

Technische Universität Berlin

FAKULTÄT II
MATHEMATIK UND
NATURWISSENSCHAFTEN

Institut für Mathematik

SCHEDULING AND/OR-NETWORKS ON

IDENTICAL PARALLEL MACHINES

by

THOMAS ERLEBACH VANESSA KÄÄB
ROLF H. MÖHRING

No. 047-2003

Scheduling AND/OR-Networks on Identical Parallel Machines

Thomas Erlebach∗ Vanessa Kääb†‡ Rolf H. Möhring†§

December 2003

Abstract

Scheduling precedence constrained jobs on identical parallel machines is a well investigated problem with
many applications. AND/OR-networks constitute a useful generalization of standard precedence constraints
where certain jobs can be executed as soon as at least one of their direct predecessors is completed. For the
problem of scheduling AND/OR-networks on parallel machines, we present a 2-approximation algorithm for
the objective of minimizing the makespan. The main idea of the algorithm is to transform the AND/OR con-
straints into standard constraints. For the objective of minimizing the total weighted completion time on one
machine, scheduling AND/OR-networks is as hard to approximate as LABEL COVER. We show that list schedul-
ing with shortest processing time rule is an O(

√

n)-approximation for unit weights on one machine and an
n-approximation for arbitrary weights.

1 Introduction
Scheduling precedence constrained jobs on identical parallel machines is a well investigated problem with many
applications. A precedence constraint of the form i ≺ j means that job j can be started only after the completion
of job i. If there are several jobs i with i ≺ j, the job j can be started only when all of these jobs i are completed
(AND-constraint). A natural and useful generalization of standard precedence constraints are AND/OR preced-
ence constraints, represented by AND/OR-networks. In addition to standard constraints, they allow to specify
that a node can begin execution as soon as at least one of its direct predecessors is completed (OR-constraint).
AND/OR-networks arise in many applications, for example in resource-constrained project scheduling [20] and in
assembly/disassembly sequencing [10]. In the latter application, a given product may have to be disassembled. Cer-
tain components can be removed only after the removal of other components, leading to standard AND-constraints.
However, it might also be possible to remove a component from one of several geometric directions, assuming
that other components blocking this direction have been removed beforehand. This case naturally leads to OR-
constraints. Therefore, the different possibilities how to reach a component can be suitably modeled by AND/OR
precedence constraints.

If a given set of jobs with AND/OR precedence constraints has to be executed by a bounded number of identical
machines (e.g., assembly lines, workers, etc.), interesting optimization problems arise. Natural objectives are the
makespan (the completion time of the job that finishes last), the total completion time (the sum of the completion
times of all jobs), and the total weighted completion time (where the completion time of each job is multiplied with
the weight of the job). While these problems have been studied intensively for standard precedence constraints,
only little is known about scheduling AND/OR-networks on one or several machines.

The makespan is certainly one of the most relevant objective functions for many applications. No matter which
aims are pursued in a real project, the overall completion time of the project in general plays an important role.
The total completion time is proportional to the average completion time and is therefore a useful criterion in
applications where the completion of each individual job brings a certain benefit. The total weighted completion
time is a natural variation where the importance of completing a job early can be specified by its weight. The total

∗ETH Zürich, Computer Engineering and Networks Laboratory (TIK), Gloriastrasse 35, CH-8092 Zürich, Switzerland, Fax +(41)-1-632-
1036, erlebach@tik.ee.ethz.ch, http://www.tik.ee.ethz.ch/˜erlebach.

†Technische Universität Berlin, Fakultät II, Institut für Mathematik, Sekr. MA 6-1, Straße des 17. Juni 136, D-10623 Berlin, Germany,
Fax +(49)-30-314-25191, {kaeaeb,moehring}@math.tu-berlin.de,http://www.math.tu-berlin.de/coga.

‡Former member of the European Graduate Program ‘Combinatorics, Geometry, and Computation’, supported by the Deutsche Forschungs-
gemeinschaft (DFG) under grant GRK 588/2.

§The author was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant Mo 446/3-4.

1

weighted completion time is also a useful objective function in compiler optimization, where fast algorithms are
needed to exploit the parallelism provided by pipelined, super-scalar, and very-long instruction word architectures
[14, 23]. Profile-driven code optimization with the total weighted completion time as a relevant cost measure is
also considered in [2].

1.1 Known Results
Scheduling with the makespan objective is trivial on one machine if the jobs are not restricted at all, but also
if standard or AND/OR precedence constraints are imposed among the jobs. The problem on identical parallel
machines is NP-complete even without precedence constraints and with just two machines. Nevertheless, Graham’s
list scheduling provides a simple 2-approximation for scheduling precedence constrained jobs on any number of
parallel machines [11]. Gillies and Liu [8] present a 2-approximation for scheduling jobs of an acyclic AND/OR-
network. Their algorithm first transforms the AND/OR-network into a standard precedence graph and then applies
Graham’s list scheduling.

Minimizing the total weighted completion time is a non-trivial problem even on a single machine. If there
are no precedence constraints among the jobs, it is well known that scheduling the jobs according to Smith’s
rule [22] (in order of non-decreasing processing time over weight ratio) yields an optimal solution. For the total
weighted completion time of standard precedence constrained jobs on one machine, 2-approximation algorithms
have been obtained with various techniques [13, 4, 3, 19]. For the problem with identical parallel machines, a
4-approximation algorithm was presented in [21]. Unfortunately, it seems that the techniques used to obtain these
algorithms resist any application to AND/OR precedence constraints.

