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Abstract
We formulate and analyze a mathematical framework for continuous-time mean field
games with finitely many states and common noise, including a rigorous probabilistic
construction of the state process and existence and uniqueness results for the resulting
equilibrium system. The key insight is that we can circumvent the master equation
and reduce the mean field equilibrium to a system of forward-backward systems of
(random) ordinary differential equations by conditioning on common noise events. In
the absence of common noise, our setup reduces to that of Gomes, Mohr and Souza
(Appl Math Optim 68(1): 99–143, 2013) and Cecchin and Fischer (Appl Math Optim
81(2):253–300, 2020).
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1 Introduction

Since the seminal contributions of Lasry and Lions [44] and Huang, Malhamé and
Caines [39], mean field games have become an active field of mathematical research
with awide range of applications, including economics [13,16,27,33,41,50], sociology
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[35], finance [17,45], epidemiology [23,26,46] and computer science [40]; see also
the overview article [29] and the monograph [9].

Mean field games constitute a class of dynamic, multi-player stochastic differential
games with identical agents. The key characteristic of the mean field approach is that
(i) the payoff and state dynamics of each agent depend on other agents’ decisions
only through an aggregate statistic (typically, the aggregate distribution of states);
and (ii) no individual agent’s actions can change the aggregate outcome. Thus, in
solving an individual agent’s optimization problem, the feedback effect of his own
actions on the aggregate outcome can be discarded, breaking the notorious vicious
circle (“the optimal strategy depends on the aggregate outcome, which depends on the
strategy, which depends…”). This significantly facilitates the identification of rational
expectations equlibria. A standard assumption that further simplifies the analysis is
that randomness is idiosyncratic (equivalently, there is no common noise), i.e. that
the random variables appearing in one agent’s optimization are independent of those
in any other’s. As a result, all randomness is “averaged out” in the aggregation of
individual decisions, and the equilibrium dynamics of the aggregate distribution are
deterministic.

In the literature, mean field games are most often studied in settings with a con-
tinuous state space and deterministic or diffusive dynamics, i.e. stochastic differential
equations (SDEs) driven by Brownian motion. The corresponding dynamic program-
ming equations thus become parabolic partial differential equations, and the aggregate
dynamics are represented by a flow of Borel probability measures; see, e.g., the
monographs [4] and [9] and the references therein. Formally, the mean field game
is typically formulated in terms of a controlled McKean-Vlasov SDE, where the coef-
ficients depend on the current state and control and the distribution of the solution;
intuitively, these McKean-Vlasov dynamics codify the dynamics that pertain to a rep-
resentative agent. The mathematical link to N -player games is subsequently made
through suitable propagation of chaos results in the mean field limit N → ∞; see,
e.g., [14,25,28,42,43]. In this context, the analysis of McKean-Vlasov SDEs has also
seen significant progress recently; see, e.g., [6,8,19,48]. In the presence of common
noise, i.e. sources of risk that affect all agents and do not average out in the mean
field limit, the mathematical analysis becomes even more involved as the dynamics of
the aggregate distribution become stochastic, leading to conditional McKean-Vlasov
dynamics; see, e.g., [1,12,21,51]. We refer to [10] for background and further refer-
ences on continuous-state mean field games with common noise.

There is also a strand of literature on mean field games with finite state spaces,
including [2,15,18,24,30,31,34,49] as well as [9, §7.2]. In a recent article, [22] provide
an extension of [31] to mean field interactions that occur not only through the agents’
states, but also through their controls. To the best of our knowledge, however, to date
there has been no extension of these results to settings that include common noise. In
the context of finite-state mean field games, we are only aware of two contributions
that include common stochasticity (both via the master equation and with a different
focus/setting than this paper): [5] analyze the master equation for finite-state mean
field games with common noise, and [3] include a common continuous-time Gaussian
noise in the aggregate distribution dynamics.
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In this article, we set up amathematical framework for finite-state mean field games
with common noise.1 Our setup extends that of [31] and [15] by common noise events
at fixed points in time. We provide a rigorous formulation of the underlying stochastic
dynamics, and we establish a verification theorem for the optimal strategy and an
aggregation theorem to determine the resulting aggregate distribution. This leads to
a characterization of the mean field equilibrium in terms of a system of (random)
forward-backward differential equations. The key insight is that, after conditioning
on common noise configurations, we obtain classical piecewise dynamics subject to
jump conditions at common noise times.

The remainder of this article is organized as follows: In Sect. 2 we set up the
mathematical model, provide a probabilistic construction of the state dynamics, and
formulate the agent’s optimization problem. In Sect. 3 we state the dynamic pro-
gramming equation and establish a verification theorem for the agent’s optimization,
given an ex ante aggregate distribution (Theorem 6). Section 4 provides the dynam-
ics of the ex post distribution (Theorem 9) and, on that basis, a system of random
forward-backward ODEs for the mean field equilibrium (Definition 10) as well as
corresponding existence and uniqueness results (Theorems 13 and 16 ). In Sect. 5
we showcase our results in two benchmark applications: agricultural production and
infection control. The Appendix provides the proofs of Theorems 13 and 16.

2 Mean Field Model

We first provide an informal description of the individual agents’ state dynamics,
optimization problem, and the resulting mean field equilibrium. The agent’s state
process X = {Xt } takes values in the finite set S. Between common noise events,
transitions from state i to state j occur with intensity Qi j (t,Wt , Mt , νt ), where Wt

represents the common noise events that have occurred up to time t ; Mt the time-
t aggregate distribution of agents; and νt the agent’s control. In addition, upon the
realization of a common noise event Wk at time Tk , the state jumps from XTk− to
XTk = J XTk−(Tk,WTk , MTk−). With this, the agent aims to maximize

E
ν
[∫ T

0
ψ Xt (t,Wt , Mt , νt )dt + �XT (WT , MT )

]

where ψ and � are suitable reward functions and the aggregate distribution process
M = {Mt } is given by

Mt � μ(t,Wt ) for t ∈ [0, T ].

Here μ represents the aggregate distribution of states as a function of the common
noise factors.We obtain a rational expectations equilibriumby determiningμ such that

1 Wewish to point out that our focus is not on the mean field limit of multi-player games; rather, we directly
investigate the mean field equilibrium via the corresponding McKean-Vlasov dynamics (see also Remark 7
and [11] in that context).
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the representative agent’s ex ante expectations equal the ex post aggregate distribution
resulting from all agents’ optimal decisions, i.e.

P
ν̂ (Xt ∈ · |Wt ) = μ̂(t,Wt ) for all t ∈ [0, T ],

where ν̂ and μ̂ denote the equilibrium strategy and the equilibrium aggregate distribu-
tion. In the remainder of this section, we provide a rigorous mathematical formulation
of this model.

2.1 Probabilistic Setting and Common Noise

Throughout, we fix a time horizon T > 0 and a finite set W and work on a probability
space (�,A, P) that carries a finite sequence W1, . . . ,Wn of i.i.d. random variables
that are uniformly distributed2 onW.We refer toW1, . . . ,Wn as common noise factors
and to P as the reference probability. The common noise factorWk is revealed at time
Tk , where

0 � T0 < T1 < T2 < · · · < Tn < Tn+1 � T .

Both n and the common noise times T0, T1, . . . , Tn+1 are fixed and deterministic. The
piecewise constant filtration G = {Gt } generated by common noise events is given
by

Gt � σ
(
Wk : k ∈ [1 : n], Tk ≤ t

) ∨ N for t ∈ [0, T ]

whereN denotes the set ofP-null sets. For each configuration of common noise factors
w ∈ W

n we write

wt � (w1, . . . , wk) for t ∈ [Tk, Tk+1〉, k ∈ [0 : n],

where for 0 ≤ s ≤ t ≤ T we set [s, t〉 � [s, t) if t < T and [s, T 〉 � [s, T ]. With this
convention, W = {Wt } represents a piecewise constant, G-adapted process.

Definition 1 Afunction f : [0, T ]×W
n → R

m isnon-anticipative if for all t ∈ [0, T ]

f (t, w) = f (t, w̄) whenever w, w̄ ∈ W
n are such that wt = w̄t .

Moreover, f is regular if f ( · , w) is absolutely continuous on [Tk, Tk+1〉 for all
k ∈ [0 : n]. �	
With a slight abuse of notation, if f : [0, T ] × W

n → R
m is non-anticipative, we

write

f (t, wt ) � f (t, w) for w ∈ W
n, t ∈ [0, T ].

