This can be
remedied by altering A0 to be

Ã0 =

[
0 0

1/2 0

]
.

Then βm = nur(A(β)) is satisfied for β1 ≈ 0.293 and β2 ≈ 1.707. We also see that
equation (5.10) is satisfied for all ω and thus

Θ(Q̃1(·)) ∩ Tβ1 = Tβ1 and Θ(Q̃1(·)) ∩ Tβ2 = Tβ2

14



which is again consistent with Theorem 5.2 for d = 0. Moreover, while the circles Tβ1
and Tβ2 belong to Θ(Q̃1(·)), by Theorem 3.4 the domain between them, i.e. the open
annulus Aβ1,β2 , is disjoint to Θ(Q̃1(·)).
This is in contrast to the set of eigenvalues since Tρ ⊆ Σ(Q(·)) for a single ρ > 0 already
implies Σ(Q(·)) = C.
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