1.2 Our Results
In this paper, we study scheduling problems with AND/OR precedence constrained jobs on one or several ma-
chines. For the problem of minimizing the makespan on identical parallel machines, we extend the algorithm
due to Gillies and Liu [8] to general feasible AND/OR-networks (which may contain cycles) in order to obtain a
2-approximation algorithm. Then we consider the problem of minimizing the total weighted completion time on a
single machine. For the special case with unit weights (i.e., total completion time), we prove that list scheduling
with shortest processing time rule is an O(

√
n)-approximation, where n is the number of jobs. This bound is

tight. The case with arbitrary weights seems to be harder to approximate. We observe that a reduction from LA-
BEL COVER proposed by Goldwasser and Motwani in [9, 10] together with an improved inapproximability result
for LABEL COVER by Dinur and Safra [5] shows that minimizing the total weighted completion time to within a
factor of 2log1−1/ log logc n n of the optimum is NP-hard for any c < 1/2. We prove that list scheduling with shortest
processing time rule is a simple n-approximation for the problem and that this bound is again tight.

2 Preliminaries

2.1 Problem Description
A scheduling instance consists of a set of n jobs V = {1, 2, . . . , n}. With each job j ∈ V we associate a (strictly)
positive processing time pj and a non-negative weight ωj . In addition to the jobs, a number m of identical parallel
machines will be given. The machines all run with the same speed and can process any job. Of course, at any point
in time, each machine can process only one job and every job can only be processed by one machine. We will
restrict to the non-preemptive case. Once a job is started on a certain machine, it will be finished on that machine
without any interruption.

The jobs are subject to two different classes of constraints. On one hand, standard precedence constraints
represented by a directed acyclic graph G = (V (G), E(G)) are given. An edge (i, j) ∈ E(G) represents the
constraint that j has to wait for the completion of i. In a feasible realization of such a problem, all jobs have to
be executed in accordance to the partial order induced by G. Each job j ∈ V has to wait for the completion of
all its predecessors in the partial order and thus will also be called an AND-node. On the other hand, we also
allow for precedence relations of the form that a job j has to wait for the completion of only one predecessor.
Those restrictions cannot be captured by the classical precedence constraints described above. The model of
standard precedence constraints can be generalized by the introduction of a set W of waiting conditions. A waiting
condition is an ordered pair w = (X, j), where X ⊆ V is a set of jobs and j ∈ V \ X is the waiting job. The

2

waiting job j can be processed as soon as one of the jobs in X has been completed. The standard precedence
constraints together with the waiting conditions can be represented by an AND/OR-network N = (V ∪ W, E) in
the following way: for every waiting condition w = (X, j) ∈ W , we introduce an OR-node, which we will denote
by w again. For every x ∈ X , we introduce a directed edge (x, w). In addition, there is a directed edge (w, j)
for the waiting job j. To model the required constraints correctly, we impose the rule that an OR-node w can be
scheduled as soon as any of its predecessors x ∈ X is completed. An OR-node w ∈ W can be considered as a
pure dummy node with processing time pw = 0 and weight ωw = 0. For convenience, we assume N to have a
common start vertex, the source s, and a common end vertex, the sink t, with ps = pt = 0 and ωs = ωt = 0. For
an illustration, an AND/OR-network is depicted in the left part of Figure 1, where node w3 represents the waiting
condition ({5, 6}, 7), for example.

PSfrag replacements

1

2

3

4

5

6

7

w1

w2 w3

s

t

PSfrag replacements

1

2

3

4

5

6

7
w1

w2

w3

s t

Figure 1: An AND/OR-network N on the left and a realization of N on the right side. AND-nodes are drawn as
circles and OR-nodes as shades squares.

In contrast to standard precedence constraints, an AND/OR-network may contain cycles and be feasible at the
same time. Remember that the AND/OR-network N = (V ∪ W, E) contains the precedence digraph G, as a
subgraph. A realization of an AND/OR-network N is a partial order R = (V, <R) which is an extension of G,
that is i <R j for each (i, j) ∈ E with i, j ∈ V , and

for each w = (X, j) ∈ W , there exists i ∈ X with i <R j.

A linear or total order L = (V, <L), which is a realization of N , is called linear realization. In Figure 1 a
realization of the AND/OR-network N on the left is depicted on the right hand side. A total order is given by
L = 1, 2, 3, 4, 5, 6, 7, for example. An AND/OR-network N is called feasible if it has a realization R. We refer
to [15, 20] for additional characterizations of feasible AND/OR-networks and a linear time algorithm to check for
feasibility.

For a given instance (N = (V ∪ W, E), p, ω, m), a feasible schedule is a non-negative vector of start times
S = (S1, . . . , Sn) for the jobs and waiting conditions such that

1. Sj ≥ max{Sv + pv | (v, j) ∈ E} for all j ∈ V (AND-constraints)

2. Sw ≥ min{Sv + pv | (v, w) ∈ E} for all w ∈ W (OR-constraints)

3. |{j ∈ V | Sj ≤ t < Sj + pj}| ≤ m at any time t ≥ 0 (machine constraints)

For a given schedule S, the corresponding completion time vector C is defined by Cj = Sj + pj . The makespan
of schedule S is denoted by Cmax(S) = maxj∈V Cj = Ct. The total completion time of S is

∑
j∈V Cj and the

total weighted completion time is
∑

j∈V ωjCj .
Let us consider the problem without machine constraints for the moment, that is m = ∞. By definition,