2 While the common noise factors are i.i.d. uniformly distributed under P, the distribution of W1, . . . ,Wn
in the agent’s optimization problem can be modeled arbitrarily via the functions κ1, . . . , κn introduced
below; see also Lemma 2.
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Note that for f regular, the one-sided limits f (Tk−, w) � limt↑Tk f (t, w) exist for
all k ∈ [1 : n], w ∈ W

n .

2.2 Optimization Problem

The agent’s state and action spaces are given by

S � [1 : d] and U ⊆ R
k, where d, k ∈ N and U �= ∅,

and we identify the space of aggregate distributions on S with the space of probability
vectors

M �
{
m ∈ [0,∞)1×d :

d∑
i=1

mi = 1
}
.

The coefficients in the state dynamics and payoff functional are bounded and Borel
measurable functions

Q : [0, T ] × W
n × M × U → R

d×d J : [0, T ] × W
n × M → S

d

ψ : [0, T ] × W
n × M × U → R

d � : W
n × M → R

d

such thatQ(·, ·,m, u),ψ(·, ·,m, u) and J (·, ·,m) are non-anticipative for all fixedm ∈
M and u ∈ U; Q satisfies the intensitymatrix conditions Qi j (t, w,m, u) ≥ 0, i, j ∈ S,
i �= j and

∑
j∈S Qi j (t, w,m, u) = 0, i ∈ S, for (t, w,m, u) ∈ [0, T ]×W

n ×M×U;
and for each k ∈ [1 : n] the function

κk : W
k × M → [0, 1], (wk, w1, . . . , wk−1,m) �→ κk(wk |w1, . . . , wk−1,m),

isBorelmeasurablewith
∑

w̄k∈W κk(w̄k |w1, . . . , wk−1,m) = 1 for allw1, . . . , wk−1 ∈
W and m ∈ M.

We further suppose that (�,A, P) supports, for each i, j ∈ S, i �= j , a standard
(i.e., unit intensity) Poisson process Ni j = {Ni j

t } and an S-valued random variable
X0 such that

X0 and Ni j , i, j ∈ S, i �= j and W1, . . . ,Wn are independent.

The corresponding full filtration F = {Ft } is given by

Ft � σ
(
X0, Ws, Ni j

s : s ∈ [0, t]; i, j ∈ S, i �= j
) ∨ N for t ∈ [0, T ].

Note that Gt ⊆ Ft for all t ∈ [0, T ], that both G and F satisfy the usual conditions,
and that Ni j is a standard (F, P)-Poisson process for i, j ∈ S, i �= j . Given a regular,
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non-anticipative function μ, the G-adapted, M-valued ex ante aggregate distribution
M = {Mt } is given by

Mt � μ(t,Wt ) for t ∈ [0, T ]

and the agent’s optimization problem reads3

E
ν
[∫ T

0
ψ Xt (t,Wt , Mt , νt )dt + �XT (WT , MT )

]
−→
ν∈A

max! (Pμ)

where the class of admissible strategies for (Pμ) is given by the set of closed-loop
controls

A �
{
ν : [0, T ] × S

[0,T ] × W
n → U : ν is Borel measurable and

ν( · , x, · ) is non-anticipative for all x ∈ S
[0,T ]}.

Note that A subsumes the class of Markovian feedback controls considered in, e.g.,
[31] or [34], and that each ν ∈ A canonically induces an F-adapted U-valued process
via

νt � ν
(
t, X( · ∧t)−,Wt

)
for t ∈ [0, T ].

E
ν[ · ] denotes the expectation operator with respect to the probability measure P

ν

given by

dP
ν

dP
=

∏
i, j∈S,
i �= j

⎛
⎜⎜⎜⎝exp

{∫ T

0

(
1 − Qi j (t,Wt , Mt , νt )

)
dt

}
·

∏
t∈(0,T ],
�Ni j

t �=0

Qi j (t,Wt , Mt , νt )

⎞
⎟⎟⎟⎠

× |W|n ·
n∏

k=1

κk
(
Wk |W1, . . . ,Wk−1, MTk−

); (1)

and the agent’s state process X is given by

dXt =
∑
i, j∈S,
i �= j

1{Xt−=i}( j − i)dNi j
t for t ∈ [Tk, Tk+1〉, k ∈ [0 : n], (2)

subject to the jump conditions

XTk = J XTk−(Tk,WTk , MTk−
)
for k ∈ [1 : n]. (3)

3 For notational simplicity, we write Xt instead of Xt−, Mt instead of Mt−, etc., where it does not make
a difference.

123



Applied Mathematics & Optimization (2021) 84:3173–3216 3179

Here Ni j triggers transitions from state i to state j , and P
ν is defined in such a way

that Ni j has P
ν-intensity Qi j (t,Wt , Mt , νt ); see Lemma 2 below.4 In summary, in

order to formulate a mean field model within the above setting, it suffices to specify

• the agent’s state space S, action space U and the common noise space W,
• the transition intensitiesQ(t, w,m, u), transitionkernelsκk(wk |w1, . . . , wk−1,m)

and common noise jumps J (t, w,m), and finally
• the reward functions ψ(t, w,m, u) and �(w,m).

2.3 State Dynamics

In what follows, we show that the preceding construction implies the dynamics
described informally above.

Lemma 2 (Pν-dynamics) For each admissible strategy ν ∈ A, P
ν is a well-defined

probability measure on (�,A), absolutely continuous with respect to P, and satisfies

P
ν = P on σ(X0).

Moreover, N i j is a counting process with (F, P
ν)-intensity λi j = {λi jt }, where

λ
i j
t � Qi j (t,Wt , Mt , νt ) for t ∈ [0, T ] and i, j ∈ S, i �= j .

Finally, for all k ∈ [1 : n] we have

P
ν
(
Wk = wk |GTk−

) = κk(wk |W1, . . . ,Wk−1, MTk−) for all w1, . . . , wk ∈ W

where G denotes the common noise filtration and, in particular,

P
ν1 = P

ν2 on GT for all admissible strategies ν1, ν2 ∈ A.

Proof We fix ν ∈ A and split the proof into four steps.
Step 1: P

ν is well-defined by (1). Since Ni j is a standard Poisson process under
P, the compensated process N̄ i j

t � Ni j
t − t , t ≥ 0, is an (F, P)-martingale for all

i, j ∈ S, i �= j . We define θν = {θν
t } via5

θν
t �

∑
i, j∈S,
i �= j

∫ t

0

(
Qi j (s,Ws, μ(s,Ws), νs

)− 1
)
dN̄ i j

s , t ∈ [0, T ],

4 See also [7, Sect. 3.3] for a similar change-of-measure construction of jump processes with stochastic
intensities.
5 Note that

∫ t
0 Qi j (s,Ws , μ(s,Ws ), νs ) − 1)dN̄ i j

s = ∫ t
0 Qi j (s,Ws−, μ(s,Ws−), νs ) − 1)dN̄ i j

s P-a.s.
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and observe that the Doléans-Dade exponential E[θν] is a local (F, P)-martingale with

E[θν ]t =
∏

i, j∈S,
i �= j

⎛
⎜⎜⎜⎝exp

{∫ t

0

(
1 − Qi j (s,Ws , μ(s,Ws), νs

))
ds

}
·
∏

s∈(0,t],
�Ni j

s �=0

Qi j (s,Ws , μ(s,Ws), νs)

⎞
⎟⎟⎟⎠ (4)

for t ∈ [0, T ]. Next, we define ϑ = {ϑt } via

ϑt �
∑

k∈[1:n],
Tk≤t

(
|W| · κk

(
Wk |W1, . . . ,Wk−1, μ(Tk−,WTk−)

)− 1
)
, t ∈ [0, T ],

and note that ϑ is an (F, P)-martingale. Indeed, for each k ∈ [0 : n]we have ϑt = ϑTk
for t ∈ [Tk, Tk+1〉 and, using thatWk is independent of FTk− and uniformly distributed
on W under P, it follows that

E
[
ϑTk |FTk−

] = ϑTk− + E
[|W| · κk

(
Wk |W1, . . . ,Wk−1, μ(Tk−,WTk−)

)− 1
∣∣FTk−

]

= ϑTk− − 1 + |W| ·
∑

wk∈W
P
(
Wk = wk |W1, . . . ,Wk−1, μ(Tk−,WTk−)

)

× κk
(
wk |W1, . . . ,Wk−1, μ(Tk−,WTk−)

)

= ϑTk− − 1 + |W| ·
∑

wk∈W

1

|W| · κk
(
wk |W1, . . . ,Wk−1, μ(Tk−,WTk−)

) = ϑTk−.