S = (∞, . . . ,∞) is a feasible schedule and if S = (S1, . . . , Sn) and S′ = (S′
1, . . . , S

′
n) are feasible schedules,

then also the component wise minimal schedule S ′′ = (min{S1, S
′
1}, . . . , min{Sn, S′

n}). It follows that there
exists a (unique) component wise minimal schedule, the so-called earliest start schedule (ES). We assume strictly
positive job processing times, thus an earliest start schedule can be computed by a modification of Dijkstra’s
shortest path algorithm in polynomial time. For further details we refer to [15]. Similar algorithms have been
presented before in [16, 1, 20]. The earliest start schedule ES has the following property. For every job j ∈ V , the
inequality Sj ≥ max{Sv +pv | (v, j) ∈ E} is fulfilled with equality for at least one edge (v, j) ∈ E as otherwise j
could start earlier. For the same reason, for each OR-node w ∈ W , the inequality Sw ≥ min{Sv+pv | (v, w) ∈ E}
is also fulfilled with equality for at least one edge. We call those edges (v, j) and (v, w) for which equality holds
tight.

3

In the earliest start schedule, every job is started as early as possible without violating any constraint. Therefore
it also finishes as early as possible. For the problem without machine constraints it follows that the earliest start
schedule ES is an optimal schedule for all three objective functions, the makespan, the total completion time,
and the total weighted completion time. In the following we will always denote an optimal schedule for a given
problem by S∗ = (S∗

1 , . . . , S∗
n).

To describe the problem under consideration quickly we will use the α|β|γ-notation of Lawler, Lenstra,
Rinnooy Kan, and Shmoys [18]. The first entry, α, specifies the machine environment, β describes the job char-
acteristics, where β = ao-prec denotes AND/OR precedence constraints, and γ specifies the objective function.
We refer to [12, 18] for a detailed description. As an example, the problem of scheduling jobs with unit processing
times and AND/OR precedence constraints on one machine with the objective to minimize the total completion
time is specified by 1|ao-prec, pj = 1|∑Cj .

2.2 List Scheduling
One of the most basic and intuitive approaches to tackle a given scheduling problem is list scheduling. The idea
is to order the jobs according to some priority rule, which gives an ordered list. Then the jobs are scheduled
according to this priority list. Whenever a machine is free, the first job in the list that has not been scheduled
yet and is available at that time is assigned to be processed by the free machine. List scheduling can easily be
implemented to run in polynomial time. According to [18], this algorithm has been presented first by Graham [11]
and we will also refer to it as Graham’s list scheduling algorithm.

In the literature, list scheduling is also called a priority-driven heuristic, according to the priority list that guides
the order in which the jobs are scheduled. In most of the algorithms we will consider, list scheduling will be a basic
component. Priority driven heuristics never intentionally leave machines idle. A machine is only left idle if there
are currently no jobs available. This means that for every job in the list, at least one predecessor is still in process.
Recursing this argument gives a well known fact for standard precedence constraints stated in the next lemma. Let
G = (V, E) be a standard (acyclic) precedence graph with a strictly positive processing time vector p and u, v ∈ V
two nodes such that there exists a u-v-path in G. The length of a longest path from u to v shall be denoted by `max

uv ,
where `max

uv = pv if u = v and `max
uv = pv + max{`max

ux | (x, v) ∈ E and there exists a u-x-path in G} if u 6= v.

Lemma 2.1 (Graham [11]). In any list schedule for a set of precedence constrained jobs, there is an s-t-path of
jobs that is executed during all periods when some machine is idle, and the length of this path is not longer than
the makespan of an optimal schedule.

The big advantage of Graham’s list scheduling is that it is easy, both to understand and to implement, and that
it is applicable for a wide range of problems. We now turn to our scheduling problems with AND/OR precedence
constraints.

3 The Makespan on Identical Parallel Machines
Minimizing the makespan of a set of precedence constrained jobs on one machine like an assembly line, a worker
or one processor, is trivial. If the jobs are not restricted at all, we can simply schedule them in any order without
interruption and idle time in between. If standard precedence constraints are involved, we can process the jobs in
order of a linear extension of the partial order G representing the precedences. In the case of AND/OR precedence
constraints, the solution is equally simple, the jobs can be executed in the order of a linear realization of the
AND/OR-network. In every case, the makespan is equal to the sum of the processing times of the jobs, assuming
that the constraints are feasible of course.

Now consider the case of scheduling a set of precedence constrained jobs on m identical parallel machines.
The problem Pm| |Cmax is already NP-complete for m = 2, but can be solved in pseudo-polynomial time for any
fixed number m of machines. For an arbitrary number of machines, that is P | |Cmax, the problem is NP-complete
in the strong sense [6].

Nevertheless, Graham’s list scheduling (GLS) performs provably well for this problem. Let SGLS denote the
schedule produced by list scheduling for P | |Cmax on m machines. Graham [11] proved that, for any instance,

Cmax(S
GLS) ≤ (2 − 1

m
) Cmax(S

∗).

4

Algorithm 1: Earliest Start List Schedule
Input: AND/OR-network N = (V ∪ W, E), number m ≥ 1 of machines, processing time vector p > 0

Output: schedule S = (S1, . . . , Sn)

compute earliest start schedule ES for (N, p) (no machine constraints);
let G = (V, E(G)) be the subgraph of N induced by V ;
foreach OR-node w = (X, j) ∈ W do

for exactly one x ∈ X with ESx + px = ESw do
add edge (x, j) to E(G);

let L be a linear extension of the resulting AND-graph;
apply List Scheduling to the AND-graph G with p and L to obtain the schedule S;
return S;

He also showed that this performance guarantee is not affected by precedence constraints. Thus list scheduling is
a 2-approximation for P |prec|Cmax.