Hence the Doléans-Dade exponential E[ϑ] is a local (F, P)-martingale, and we have

E[ϑ]t =
∏

s∈(0,t]
(1 + �ϑs) =

∏
k∈[1:n],
Tk≤t

(
|W| · κk

(
Wk |W1, . . . ,Wk−1, μ(Tk−,WTk−)

))

(5)

for t ∈ [0, T ]. Since �Ni j
Tk

= 0 for all i, j ∈ S, i �= j , and k ∈ [1 : n] a.s., we have
[θν, ϑ] = 0, and thus the process Zν � E[θν + ϑ] = E[θν] · E[ϑ], i.e.

Zν
t =

∏
i, j∈S,
i �= j

⎛
⎜⎜⎜⎝exp

{∫ t

0

(
1 − Qi j (s,Ws , μ(s,Ws), νs

))
ds

}
·
∏

s∈(0,t],
�Ni j

s �=0

Qi j (s,Ws , μ(s,Ws), νs)

⎞
⎟⎟⎟⎠

×
∏

k∈[1:n],
Tk≤t

(
|W| · κk

(
Wk |W1, . . . ,Wk−1, μ(Tk−,WTk−)

))
(6)

is a local (F, P)-martingale. Since

sup
t∈[0,T ]

|E[θν]t | ≤ ed
2T · �Y (7)
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where � � maxi, j∈S, i �= j ‖Qi j‖∞ and Y �
∑

i, j∈S, i �= j N
i j
T ∼P Poisson(d(d − 1)T )

and

sup
t∈[0,T ]

|E[ϑ]t | ≤ |W|n (8)

it follows that supt∈[0,T ] |Zν
t | is P-integrable, so Zν is in fact an (F, P)-martingale.

Since Zν is non-negative with Zν
0 = 1 by construction, we conclude that P

ν is a
well-defined probability measure on A, absolutely continuous with respect to P, with
density process

dP
ν

dP

∣∣∣∣
Ft

= Zν
t , t ∈ [0, T ].

Step 2: P
ν-intensity of N i j . Let i, j ∈ S with i �= j . Since P

ν � P it is clear that
Ni j is a P

ν-counting process, so it suffices to show that the process
ν
N̄ i j = {νN̄ i j

t }
given by

ν
N̄ i j
t � Ni j

t −
∫ t

0
Qi j (s,Ws, μ(s,Ws), νs)ds, t ∈ [0, T ], (9)

is a local (F, P
ν)-martingale. To show this, by Step 1 it suffices to demonstrate that

Zν · ν
N̄ i j is a local (F, P)-martingale. Noting that

• [Nk�, Ni j ] = ∑
s∈(0, · ]

�Nk�
s · �Ni j

s = 0 whenever k, � ∈ S and (k, �) �= (i, j),

• dZν
t = Zν

t−dθν
t + Zν

t−dϑt = ∑
k,�∈S,k �=�

Zν
t−
(
Qk�(t,Wt , μ(t,Wt ), νt ) − 1

)
dN̄ k�

t

+ Zν
t−dϑt ,

• d[Zν,
ν
N̄ i j ]t = Zν

t−(Qi j (t,Wt , μ(t,Wt ), νt ) − 1)dNi j
t ,

and using integration by parts, the local martingale property follows since

d
(
Zν
t · ν

N̄ i j
t
) = Zν

t−d
ν
N̄ i j
t + ν

N̄ i j
t−dZν

t + d[Zν,
ν
N̄ i j ]t

= Zν
t−dN

i j
t − Zν

t−Qi j (t,Wt , μ(t,Wt ), νt )dt + ν
N̄ i j
t−dZν

t

+ Zν
t−Qi j (t,Wt , μ(t,Wt ), νt )dN

i j
t − Zν

t−dN
i j
t

= ν
N̄ i j
t−dZν

t + Zν
t−Qi j (t,Wt , μ(t,Wt ), νt )dN̄

i j
t .

Step 3: P
ν = P on σ(X0). For any function g : S → R we have

E
ν[g(X0)] = E[g(X0) · Zν

T ] = E
[
g(X0) · E[Zν

T |F0]
] = E[g(X0) · Zν

0 ] = E[g(X0)]

by the (F, P)-martingale property of Zν .
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Step 4: Distribution of Wk under P
ν . Let k ∈ [1 : n] and w1, . . . , wk ∈ W. Since

E[θν]Tk = E[θν]Tk− a.s. and Wk is uniformly distributed on W and independent of
FTk− under P, iterated conditioning yields

P
ν
(
W1 = w1, . . . ,Wk = wk

) = E
[
Zν
Tk · 1{Wk=wk } · 1{W1=w1,...,Wk−1=wk−1}

]

= E
[
Zν
Tk− · |W| · κk(Wk |W1, . . . ,Wk−1, μ(Tk−,WTk−)) · 1{Wk=wk } · 1{W1=w1,...,Wk−1=wk−1}

]

= |W| · κk(wk |w1, . . . , wk−1, μ(Tk−, wTk−)) · E
[
Zν
Tk− · 1{W1=w1,...,Wk−1=wk−1}

· P(Wk = wk |FTk−)
]

= κk(wk |w1, . . . , wk−1, μ(Tk−, wTk−)) · P
ν
(
W1 = w1, . . . ,Wk−1 = wk−1

)
.

Thus we have P
ν(Wk = wk |GTk−) = κk(wk |W1, . . . ,Wk−1, MTk−) and the proof is

complete. �	

Lemma 2 implies in particular that P
ν(�Ni j

t �= 0) = 0 for every t ∈ [0, T ], so as
a consequence we have

�Xt = 0 P
ν-a.s. for all t ∈ [0, T ] \ {T1, . . . , Tn}.

Moreover, since P
ν1 = P

ν2 on GT for all admissible controls ν1, ν2 ∈ A and Mt =
μ(t,Wt ) for t ∈ [0, T ], the agent’s ex ante beliefs concerning the common noise
factors are the same, irrespective of his control.

3 Solution of the Optimization Problem

In the following, we solve the agent’s maximization problem (Pμ) using the associated
dynamic programming equation (DPE). This is the same methodology as in [31] and
[15]; see [22] for an alternative approach (to extended mean field games, but without
common noise) based on backward SDEs.

The DPE for the value function of the agent’s optimization problem (Pμ) reads

0 = sup
u∈U

{
∂vi

∂t
(t, w) + ψ i (t, w,μ(t, w), u

)+ Qi ·(t, w,μ(t, w), u
) · v(t, w)

}

for i ∈ S, subject to suitable consistency conditions for t = Tk , k ∈ [1 : n], and the
terminal condition

v(T , w) = �
(
w,μ(T , w)

)
for all w ∈ W

n .

Assumption 3 There exists a Borel measurable function h : [0, T ]×W
n×M×R

d →
U
d such that for every i ∈ S and all (t, w,m, v) ∈ [0, T ] × W

n × M × R
d we have

hi (t, w,m, v) ∈ argmax
u∈U

{
ψ i (t, w,m, u) + Qi ·(t, w,m, u) · v

}
.
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Assumption 3 is satisfied e.g. if U is compact and Q and ψ are continuous with
respect to u ∈ U. Note that, sinceψ i (·, ·,m, u) and Qi ·(·, ·,m, u) are non-anticipative
for m ∈ M, u ∈ U, we can assume without loss of generality that h( · , · ,m, v) is
non-anticipative for m ∈ M, v ∈ R

d . With this, we define

Q̂ : [0, T ] × W
n × M × R

d → R
d×d , Q̂i j (t, w,m, v) � Qi j (t, w,m, hi (t, w,m, v)

)
,

ψ̂ : [0, T ] × W
n × M × R

d → R
d , ψ̂ i (t, w,m, v) � ψ i (t, w,m, hi (t, w,m, v)

)

and thus obtain the following reduced-form DPE, which we use in the following:

Definition 4 Let μ : [0, T ] × W
n → M be regular and non-anticipative. A function

v : [0, T ] × W
n → R

d is called a solution of (DPμ) subject to (CCμ), (TCμ) if v is
non-anticipative and satisfies the ordinary differential equation (ODE)6

v̇(t, w) = −ψ̂
(
t, w,μ(t, w), v(t, w)

)− Q̂
(
t, w,μ(t, w), v(t, w)

) · v(t, w) (DPμ)

for t ∈ [Tk, Tk+1〉, k ∈ [0 : n], subject to the consistency and terminal conditions

v(Tk−, w) = �k
(
w,μ(Tk−, w), v(Tk, · )

)
, (CCμ)

v(T , w) = �
(
w,μ(T , w)

)
(TCμ)

for k ∈ [1 : n] and all w ∈ W
n . Here, for k ∈ [1 : n], the jump operator �k is defined

via

� i
k(w,m, v̄) �

∑
w̄k∈W

κk
(
w̄k |w1, . . . , wk−1,m

) · v̄ J i (Tk ,(w−k ,w̄k ),m)(w−k , w̄k), i ∈ S,

(10)

where v̄ : W
n → R

d and (w−k, w̄k) � (w1, . . . , wk−1, w̄k, wk+1, . . . , wn) for
w̄k ∈ W, w ∈ W

n . �	
Observe that (DPμ) represents a system of (random) ODEs, coupled via w ∈ W

n .
The ODEs run backward in time on each segment [Tk, Tk+1〉 × W

n , k ∈ [0 : n], and
their terminal conditions for t ↑ Tk+1 are specified by (TCμ) for k = n and by (CCμ)
for k < n. Note that for t ∈ [Tk, Tk+1〉 the relevant common noise factorsW1, . . . ,Wk

are known.

Remark 5 While the significance of the DPE (DPμ) and the terminal condition (TCμ)
are clear, the consistency conditions (CCμ) warrant a brief comment: For i ∈ S,
k ∈ [1 : n] and w ∈ W

n the state process jumps from state i to state j �
J i (Tk, (w−k,Wk), μ(Tk−, wTk−)) on {XTk− = i} ∩ {WTk− = wTk−} when the com-
mon noise factor Wk is revealed at time Tk . �	
6 All ODEs in this article are taken in the sense of Carathéodory; see [36, §I.5]. Briefly, x : I → R is
a solution of ẋ(t) = f (t, x(t)), x(t0) = x0, in the sense of Carathéodory if t �→ f (t, x(t)) is Lebesgue
integrable and satisfies x(t) = x0 + ∫ t

t0
f (s, x(s))ds for all t ∈ I .
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We next link the solution of the DPE to the underlying stochastic control problem.

Theorem 6 (Verification) Suppose μ : [0, T ] × W
n → M is regular and non-

anticipative and v is a solution of (DPμ) subject to (CCμ) and (TCμ). Then v is the
agent’s value function for problem (Pμ), i.e.

∑
i∈S

P(X0 = i)vi (0) = sup
ν∈A

E
ν
[∫ T

0
ψ Xt (t,Wt , Mt , νt )dt + �XT (WT , MT )

]
,

and an optimal control is given by ν̂ ∈ A with

ν̂
(
t, X( · ∧t)−,Wt

) = hXt−(t,Wt , μ(t,Wt ), v(t,Wt )
)

for t ∈ [0, T ].

Proof Let ν ∈ A be an admissible strategy. Until further notice we fix k ∈ [0 : n].
Step 1: Dynamics on [Tk, Tk+1〉. From Itô’s lemma, applicable due to regularity of

v, we obtain

vXTk
(
Tk ,WTk

) = v
XTk+1− (Tk+1−,WTk+1−

)

−
∑
i, j∈S,
i �= j

∫ Tk+1

Tk
1{Xs−=i}

(
v j (s,Ws) − vi (s,Ws)

)
d

ν
N̄ i j
s

−
∫ Tk+1

Tk

d∑
i=1

1{Xs=i}
(
v̇i (s,Ws) + Qi · (s,Ws , μ(s,Ws), νs) · v(s,Ws)

)
ds.

(11)

Step 2: Jump dynamics at Tk . We recall from Lemma 2 that

P
ν(Wk = w̄k |XTk−,W1, . . . ,Wk−1) = P

ν(Wk = w̄k |W1, . . . ,Wk−1)

= κk
(
w̄k |W1, . . . ,Wk−1, μ(Tk−,WTk−)

)
.

In view of the jump dynamics (3) and the consistency condition (CCμ), we thus obtain

E
ν
[
vXTk

(
Tk ,WTk

)∣∣σ (XTk−,WTk−
)]

= E
ν
[
v J

XTk− (Tk ,(WTk−,Wk ),μ(Tk−,WTk−))
(
Tk , (WTk−,Wk)

)∣∣XTk−,WTk−
]

=
∑

w̄k∈W
κk
(
w̄k |WTk−, μ(Tk−,WTk−)

)
v J

XTk− (Tk ,(WTk−,w̄k ),μ(Tk−,WTk−))
(
Tk , (WTk−, w̄k)

)

= �
XTk−
k

(
WTk−, μ(Tk−,WTk−), v(Tk , · )

) = vXTk− (Tk−,WTk−). (12)

Step 3: Optimality. Combining (11) and (12) for k = [1 : n] and using (TCμ) yields
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vX0 (0) = vXT (T ,WT ) +
n∑

k=1

(
vXTk− (Tk−,WTk−

)− vXTk
(
Tk ,WTk

))

−
n∑

k=0

[ ∑
i, j∈S,
i �= j

∫ Tk+1

Tk
1{Xs−=i}

(
v j (s,Ws) − vi (s,Ws)

)
d

ν
N̄ i j
s

+
∫ Tk+1

Tk

d∑
i=1

1{Xs=i}
(
v̇i (s,Ws) + Qi · (s,Ws , μ(s,Ws), νs) · v(s,Ws)

)
ds

]

= �XT (WT , μ (T ,WT )) +
n∑

k=1

(
E

ν
[
vXTk

(
Tk ,WTk

)∣∣σ (XTk−,WTk−
)]− vXTk

(
Tk ,WTk

))

−
∑
i, j∈S,
i �= j

Mi j
T −

∫ T

0

d∑
i=1

1{Xs=i}
(
v̇i (s,Ws) + Qi · (s,Ws , μ(s,Ws), νs) · v(s,Ws)

)
ds,

(13)

where for i, j ∈ S, i �= j the local (F, P
ν)-martingale Mi j is given by

Mi j
t �

∫ t

0
1{Xs−=i}

(
v j (s,Ws) − vi (s,Ws)

)
d

ν
N̄ i j
s for t ∈ [0, T ].

Since
ν
N̄ i j is a compensated counting process and v and Q are bounded, Mi j is in fact

an (F, P
ν)-martingale. Hence taking P

ν-expectations in (13), using the tower property
of conditional expectation and the fact that P

ν and P coincide on σ(X0) by Lemma 2,
and finally that v solves the DPE, we obtain

∑
i∈S

P(X0 = i)vi (0) = E
[
vX0 (0)

] = E
ν
[
vX0 (0)

]

= E
ν

[
�XT (WT , μ (T ,WT ))

−
∫ T

0

d∑
i=1

1{Xs=i}
(
v̇i (s,Ws) + Qi · (s,Ws , μ(s,Ws), νs) · v(s,Ws)

)
ds

]

≥ E
ν

[
�XT (WT , MT ) +

∫ T

0
ψ Xs (s,Ws , Ms , νs) ds

]
. (14)

If we replace ν with ν̂, the same argument applies with equality in (14); we thus
conclude that v is the value function of (Pμ), and that the strategy ν̂ is optimal. �	

The optimal strategy is Markovian in the agent’s state; this is unsurprising given
the literature, see e.g. [31, Theorem 1] or [22, Proposition 3.9] and [15, Theorem 4].
Note, however, that the time-t optimal strategy may depend on all common noise
events that have occurred up to time t , as Wt = (W1, . . . ,Wk) for t ∈ [Tk, Tk+1〉. In
the following, we denote by P̂ the probability measure

P̂ � P
ν̂
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where ν̂ is the optimal control specified in Theorem 6. It follows from Lemma 2 that
Ni j has P̂-intensity λ̂i j = {̂λi jt } for i, j ∈ S, i �= j , where

λ̂
i j
t � Qi j (t,Wt , μ(t,Wt ), h

Xt−(t,Wt , μ(t,Wt ), v(t,Wt ))
)

for t ∈ [0, T ]. (15)

4 Equilibrium

Having solved the agent’s optimization problem for a given ex ante functionμ, we now
turn to the resulting mean field equilibrium.We first identify the aggregate distribution
resulting from the optimal control.