As a generalization of standard precedence constraints, the problem of minimizing the makespan of AND/OR
constrained jobs on identical parallel machines, P |ao-prec|Cmax, is NP-complete. Fortunately, the problem with
AND/OR precedence constraints can be reduced to the problem with standard precedence constraints preserving
the approximation guarantee. Gillies and Liu [8] present a 2-approximation algorithm for acyclic AND/OR-
networks. The basic idea of the so-called Minimum Path Heuristic in [8] is to first change the AND/OR-network
into an AND-only network, that is a standard precedence digraph, and then apply Graham’s list scheduling. For
this transformation, Gillies and Liu use a recursive argument which minimises the longest path to each OR-node
provided that only AND-nodes precede the OR-node. This construction fails in the presence of cycles. We present
an algorithm similar to the Minimum Path Heuristic which is applicable to AND/OR-networks containing cycles.

The strategy of our Earliest Start List Schedule presented in Algorithm 1 is to fix the predecessor of an OR-
node to one of the tight (with respect to the earliest start schedule) direct predecessors. Then the OR-node can be
removed by making the chosen predecessor a direct predecessor of the immediate successor of the OR-node. Note
that this precedence graph G is a realization of N . In addition it minimizes the longest path to each OR-node,
respectively its waiting job, among all realizations. Every step of the Earliest Start List Schedule (ESL) can be
executed in polynomial time, thus the Earliest Start List Schedule can be implemented to run in polynomial time.
Together with Lemma 2.1 by Graham and the optimality of the earliest start schedule with respect to the makespan
without machine constraints, we are able to prove an approximation guarantee of 2.

Theorem 3.1. Let SESL denote the schedule computed by the Earliest Start List Schedule and S∗ an optimal
schedule for an instance of P |ao-prec|Cmax. Then

Cmax(S
ESL) ≤ (2 − 1

m
) Cmax(S

∗).

Moreover, this bound is tight.

Proof. Consider the schedule SESL and its makespan Cmax(S
ESL) computed by the Earliest Start List Schedule.

At any time 0 < t ≤ Cmax(S
ESL) either all machines are busy or one or more machines are idle. Accordingly, we

can divide the time between 0 and Cmax(S
ESL) into busy periods and idle periods. We denote the total length of

all busy periods by Tb and the total length of all idle periods by Ti, thus

Cmax(S
ESL) = Tb + Ti.

For the total length of idle periods, Ti ≤ `max
st (G) by Lemma 2.1. From the construction of graph G we get that

`max
st (G) = Cmax(ES), where ES is the earliest start schedule of (N, p) without machine constraints computed

in the first step of the algorithm. We know that the earliest start schedule achieves the optimal makespan for an
instance (N, p) and therefore is a lower bound on Cmax(S

∗). Together this yields

Ti ≤ Cmax(S
∗).

Additionally, we can compare the total processing time of all jobs with the makespan of S∗ and SESL. A trivial
lower bound on the makespan of any feasible schedule—and thus also an optimal schedule—is 1

m

∑
j∈V pj . The

5

Earliest Start List Schedule also has to process all the jobs. During a busy period, all m machines process some
job, while during an idle period at least one machine processes some job. We therefore get that

mTb + 1Ti ≤
∑

j∈V

pj ≤ mCmax(S
∗).

The worst case for Cmax(S
ESL) = Tb + Ti subject to the presented constraints is achieved for Ti = Cmax(S

∗)
and Tb = (1 − 1/m)Cmax(S

∗), which yields the result.
Examples for standard precedence graphs that achieve the worst-case bound of Graham’s list scheduling can

be found in [11] or [7]. If we apply the Earliest Start List Schedule to such instances, there is nothing to be done in
the first part of the algorithm and the performance guarantee will be achieved by the last part, the list scheduling.
This proves the tightness of the stated approximation ratio and completes the proof. �

We observe that the presence of additional OR constraints does not seem to make it any harder to minimize
the makespan of precedence constrained jobs on identical parallel machines. Unfortunately the situation changes
completely for the total weighted completion time objective as we will see in the next section.

4 The Total Weighted Completion Time on One Machine
The problem of minimizing the total weighted completion time on one machine is NP-hard in the strong sense
as soon as precedence constraints are involved, see [17]. Again this complexity result carries over to AND/OR
precedence constraints.

In contrast to the makespan objective, minimizing the total weighted completion time of a set of AND/OR
constrained jobs is much harder than for standard precedence constraints. In fact, it is not approximable within any
reasonable factor. Therefore we can expect that the successful approaches for standard precedence constraints will
not be applicable to AND/OR precedence constraints. We will examine the performance of list scheduling with
shortest processing time (SPT) rule on the problem 1|ao-prec|∑ ωjCj for both cases of unit and arbitrary weights.
The SPT rule simply orders the jobs according to non-decreasing processing times. It turns out that the greedy
approach of list scheduling with SPT rule results in a useful property of the computed schedule with respect to any
other feasible schedule. This property, which is stated in Lemma 4.1, will be a major ingredient for the proofs of
the performance guarantees presented thereafter.