Remark 7 This paper generally adopts a “representative agent” point of view; an
alternative justification of mean field equilibrium is via convergence of Nash equi-
libria of symmetric N -player games in the limit N → ∞; see, among others,
[2,14,15,18,20,22,24,28]. In the setting of this article (albeit under additional reg-
ularity conditions) a mean field limit justification can be provided along the lines of
the proof of Theorem 7 in [31] by conditioning on common noise configurations,
similarly as in the proof of Theorem 9 below. �	

4.1 Aggregation

Given an ex ante aggregate distribution specified in terms of a regular, non-anticipative
functionμ and a corresponding solution v of (DPμ) subject to (CCμ), (TCμ), Theorem 6
yields an optimal strategy ν̂ for the agent’s optimization problem (Pμ).With P̂ denoting
the probability measure associated with ν̂, the resulting ex post aggregate distribution
is given by the M-valued, G-adapted process M̂ = {M̂t },

M̂t � P̂(Xt ∈ · |Gt ) for t ∈ [0, T ]

where G denotes the common noise filtration. We note that M̂ is càdlàg since G is
piecewise constant and X is càdlàg. Equilibrium obtains if M̂t = μ(t,Wt ) for all
t ∈ [0, T ]. To proceed, we aim for a more explicit description of M̂ and, in particular,
its dynamics. Thus we define for k ∈ [1 : n]

�k : W
n × M × M → M, �k(w,m, m̄) � m · Pk(w, m̄), (16)

where Pk : W
n × M → {0, 1}d×d is given by

Pi j
k (w, m̄) � 1{J i (Tk ,w1,...,wk ,m̄)= j} for i, j ∈ S

and we set

m0 � P(X0 ∈ · ) = P̂(X0 ∈ · ) ∈ M.
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Lemma 8 Let μ : [0, T ] × W
n → M and v : [0, T ] × W

n → R
d be regular and

non-anticipative, and suppose that Y = {Yt } is an M-valued stochastic process with
dynamics

Y0 = m0, Yt = YTk +
∫ t

Tk
Ys · Q̂(s,Ws, μ(s,Ws), v(s,Ws)

)
ds

for t ∈ [Tk, Tk+1〉, k ∈ [0 : n] (17)

that satisfies the consistency conditions

YTk = �k
(
WTk ,YTk−, μ(Tk−,WTk−)

)
for k ∈ [1 : n].

Then Y is G-adapted.

Proof Step 1: Existence and uniqueness of Carathéodory solutions. For each k ∈
[0 : n] and w ∈ W

n , since μ and v are regular and Q is bounded, the function

f : [Tk, Tk+1] × R
1×d → R

1×d , f (t, y) � y · Q̂(t, w,μ(t, w), v(t, w)
)

is measurable in the first and Lipschitz continuous in the second argument. Thus, using
thatμ, v and Q̂ are non-anticipative, a classical result, see [36, Theorem I.5.3], implies
that for each initial condition y ∈ R

1×d there exists a unique Carathéodory solution
ϕ
y,wTk
k : [Tk, Tk+1〉 → R

1×d of

ẏ(t) = y(t) · Q̂(t, wTk , μ(t, wTk ), v(t, wTk )
)
for t ∈ [Tk, Tk+1〉, y(Tk) = y.

Step 2: Y is G-adapted. First note that Y0 = m0 is clearly G0-measurable. Next,
suppose that YTk is GTk -measurable, and note that for t ∈ [Tk, Tk+1〉 we have Wt =
WTk , so

Yt = YTk +
∫ t

Tk
Ys · Q̂(s,WTk , μ(s,WTk ), v(s,WTk )

)
ds.

Thus from uniqueness in part (a) it follows that we have the representation

Yt = ϕ
YTk ,WTk
k (t) for t ∈ [Tk, Tk+1〉.

Hence Yt isGTk -measurable for all t ∈ [Tk, Tk+1〉. Finally, for all k ∈ [0 : (n−1)] the
consistency condition implies that YTk+1 = �k+1(WTk+1,YTk+1−, μ(Tk+1−,WTk+1−))

is GTk+1 -measurable, so the claim follows by induction on k ∈ [0 : n]. �	
Theorem 9 (Aggregation) Letμ : [0, T ]×W

n → M be regular and non-anticipative
with μ(0) = m0. Suppose v is a solution of (DPμ) subject to (CCμ), (TCμ), and the
agent implements his optimal strategy ν̂ as defined in Theorem 6. Then the aggregate
distribution M̂ has the P̂-dynamics

dM̂t = M̂t · Q̂(t,Wt , μ(t,Wt ), v(t,Wt )
)
dt for t ∈ [Tk, Tk+1〉, k ∈ [0 : n], (M)
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and satisfies the initial condition

M̂0 = m0 (M0)

and the jump conditions

M̂Tk = �k
(
WTk , M̂Tk−, μ(Tk−,WTk−)

)
for k ∈ [1 : n]. (Mk)

Proof Letw ∈ W
n be a common noise configuration. Since X is defined path by path,

see (2) and (3), we first note that X = Xw on {WT = w}, where Xw satisfies (2) and

Xw
Tk = J

Xw
Tk−(Tk, wTk , μ(Tk−, wTk−)

)
for k ∈ [1 : n]. (18)

We define ζ(w) = {ζ(w)t } via

ζ(w)t �
∏

i, j∈S,
i �= j

(
exp

{∫ t

0

(
1 − Qi j (s, ws , μ(s, ws), h

Xw
s− (s, ws , μ(s, ws), v(s, ws))

))
ds
}

×
∏

s∈(0,t],
�Ni j

s �=0

Qi j (s, ws , μ(s, ws), h
Xw
s− (s, ws , μ(s, ws), v(s, ws))

))
.

Using analogous arguments as in Step 1 of the proof of Lemma 2 (see in particular (4)
and (7)), it follows that there exists a probability measure P̂

w with density process

dP̂
w

dP

∣∣∣∣
Ht

� ζ(w)t for t ∈ [0, T ],

where the filtration H = {Ht } is given by

Ht � σ
(
X0, Ni j

s : s ∈ [0, t]; i, j ∈ S, i �= j
) ∨ N for t ∈ [0, T ].

Furthermore, in view of (4) and (15) we have

ζ(w) = E[θ ν̂] on {WT = w}. (19)

Step 1: Conditional Kolmogorov dynamics. Throughout Step 1, we fix a common
noise configuration w ∈ W

n . It follows exactly as in the proof of Lemma 2 (with P̂
w

in place of P̂) that

P̂
w � P, P̂

w = P on σ(X0),

and that for i, j ∈ S, i �= j , the process Ni j is a counting process with (H, P̂
w)-

intensity

Qi j (t, wt , μ(t, wt ), h
Xw
t−(t, wt , μ(t, wt ), v(t, wt ))

)
for t ∈ [0, T ].
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Boundedness of Q implies that for each z ∈ R
d the process Lw[z] = {Lw

t [z]},

Lw
t [z] �

∑
i, j∈S,
i �= j

∫ t

0
1{Xw

s−=i} · (z j − zi )d
w
N̄ i j
s for t ∈ [0, T ],

is an (H, P̂
w)-martingale, where

w
N̄ i j = {wN̄ i j

t } is given by

w
N̄ i j
t � Ni j

t −
∫ t

0
Qi j (s, ws , μ(s, ws), h

Xw
s− (s, ws , μ(s, ws), v(s, ws))

)
ds, t ∈ [0, T ].

Using Itô’s lemma and the fact that λ̂
i j
t = Q̂i j (t,Wt , μ(t,Wt ), v(t,Wt )) on {Xt− =

i}, t ∈ [0, T ], by (15), we have for each z ∈ R
d , k ∈ [0 : n] and t ∈ [Tk, Tk+1〉

zX
w
t = z

Xw
Tk + Lw

t [z] − Lw
Tk [z] +

d∑
i=1

∫ t

Tk
1{Xw

s =i} · Q̂i ·(s, ws , μ(s, ws), v(s, ws)) · z ds.

Taking expectations with respect to P̂
w and using Fubini’s theorem yields

Ê
w
[
zX

w
t
] = Ê

w
[
z
Xw
Tk
]+

d∑
i=1

∫ t

Tk
P̂

w(Xw
s = i) · Q̂i ·(s, ws, μ(s, ws), v(s, ws)) · z ds,

so with z = ei , i ∈ S, we get

P̂
w(Xw

t = i) = P̂
w(Xw

Tk = i) +
d∑
j=1

∫ t

Tk
P̂

w(Xw
s = j) · Q̂ ji (s, ws , μ(s, ws), v(s, ws))ds.

(20)

It follows from (20) that η(w) = {η(w)t },

η(w)t � P̂
w(Xw

t ∈ · ), t ∈ [0, T ] (21)

satisfies, for all i ∈ S and k ∈ [0 : n],

η(w)it = η(w)iTk +
∫ t

Tk
η(w)s · Q̂·i (s, ws , μ(s, ws), v(s, ws)) ds for t ∈ [Tk , Tk+1〉.

(22)

Moreover, since P̂
w = P on σ(X0) and Xw

0 = X0, η(w) satisfies the initial condition

η(w)0 = P̂
w(Xw

0 ∈ · ) = P(Xw
0 ∈ · ) = P(X0 ∈ · ) = m0. (23)
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Finally, consider a common noise time t = Tk and note that for all i ∈ S the jump
condition (18) implies

η(w)iTk = P̂
w
(
Xw
Tk = i

) = P̂
w
(
J
Xw
Tk− (Tk , wTk , μ(Tk−, wTk−)) = i

)

=
d∑
j=1

P̂
w
(
J j (Tk , wTk , μ(Tk−, wTk−)) = i

∣∣Xw
Tk− = j

) · P̂
w(Xw

Tk− = j)

=
d∑
j=1

1{J j (Tk ,wTk ,μ(Tk−,wTk−))=i
} · P̂

w(Xw
Tk− = j)

=
d∑
j=1

P ji
k (wTk , μ(Tk−, wTk−)) · η(w)

j
Tk− = �i

k

(
wTk , η(w)Tk−, μ(Tk−, wTk−)

)
.

(24)

Since η(WT ) = ∑
w∈Wn 1{WT =w} · η(w), in view of (22), (23) and (24) it follows

from Lemma 8 that the process η(WT ) is G-adapted.
Step 2: Identification of η(WT ). Recall that GT = σ(WT ) ∨ N and let w ∈ W

n .
For t ∈ [0, T ] and i ∈ S we have by (6) and (19)

Ê
[
1{WT =w} · 1{Xt=i}

] = E
[
1{WT =w} · 1{Xw

t =i} · Z ν̂
T

] = E
[
1{WT =w} · 1{Xw

t =i} · ζ(w)T · E[ϑ]T
]

=
n∏

k=1

(|W| · κk(wk |w1, . . . , wk−1, μ(Tk−, wTk−))
) · E

[
1{WT =w} · 1{Xw

t =i} · ζ(w)T
]

= |W|n · P̂(WT = w) · P(WT = w) · P̂
w(Xw

t = i) = Ê
[
1{WT =w} · η(WT )it

]
,

where in the final line the first identity is due to Lemma 2 and P-independence of
(ζ(w), Xw) and GT ; and the second is due to (21) and the fact that P(WT = w) =
1/|W|n . Thus

P̂(Xt ∈ · |GT ) = η(WT )t P̂-a.s. for t ∈ [0, T ].

Step 3:Dynamics of M̂ . ByStep 2 and the tower property of conditional expectation,
we find that for each i ∈ S and t ∈ [0, T ]

M̂i
t = P̂(Xt = i |Gt ) = Ê

[
Ê[1{Xt=i}|GT ]|Gt

] = Ê
[
η(WT )it |Gt

] = η(WT )it P̂-a.s.,

where the final identity is due to the fact that η(WT ) is G-adapted by Step 1 and
Ê denotes P̂-expectation. Since both M̂ and η(WT ) are càdlàg, it follows that M̂ =
η(WT ) P̂-a.s., and (M), (M0) and (Mk) follow from (22), (23) and (24). �	

As a by-product, the preceding proof yields the alternative representation

M̂t = P̂(Xt ∈ · |GT ) for t ∈ [0, T ], P̂-a.s.
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4.2 Mean Field Equilibrium System

As discussed above, equilibrium obtains if the agents’ ex ante beliefs coincide with the
ex post outcome. This holds if and only if the ex post aggregate distribution process
M̂ from (M) satisfies

P̂(Xt ∈ · |Gt ) = M̂t
!= Mt = μ(t,Wt ) for all t ∈ [0, T ].

Definition 10 (Equilibrium System). A pair (μ, v) of regular and non-anticipative
functions

μ : [0, T ] × W
n → M and v : [0, T ] × W

n → R
d

is called a rational expectations equilibrium, or briefly an equilibrium, if for all w ∈
W

n

μ̇(t, w) = μ(t, w) · Q̂(t, w,μ(t, w), v(t, w)
)

(E1)

v̇(t, w) = −ψ̂
(
t, w,μ(t, w), v(t, w)

)− Q̂
(
t, w,μ(t, w), v(t, w)

) · v(t, w) (E2)

for t ∈ [Tk, Tk+1〉, k ∈ [0 : n], subject to the consistency conditions7

μ(Tk, w) = �k
(
w,μ(Tk−, w)

)
(E3)

v(Tk−, w) = �k
(
w,μ(Tk−, w), v(Tk, · )

)
(E4)

for k ∈ [1 : n], and the initial/terminal conditions

μ(0, w) = m0 (E5)

v(T , w) = �
(
w,μ(T , w)

)
. (E6)

We also refer to (E1)-(E6) as the equilibrium system. �	
In combination, Theorem 6 and Theorem 9 demonstrate that, given a solution (μ, v)

of the equilibrium system, v is the value function of the agent’s optimization prob-
lem (Pμ) with ex ante aggregate distribution μ; and the ex post distribution resulting
from the corresponding optimal strategy is given by μ itself. Thus we can identify a
mean field equilibrium with common noise by producing a solution of the equilibrium
system (E1)-(E6).We provide some illustrations in Sect. 5. Theorems 13 and 16 below
ensure that this is feasible by showing that, under suitable continuity andmonotonicity
conditions, there exists a unique solution of the equilibrium system. The proofs are

7 With a slight abuse of notation, here and subsequently we set �k (w,m) � �k (w,m,m) for k ∈ [1 : n],
w ∈ W

n , m ∈ M. Recall that �k and �k are defined in (10) and (16), respectively.
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ramifications of classical arguments, based on Schauder’s fixed point theorem and
monotonicity arguments, respectively.

We set

Qmax � sup
t∈[0,T ], w∈Wn

m∈M, u∈U

∥∥Q(t, w,m, u)
∥∥, ψmax � sup

t∈[0,T ], w∈Wn

m∈M, u∈U

∥∥ψ(t, w,m, u)
∥∥,

�max � sup
m∈M
w∈Wn

‖�(w,m)‖

and

vmax �
(
�max + T · ψmax

) · eQmax·T . (25)

Note that these constants depend only on the underlying model coefficients.

Assumption 11 (i) The reduced-form running reward function ψ̂ satisfies

‖ψ̂(t, w,m1, v1) − ψ̂(t, w,m2, v2)‖ ≤ Lψ̂ · (‖m1 − m2‖ + ‖v1 − v2‖
)

for all t ∈ [0, T ], w ∈ W
n , m1,m2 ∈ M and v1, v2 ∈ R

d with ‖v1‖, ‖v2‖ ≤
vmax, for some Lψ̂ > 0.

(ii) The reduced-form intensity matrix function Q̂ satisfies

∥∥Q̂(t, w,m1, v1) − Q̂(t, w,m2, v2)
∥∥ ≤ L Q̂ · (‖m1 − m2‖ + ‖v1 − v2‖

)

for all t ∈ [0, T ], w ∈ W
n , m1,m2 ∈ M and v1, v2 ∈ R

d with ‖v1‖, ‖v2‖ ≤
vmax, for some L Q̂ > 0.

(iii) The terminal reward function � is continuous with respect to m, i.e. for every
w ∈ W

n the map �(w, · ) is continuous.
(iv) For each k ∈ [1 : n] and all i ∈ S, w ∈ W

n and v ∈ R
d with ‖v‖ ≤ vmax, the

map

M � m �→
∑

w̄k∈W
κk
(
w̄k |w1, . . . , wk−1,m

)
v J i (Tk ,(w−k ,w̄k ),m) ∈ R is continuous.