Let (N = (V ∪ W, E), p, ω) be an instance of 1|ao-prec|∑ωjCj and let SSPT with completion time vector
CSPT be the schedule computed for this instance by list scheduling with SPT rule. Consider an arbitrary feasible
schedule S and its completion time vector C for (N, p, ω). For any job j ∈ V we define a threshold ξj(S) with
respect to schedule S: ξj(S) = max{ pi | Ci ≤ Cj }, that is, the maximum processing time of a job equal to j or
scheduled before j in S. ξ(S) = (ξ1(S), . . . , ξn(S)) denotes the vector of thresholds of schedule S.

Lemma 4.1. Let S be a feasible schedule for an instance (N, p, ω) with threshold ξ(S). Then for every job j ∈ V
it holds that pi ≤ ξj(S) for all i with CSPT

i ≤ CSPT
j .

Proof. The proof is accomplished by induction along the order of the jobs in the feasible schedule S. To this end
we assume without loss of generality that the jobs are numbered such that S1 < S2 < · · · < Sn. In addition, we
write ξ for short instead of ξ(S).

First we make the following observation for schedule SSPT , which we will refer to as the greedy choice
argument. Let t be the point in time, at which job j becomes available, that is, in some realization of N all jobs
in the predecessor set of j have been completed before t. Then, by the greedy choice of list scheduling with SPT
rule, no job with a longer processing time than j itself (and therefore coming after j in the list) will be scheduled
between t and j.

Consider job 1. By definition we get that ξ1 = p1. In addition we know that job 1 is available at time t = 0 as
it is scheduled at that time in the feasible schedule S and thus cannot have any direct predecessors except s. The
claim follows by the greedy choice argument.

Now consider job k and assume that for all j = 1, . . . , k−1 it holds that pi ≤ ξj for all i with CSPT
i ≤ CSPT

j .
We have to distinguish between the two cases that the threshold of k is greater or equal to the threshold of k − 1.
Case a) ξk > ξk−1. From the definition of ξ it follows that ξk = pk and thus pk > ξk−1. Let x ∈ {1, . . . , k − 1}
be the job that finishes last in the list schedule, that is CSPT

x = max{CSPT
j | j = 1, . . . , k − 1}. By assumption,

pi ≤ ξx ≤ ξk−1 < pk for all i with CSPT
i ≤ CSPT

x . We conclude that k is scheduled after x in the list schedule

6

and pi ≤ ξk for all i with CSPT
i ≤ CSPT

x . From the feasibility of schedule S and the maximal choice of x in
SSPT it follows that k is available at time CSPT

x . By the greedy choice argument, no job with a strictly longer
processing time than k will be scheduled between CSPT

x and CSPT

k , which proves the first case.
Case b) ξk = ξk−1. In this case, k may finish before or after some other job j < k. Again let x ∈ {1, . . . , k − 1}
be such that CSPT

x = max{CSPT
j | j = 1, . . . , k − 1}. If k completes before x, that is CSPT

k < CSPT
x then the

claim trivially holds as by assumption pi ≤ ξx ≤ ξk−1 = ξk for all i with CSPT
i ≤ CSPT

x . If on the other hand
k completes after x, we can again argue as in case a). For the jobs completed before CSPT

x the claim holds by
assumption and for the jobs completed between CSPT

x and CSPT

k it follows by the greedy choice argument. �

Note that this property of SSPT holds for the threshold of any feasible schedule S and thus in particular for the
threshold of an optimal solution S∗, independent of the optimality criterion.

Theorem 4.2. Scheduling a set of n AND/OR precedence constrained jobs in order of non-decreasing processing
times (SPT) is an O(

√
n)-approximation for the problem 1|ao-prec|∑Cj . Moreover, this bound is tight.

Proof. Consider the schedule SSPT with completion time vector CSPT for an instance (N, p) of 1|ao-prec|∑ Cj

with n jobs. Let x ∈ V be the last job in the list schedule for which x itself and every job completed before x in
the list schedule have a processing time smaller than or equal to CSPT

x /
√

n, if such a job exists. Formally, x is
chosen such that

CSPT

x = max
j∈V

{CSPT

j | pi ≤
CSPT

j√
n

∀i with CSPT

i ≤ CSPT

j }.

If such an x exists, let V ≤ = {j ∈ V | CSPT
j ≤ CSPT

x } denote the set of jobs that are scheduled before x including
x itself. The set of jobs scheduled after x in the list schedule shall be denoted by V > = {j ∈ V | CSPT

j > CSPT
x }.

If no such x exists, then V ≤ = ∅ and V > = V . We have to treat the jobs in the two sets separately.
First consider V ≤. The total completion time of the list schedule for the jobs in V ≤ can be generously bounded

from above by ∑

j∈V ≤

CSPT

j ≤ nCSPT

x .

Now we have to bound the total completion time of an optimal schedule for the jobs in V ≤ from below. By
construction, pj ≤ CSPT

x /
√

n for every j ∈ V ≤. Thus, there are at least r ≥ √
n jobs in V ≤ and we want

to minimize their total completion time. Let j1, . . . , jr be the jobs in V ≤ such that C∗
j1

< · · · < C∗
jr

. Since∑r

i=1 pji ≥ CSPT
x , we obtain the following inequality:

∑

j∈V ≤

C∗
j ≥ CSPT

x + (CSPT

x − pjr) + (CSPT

x − pjr − pjr−1
) + · · · + p1

The sum on the right hand side is minimized if we descend from the maximal summand CSPT
x as fast as possible

and in as few steps as possible. Since pji ≤ CSPT
x /

√
n for i = 1, . . . , r, this is achieved if the processing time of

every job ji, i = 1, . . . , r, takes its maximum possible value pji = CSPT
x /

√
n. We then get

∑

j∈V ≤

C∗
j ≥

√
n∑

i=1

i
CSPT

x√
n

≥
√

n

2
CSPT

x

Combining upper and lower bound yields
∑

j∈V ≤ CSPT
j ≤ 2

√
n

∑
j∈V ≤ C∗

j for the jobs in V ≤.
Now consider the jobs in V >. By definition, for every j ∈ V > there exists a job k with pk > CSPT

j /
√

n that is
either equal to j or scheduled before j in the list schedule. Consider an optimal schedule S∗ and its corresponding
thresholds ξj(S∗) for j. By Lemma 4.1 we know that j and every job scheduled before j in the list schedule has a
processing time smaller than or equal to ξj(S∗). This yields

CSPT
j√
n

< pk ≤ ξj(S∗) ≤ C∗
j .

7

Note that ξj(S∗) is a trivial lower bound on C∗
j by definition. This is all we need to prove the approximation ratio

stated in the theorem, as we can now estimate:
∑

j∈V

CSPT

j ≤
∑

j∈V ≤

CSPT

j +
∑

j∈V >

CSPT

j

≤ 2
√

n
∑

j∈V ≤

C∗
j +

∑

j∈V >

√
nC∗

j ≤ 2
√

n
∑

j∈V

C∗
j

We have shown that list scheduling with SPT rule is a ρ-approximation algorithm with ρ ∈ O(
√

n), it remains
to prove that also ρ ∈ Ω(

√
n). Already for standard precedence graphs, the approximation ratio for list scheduling

with SPT rule is bounded from below by Ω(
√

n) and therefore this also holds for the general case of AND/OR
precedence constraints. We will demonstrate this by presenting a series of digraphs that force the solution obtained
by list scheduling with SPT rule to be a factor of Θ(

√
n) away from the optimum.

Let k > 0 be an integer and consider the following precedence graph G = (V, E). The set of jobs V consists
of k jobs i1, . . . , ik, one job x, and k2 jobs j1, . . . , jk2 that form a chain, preceded by x. Thus in E there are the
edges (x, j1) and (jκ, jκ+1) for all 1 ≤ κ ≤ k2 − 1. We have the following job processing times: piκ = k2, for
κ = 1, . . . , k, px = k2, and pjκ = 1, for all κ = 1, . . . , k2.

The SPT rule orders the jobs according to non-decreasing processing time and thus a possible ordering is
L = j1, . . . , jk2 , i1, . . . , ik, x. Note that we can force the SPT rule to construct this bad list L by slightly disturbing
the processing times. List scheduling then computes a schedule with the following order of the jobs:

SPT : i1 . . . ik x j1 . . . jk2

For the objective value of this schedule we get that

∑

j∈V

CSPT

j ≥
k+1∑

`=1

`k2 + k2(k + 1)k2 = Ω(k5).

The optimal schedule prefers job x, which can release the long chain of short jobs. Therefore, an exact algorithm
produces the following schedule:

OPT : x j1 . . . jk2 i1 . . . ik

For the value of an optimal schedule we can calculate that

∑

j∈V

C∗
j ≤ (k2 + 1)2k2 +

k+2∑

`=3

`k2 = O(k4)

Thus the performance ratio of list scheduling for this instance is Ω(k5)/O(k4) = Ω(k). The precedence graph has
n ∈ Θ(k2) many vertices, which yields an approximation guarantee of Θ(

√
n) for list scheduling with SPT rule

on this instance for n respectively k going towards infinity. �

Coming back to the weighted problem 1|ao-prec|∑ωjCj , we are actually able to establish a strong inapprox-
imability result. Goldwasser and Motwani [9] present an approximation preserving reduction from LABEL COVER
to a special case of scheduling with AND/OR precedence constraints arising in disassembly problems.

An instance of a problem considered in [9] is given by a set of jobs, called tasks, with unit processing times.
The jobs are either AND- or OR-nodes and there are no weights involved. The AND/OR-network representing
the precedence constraints is assumed to have internal-tree structure, which is a slight generalisation of a tree.
We call a node of the network a leaf, if it has no direct predecessors. An AND/OR-network N has internal-tree
structure, if N \ {j ∈ V | j is a leaf} is an in-tree. The scheduling model requires that for an AND-node to be
scheduled, all its direct predecessors have to be processed before the AND-node, and for an OR-node only one
direct predecessor has to be scheduled before the OR-node and the others may be left completely unprocessed.
The goal of AND/OR scheduling is to minimize a) the number of leaves or b) the number of jobs (AND- and OR-
nodes) that need to be scheduled to be able to schedule some sink y of the network, and thus solving the problem
instance. Goldwasser and Motwani show that LABEL COVER is a special case of scheduling AND/OR constrained
jobs subject to objective a) and that a) can be reduced to b), preserving the approximation guarantee.

8

Minimizing the number of jobs, i.e. objective b), that need to be scheduled to be able to schedule some sink y
of an AND/OR-network can be modeled as a special case of 1|ao-prec|∑ωjCj . In the given AND/OR scheduling
instance we assign unit processing times to all AND-nodes and zero processing time to the OR-nodes. In addition
we set ωy = 1 and ωv = 0 for every other node v ∈ V ∪W . A solution S ′ to the problem of scheduling a minimum
number of AND/OR constrained jobs corresponds to a solution to 1|ao-prec, pj = 1|∑ωjCj that minimises the
total weighted completion time

∑
j∈V ωjCj = Cy : Simply schedule all jobs contained in S ′ before y and all other

jobs afterwards. The total weighted completion time is equal to the number of AND-nodes of solution S ′.
Together with a strengthened inapproximability result for LABEL COVER by Dinur and Safra [5] we can make

the following statement.