(v) For each k ∈ [1 : n] and w ∈ W
n the map �k(w, · ) is continuous. �	

Since all norms on R
d are equivalent, the concrete specification is immaterial for

Assumption 11. For the sake of convenience, in the following we use the maximum
norm on R

d and a compatible matrix norm on R
d×d ; moreover, we suppose that (ii)

holds for both Q̂ and Q̂
T
.

Remark 12 Sufficient conditions for Assumptions 11(i)-(ii) in terms of the model’s
primitives can be found in, e.g., [31] or [15]. Furthermore, in the special case where
the jump map J is independent of m ∈ M, Assumption 11(v) is trivially satisfied,
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and continuity of the transition kernels κk with respect to m is sufficient for Assump-
tion 11(iv) to hold. �	
Theorem 13 (Existence of Equilibria) If Assumption 11 holds, then there exists a
solution of the equilibrium system (E1)– (E6).

Proof See Appendix A. �	
The reduced-form Hamiltonian Ĥ : [0, T ] × W

n × M × R
d → R

d is defined via

Ĥi (t, w,m, v) � sup
u∈U

ψ i (t, w,m, u) + Qi ·(t, w,m, u) · v

= ψ̂ i (t, w,m, v) + Q̂i ·(t, w,m, v) · v.

Assumption 14 Let Assumptions 11(i) and (ii) hold, and suppose that:

(i) The terminal payoff function � is monotone with respect to m ∈ M, i.e.

(m1 − m2) · [�(w,m1) − �(w,m2)
] ≤ 0 for all w ∈ W

n, m1,m2 ∈ M.

(ii) The reduced-form Hamiltonian Ĥ is convex with respect to v, i.e. for all i ∈ S,
t ∈ [0, T ], w ∈ W

n , m ∈ M and v1, v2 ∈ R
d satisfying ‖v1‖, ‖v2‖ ≤ vmax we

have

Ĥi (t, w,m, v2) − Ĥi (t, w,m, v1) − Q̂i ·(t, w,m, v1) · (v2 − v1) ≥ 0.

(iii) The reduced-form Hamiltonian Ĥ satisfies a uniform monotonicity condition
with respect to m ∈ M, i.e. there exist α, γ > 0 such that

m1 · [Ĥ(t, w,m2, v2) − Ĥ(t, w,m1, v2)
]+ m2 · [Ĥ(t, w,m1, v1)

−Ĥ(t, w,m2, v1)
] ≥ γ · ‖m1 − m2‖α

for all t ∈ [0, T ], w ∈ W
n , m1,m2 ∈ M and v1, v2 ∈ R

d with ‖v1‖, ‖v2‖ ≤
vmax.

(iv) For k ∈ [1 : n] themapsκk and J satisfy the followingmonotonicity conditions in
m ∈ M: For all w ∈ W

n , m1,m2 ∈ M and v1, v2 ∈ R
d satisfying ‖v1‖, ‖v2‖ ≤

vmax as well as

[
�k(w,m1) − �k(w,m2)

] · (v1 − v2) ≤ 0

we have

[
κk(wk |w1, . . . , wk−1,m1) − κk(wk |w1, . . . , wk−1,m2)

]

· (m2 · v
J ·(Tk ,w,m2)
1 − m1 · v

J ·(Tk ,w,m1)
1

+ m2 · v
J ·(Tk ,w,m2)
2 − m1 · v

J ·(Tk ,w,m1)
2

) ≥ 0 (26)
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and

κk(wk |w1, . . . , wk−1,m2) · m1 · (v J ·(Tk ,w,m2)
2 − v

J ·(Tk ,w,m1)
2

)

+ κk(wk |w1, . . . , wk−1,m1) · m2 · (v J ·(Tk ,w,m1)
1 − v

J ·(Tk ,w,m2)
1

) ≥ 0. (27)

The constant vmax > 0 in 14(ii)-(iv) is defined in (25). Conditions 14(i)-(iii) are
standard given the literature; see, e.g., Assumptions 1-3 in [31].8

Remark 15 Assumption 14 simplifies if some model coefficients do not depend on the
mean field parameter m ∈ M:

(a) If Q̂ is independent of m, 14(iii) reduces to a monotonicity condition for ψ̂ .
(b) In 14(iv), (26) is trivially satisfied if the probability weights κk do not depend on

m.
(c) In 14(iv), (27) is trivially satisfied if the jump map J is independent of m. �	
Theorem 16 (Uniqueness of Equilibria) Under the monoticity conditions stated in
Assumption 14, the equilibrium system (E1)– (E6) possesses at most one solution.

Proof See Appendix B. �	

5 Applications

Before we illustrate our results in two showcase examples, we briefly discuss our
numerical approach to the equilibrium system (E1)-(E6). (E1)-(E2) is a forward-
backward system of 2d ODEs with boundary conditions (E3)-(E6), coupled through
the parameter w ∈ W

n representing common noise configurations. The special case
n = 0 (no common noise) corresponds to the setting of [31] and [15], with the equilib-
rium system reducing to a single 2d-dimensional forward-backward ODE. For n ≥ 1,
the consistency conditions (E3)-(E4) specify initial conditions for μ on [Tk, Tk+1〉
and terminal conditions for v on [Tk−1, Tk〉, k ∈ [1 : n]; since these conditions are
interconnected, there is in general no segment [Tk, Tk+1〉×W

n where the equilibrium
system yields both an explicit initial condition forμ and an explicit terminal condition
for v, so we cannot simply split the problem into subintervals. Rather, the equilibrium
system can be regarded as amulti-point boundary value problemwhere for each of the
|W|k conceivable combinations of common noise factors on [Tk, Tk+1〉, k ∈ [0 : n],
we have to solve a coupled forward-backward system of ODEs in 2d dimensions,
resulting in a tree of such systems of size

n∑
k=0

|W|k = |W|n+1 − 1

|W| − 1
∈ O(|Wn|).

Our approach to solving (E1)-(E6) numerically is to rely on the probabilistic inter-
pretation as a fixed-point system, based on Theorem 13. Thus, starting from an initial

8 Note, however, that our result does not require uniform convexity in 14(ii).
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flow of probability weights μ0(t, w), (t, w) ∈ [0, T ] × W
n with μ0(0, w) = m0 for

all w ∈ W
n , we solve (DPμ) subject to (TCμ) and (CCμ) backward in time for all

non-negligible common noise configurations w ∈ W
n to obtain the value v0(t, w),

(t, w) ∈ [0, T ] × W
n , of the agents’ optimal response to the given belief μ0. This,

in turn, is used to solve (M) subject to (M0) and (Mk) forward in time. As a result,
we obtain an ex post aggregate distribution μ1(t, w), (t, w) ∈ [0, T ] × W

n ; we then
iterate this with μ1 in place of μ0, etc.9

5.1 A Decentralized Agricultural ProductionModel

As a first (stylized) example we consider a mean field game of agents, each of which
owns (an infinitesimal amount of) land of identical size and quality within a given area.
If it is farmed, each field has a productivity f (wk) > 0 depending on the common
weather condition wk . We assume that weather is either good, bad or catastrophic, so
wk ∈ W � {↑,↓,�}, and changes at given common noise times T1, . . . , Tn .
Each agent is in exactly one state i ∈ S � {0, 1} depending on whether he grows
crops on his field (i = 1, the agent is a farmer) or not (i = 0). The selling price
p for his harvest depends on aggregate production, and thus in particular on the
proportion m1 ∈ [0, 1] of farmers; the mean field interaction is transmitted through
the market price of the crop. We assume that p is a strictly decreasing function of
overall production f (wk) · m1; see Fig. 1 for illustration.