Theorem 4.3. The scheduling problem 1|ao-prec|∑ωjCj with unit processing times is NP-hard to approximate
within a factor of 2log1−γ n of the optimum value, where γ = 1/(log log n)c for any constant c < 1/2 and n = |V |
is the number of jobs.

For a detailed presentation of the proof we refer to [15]. Theorem 4.3 shows that 1|ao-prec| ∑ ωjCj is a very
hard problem even if all processing times are equal to one. Interestingly enough, the next theorem proves that list
scheduling with shortest processing time rule is an easy n-approximation for this problem, and it seems difficult to
achieve an asymptotically better ratio.

Theorem 4.4. Scheduling a set of n weighted AND/OR precedence constrained jobs in order of non-decreasing
processing times (SPT) is an n-approximation for the problem 1|ao-prec|∑ωjCj . Moreover, this bound is tight.

Proof. Let (N = (V ∪ W, E), p, ω) be an instance of 1|ao-prec|∑ωjCj . Without loss of generality assume
that the jobs are numbered such that p1 ≤ p2 ≤ · · · ≤ pn. Let SSPT and CSPT denote the schedule and its
completion time vector produced by Graham’s list schedule with the list L = 1, . . . , n. The optimal schedule and
its completion time vector are denoted by S∗ and C∗ as usual. By definition, the threshold ξj(S∗) of job j with
respect to S∗ is a lower bound on C∗

j . Now we have to bound CSPT
j from above. Lemma 4.1 states that for each

j ∈ V it holds that pi ≤ ξj(S∗) for all jobs i with CSPT
i ≤ CSPT

j . For every j ∈ V we therefore obtain the
following upper bound.

CSPT

j ≤
∑

pi≤ξj(S∗)

pi ≤
∑

pi≤ξj(S∗)

ξj(S∗) ≤ nξj(S∗) ≤ nC∗
j ,

which yields the upper bound on the approximation ratio on a per job basis.
To prove the lower bound on the approximation ratio of list scheduling with SPT rule for the problem 1|ao-

prec|∑ωjCj , we present a series of AND/OR-networks that force the solution of list scheduling to be a factor of
n away from the optimum.

Let k > 0 be an integer and consider the following AND/OR-network N = (V ∪ W, E). The set of jobs V
consists of k + 2 jobs, i1, . . . , ik, x, and j. In addition there is one OR-node w ∈ W . The edge set E contains
edges (iκ, iκ+1) for κ = 1, . . . , k − 1, (ik, w), (x, w), and (w, j). The processing times of all jobs are equal to
one. The weights are as follows, ωiκ = 0 for all κ = 1, . . . , k, ωx = 0, and ωj = 1.

The constructed AND/OR-network is very simple, it consists of one OR-node w with its direct successor j.
The two predecessors of the OR-node w are one chain of k nodes and one single node x. If we sort the jobs in order
of non-decreasing processing times, we may get the bad list L = j, i1, . . . , ik, x. Again, by slightly disturbing the
processing times we can force the shortest processing time rule to choose this bad list L. List scheduling then
computes a schedule with the following order of the jobs:

SPT : i1 . . . ik j x

For the objective value of this schedule we get that
∑

j∈V

ωjC
SPT

j = k + 1.

The optimal schedule prefers job x, as it can release j, which is the only job with positive weight. Therefore, an
exact algorithm produces the following schedule:

OPT : x j i1 . . . ik

9

The value of this optimal schedule is ∑

j∈V

ωjC
∗
j = 2.

Thus the performance ratio of list scheduling for this instance is k+1
2 = Θ(k). The AND/OR-network has n =

k + 3 ∈ Θ(k) many vertices, which yields a performance ratio of Θ(n) for the list scheduling algorithm on
this instance for n respectively k going towards infinity. This establishes the lower bound for the approximation
guarantee of the shortest processing time rule for the problem 1|ao-prec|∑ωjCj . �

The constructed example has very restricted values, thus the performance guarantee even holds for the problem
1|ao-prec, pj = 1, ωj ∈ {0, 1}|∑ωjCj . In addition, it also provides a lower bound of Ω(n) for list scheduling
with Smith’s rule.

We remark that the ideas from the proof of Theorem 4.4 can easily be generalized to show that list scheduling
with SPT rule is also an n-approximation algorithm for P |ao-prec|∑ωjCj .

5 Conclusions
We want to briefly summarize the stated results. In Section 3 we have seen that minimizing the makespan on
identical parallel machines subject to AND/OR precedence constraints can be approximated within a factor of 2.
This approximation guarantee was established by transforming the AND/OR precedence constraints into standard
precedence constraints and applying list scheduling to the resulting instance. It is remarkable that in the case of
the makespan objective, additional OR constraints do not seem to make the scheduling problem any harder.

In contrast to this, a major gap occurs in the approximability of minimizing the total weighted completion
time for standard and AND/OR precedence constrained jobs on a single machine. While the problem can be
approximated within a constant factor for standard constraints, the inapproximability result stated in Theorem 4.3
shows that this is not the case for AND/OR constraints unless P=NP. Therefore, it is not possible to transform
the AND/OR constraints into standard precedence constraints such that the approximation ratio for the problem is
preserved. In addition, there seems to be a difference in the approximability of the weighted and the unweighted
case for AND/OR precedence constraints. For standard precedence constrained jobs, Woeginger proves in [24] that
the best possible approximation ratio for minimizing the total weighted completion time is the same for the general
problem as well as for a number of special cases including unit processing times, unit weights, and combinations
thereof. For AND/OR precedence constrained jobs, the inapproximability result of Theorem 4.3 and the O(

√
n)-

approximation algorithm for the unweighted case of Theorem 4.2 suggest that a gap may exist between the hardness
of approximating the total weighted and the total unweighted completion time. We also could not prove any
inapproximability result for 1|ao-prec|∑ Cj . It is still possible that there exists a constant or at least logarithmic
approximation algorithm for the problem 1|ao-prec|∑Cj .

References
[1] G. M. Adelson-Velsky and E. Levner. Project scheduling in AND/OR graphs: A generalization of Dijkstra’s

algorithm. Technical report, Department of Computer Science, Holon Academic Institute of Technology,
Holon, Israel, November 1999.

[2] C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B. R. Rau, and M. Schlansker. Profile-driven instruction
level parallel scheduling with application to super blocks. In Proceedings of the 29th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-29), pages 58–67, 1996.

[3] C. Chekuri and R. Motwani. Precedence constrained scheduling to minimize sum of weighted completion
times on a single machine. Discrete Applied Mathematics, 98:29–38, 1999.

[4] F. Chudak and D. S. Hochbaum. A half-integral linear programming relaxation for scheduling precedence-
constrained jobs on a single machine. Operations Research Letters, 25:199–204, 1999.

[5] I. Dinur and S. Safra. On the hardness of approximating label-cover. Electronic Colloquium on Computa-
tional Complexity (ECCC) Technical Report TR99-015, School of Mathematical Sciences, Tel Aviv Univer-
sity, 1999.

10

[6] M. J. Garey and D. S. Johnson. Computers and Intractibility: A Guide to the Theory of NP-Completeness.
Freemann, New York, 1979.

[7] D. W. Gillies and J. W.-S. Liu. Greed in recource scheduling. Acta Informatica, 28:755–775, 1991.

[8] D. W. Gillies and J. W.-S. Liu. Scheduling tasks with AND/OR precedence constraints. SIAM Journal on
Computing, 24:797–810, 1995.

[9] M. H. Goldwasser and R. Motwani. Intractability of assembly sequencing: Unit disks in the plane. In
Algorithms and Data Structures, volume 1272 of LNCS, pages 307–320. Springer, 1997. Proceedings of the
5th annual Workshop on Algorithms and Data Structures (WADS’97).

[10] M. H. Goldwasser and R. Motwani. Complexity measures for assembly sequences. International Journal of
Computational Geometry & Applications, 9:371–417, 1999.

[11] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45:1563–1581,
1966.

[12] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and approximation in
deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5:287–326, 1979.

[13] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion time:
off-line and on-line approximation algorithms. Mathematics of Operations Research, pages 513–549, 1997.

[14] J. L. Hennessy and T. Gross. Postpass code optimization of pipeline constraints. ACM Transactions on
Programming Languages and Systems (TOPLAS), 5:4220–448, 1983.

[15] V. Kääb. Scheduling with AND/OR-Networks. PhD thesis, Technische Universität Berlin, Germany, 2003.

[16] D. E. Knuth. A generalization of dijkstra’s algorithm. Information Processing Letters, 6:1–5, 1977.

[17] E. L. Lawler. Sequencing jobs to minimize total weighted completion time. Annals of Discrete Mathematics,
2:75–90, 1978.

[18] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and scheduling: Al-
gorithms and complexity. In Logistics of Production and Inventory, volume 4 of Handbooks in Operations
Research and Management Science, pages 445–522. North-Holland, Amsterdam, 1993.

[19] F. Margot, M. Queyranne, and Y. Wang. Decompositions, network flows, and a precedence constrained
single machine scheduling problem. Technical Report 2000-29, Department of Mathematics, University of
Kentucky, Lexington, 2000.

[20] R. H. Möhring, M. Skutella, and F. Stork. Scheduling with AND/OR precedence constraints. Technical
Report 689/2000, Technische Universität Berlin, Department of Mathematics, Germany, 2000. To appear in
SIAM Journal on Computing.

[21] A. Munier, M. Queyranne, and A. S. Schulz. Approximation bounds for a general class of precedence con-
strained parallel machine scheduling problems. In R.E. Bixby, E.A. Boyd, and R.Z. Rı́os-Mercado, editors,
Integer Programming and Combinatorial Optimization, volume 1412 of LNCS, pages 367–383. Springer,
1998. Proceedings of the 6th International Conference on Integer Programming and Combinatorial Optimiz-
ation (IPCO).

[22] W. E. Smith. Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3:59–66,
1956.

[23] S. Weiss and J. E. Smith. A study of scalar compilation techniques for pipelined supercomputers. In Pro-
ceedings of the 2nd International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-II), pages 105–109, 1987.

[24] G. J. Woeginger. On the approximability of average completion time scheduling under precedence con-
straints. In F. Orejas, P.G. Spirakis, and J. van Leeuwen, editors, Automata, Languages and Programming,
volume 2076 of LNCS, pages 887–897. Springer, 2001. Proceedings of the 28th International Colloquium on
Automata, Languages and Programming (ICALP’01).

11