We assume that f (↑) ≥ f (↓) = f (�) ≥ 0. Moreover, on the catastrophic event
{Wk = �} all agents are reduced to being non-farmers, and thus

J i (t, w,m) �
{
0 if t ∈ {T1, . . . , Tn}, t = Tk, wk = �,

i else

for (i, t, w,m) ∈ S×[0, T ]×W
n×M. Each agent canmake an effort u ∈ U � [0,∞)

to become being a farmer; the intensity matrix for state transitions is given by

Q(t, w,m, u) =
[−u · qentry u · qentry

qexit −qexit

]
for (t, w,m, u) ∈ [0, T ] × W

n × M × U,

where qentry, qexit ≥ 0 are given transition rates. The running rewards capture the fact
that both efforts to building up farming capacities and production itself are costly,
while revenues from the sales of the crop generate profits; thus

ψ0(t, w,m, u) = −1

2
centry · u2 and ψ1(t, w,m, u) = p

(
f (wk) · m1) · f (wk) − cprod

for t ∈ [Tk, Tk+1〉, k ∈ [0 : n], where w0 � ↑ and centry, cprod ≥ 0. The terminal
reward is zero. It follows that the maximizer h0 in Assumption 3 is unique and given
by

9 Under suitable Lipschitz conditions, one can establish a variant of Theorem 13 based on Banach’s (rather
than Schauder’s) fixed point theorem; see, e.g., [15, Theorem 6] for the case without common noise. This
guarantees convergence of the fixed point iteration for sufficiently short time horizons.
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Fig. 1 Price function p (parameters as in Table 1)

Table 1 Coefficients in the agricultural production model

Parameter T n Tk qentry qexit f (↑) f (↓) p(q) cprod centry

Value 1 4 k/5 1 0.1 1 0.5 1/(1 + 3q) 0.3 0.1

h0(t, w,m, v) = qentry
centry

(v1 − v0)+;

a specification of h1 is immaterial. We choose m1
0 � 10% for the initial proportion of

farmers, and report the relevant coefficients in Table 1.
Our results for the evolution of the mean field equilibrium are shown in Figs. 2

and 3 for various common noise configurations w ∈ W
n and the following two

baseline models:

(nC) Catastrophic weather conditions do not occur; we use

κk(↑ |w1, . . . , wk−1,m) = κk(↓ |w1, . . . , wk−1,m) = 0.5

for all w ∈ W
n and m ∈ M.

(C) Catastrophic events are likely; we use

κk(↑ |w1, . . . , wk−1,m) = 0.25, κk(↓ |w1, . . . , wk−1,m) = 0.25,

κk(� |w1, . . . , wk−1,m) = 0.5
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Fig. 2 Proportion of farmers in model (C) for all possible common noise configurations w ∈ W
n

for all w ∈ W
n and m ∈ M.

The model specified above satisfies both Assumption 11 and Assumption 14, so
Theorems 13 and 16 guarantee the existence of a uniquemeanfield equilibrium charac-
terized by (E1)-(E6). Figure 2 illustrates the tree of all possible equilibrium evolutions
in model (C). Figs. 3, 4 and 5 illustrate the resulting equilibrium proportions of farm-
ers, optimal actions, and market prices for some fixed common noise configurations.
To illustrate the effect of uncertainty about future weather conditions we also show,
for each common noise configuration, the theoretical perfect-foresight equilibria that
would pertain if future weather conditions were known; these are plotted using dashed
lines in Figs. 3, 4 and 5, and the subscript ◦ indicates the relevant deterministic common
noise path. Equilibrium prices are stochastically modulated by the prevailing weather
conditions, both directly and indirectly: First, prices jump at common noise times
due to weather-related changes in productivity. Second, weather conditions indirectly
affect market prices through their effect on the proportion of farming agents. Thus,
with consistently good weather conditions, agents are strongly incentivized to become
farmers, see Fig. 4; the fraction of farmers increases, see Fig. 3; and hence increased
production drives down prices, see Fig. 5. By contrast, under bad weather conditions,
incentives are weaker and prices remain higher. Both effects are dampened if a catas-
trophic event may occur. In addition, efforts tend to decrease between common noise
times; this is due to the uncertainty of future weather conditions; this effect is more
pronounced in the presence of catastrophic events.
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Fig. 3 Proportion of farmers in models (nC) and (C)

5.2 An SIR Model with RandomOne-Shot Vaccination

Our second application is a mean field game of agents that are confronted with the
spread of an infectious disease. Our main focus is to illustrate the qualitative effects
of common noise on the equilibrium behavior of the system. We consider a classical
SIR model setup with S = {S, I,R}: Each agent can be either susceptible to infection
(S), infected and simultaneously infectious for other agents (I), or recovered and thus
immune to (re-)infection (R); see Fig. 6.
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Fig. 4 Optimal action h0 of non-farmers in models (nC) and (C)

The infection rate is proportional to the prevalence of the disease, i.e. the percentage
of currently infected agents. Susceptible agents can make individual efforts of size
u ∈ U � [0, 1] to protect themselves against infection and thus reduce intensity of
infection. The transition intensities are given by
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Fig. 5 Equilibrium market prices in models (nC) and (C)

Q(t, w,m, u) �

⎡
⎣

−qinf(t, w,m, u) qinf(t, w,m, u) 0
0 −qIR qIR
0 0 0

⎤
⎦

for (t, w,m, u) ∈ [0, T ] × W
n × M × U, where qIR ≥ 0 denotes the recovery rate of

infected agents and the infection rate is given by
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Fig. 6 State space and transitions in the SIR model

qinf(t, w,m, u) � qSI · mI · (1 − u) · 1{t<τ�}(w)

with a given maximum rate qSI ≥ 0. The running reward penalizes both protection
efforts and time spent in the infected state; with cP, ψI ≥ 0 we set

ψS(t, w,m, u) � −cP
u

1 − u
, ψ I(t, w,m, u) � −ψI, ψR(t, w,m, u) � 0.

In addition, we include the possibility of a one-shot vaccination that becomes avail-
able, simultaneously to all agents, at a random point of time τ � ∈ {T1, . . . , Tn} ⊂
(0, T ). We set W � {0, 1} and identify the kth unit vector ek = (δk j ) j∈[1:n] ∈ W

n ,
k ∈ [1 : n] with the indicator of the event {τ � = Tk}. The event that no vaccine is
available until T is represented by 0 ∈ W

n ; we set τ � � +∞ in this case.10 If and
when it is available, all susceptible agents are vaccinated instantaneously, rendering
them immune to infection; thus

JS(t, w,m) �
{
R if t ∈ {T1, . . . , Tn}, t = Tk = τ �,

S otherwise
and J i (t, w,m) � i for i ∈ {I,R}.

The probability of vaccination becoming available is proportional to the percentage of
agents that have already recovered from the disease. Thus for k ∈ [1 : n],w1, . . . , wk ∈
W and m ∈ M we set

κk(1 |w1, . . . , wk−1,m) �
{

α · mR if w1, . . . , wk−1 = 0,

0 otherwise,

and κk(0 |w1, . . . , wk−1,m) � 1 − κk(1 |w1, . . . , wk−1,m) where α ∈ (0, 1]. As a
consequence, for all (i, t, w,m, v) ∈ S × [0, T ] × W × M × R

3, a maximizer as

10 The specification of κk , k ∈ [1 : n], below implies that τ� = +∞ is equivalent to w = 0 ∈ W
n

P-a.s.,
i.e., the configurations W

n \ ({0} ∪ {ek : k ∈ [1 : n]}) are P-negligible.
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Table 2 Coefficients in the SIR
model

Parameter T n Tk α qSI qIR cP ψI

Value 20 1999 k · 0.01 0.1 7.5 0.5 25 100

required in Assumption 3 is given by11

hS(t, w,m, v) �

⎧
⎨
⎩

[
1 −

√
cP

qSI·mI·(vS−vI)

]+
if vS > vI, mI > 0 and t < τ�,

0 otherwise,

and hi (t, w,m, v) � 0 for i ∈ {I,R}.
Remark 17 (SIR Models in the Literature). Note that, given the above specification
of the transition matrix Q, the forward dynamics (E1) within the equilibrium system
(E1)-(E6) read as follows:
⎧⎪⎪⎨
⎪⎪⎩

μ̇S(t, w) = −qSI · μI(t, w) · (1 − hS(t, w, μ(t, w), v(t, w))
) · 1{t<τ�}(w) · μS(t, w)

μ̇I(t, w) = qSI · μI(t, w) · (1 − hS(t, w, μ(t, w), v(t, w))
) · 1{t<τ�}(w) · μS(t, w) − qIR · μI(t, w)

μ̇R(t, w) = qIR · μI(t, w).

Disregarding common noise, these constitute a ramification of the classical SIR
dynamics, which are a basic building block of numerous compartmental epidemic
models in the literature; see, among others, [32,37,38,47] and the references therein.
The SIRmean field gamewith controlled infection rates, albeit without common noise,
has recently been studied in the independent article [26]; we also refer to [46] and [23]
for mean field models with controlled vaccination rates. Mathematically similar con-
tagion mechanisms also appear in, e.g., [40,41], §7.2.3 in [9], §7.1.10 in [10], or §4.4
in [52]. �	

While Theorem 13 guarantees existence of a mean field equilibrium for (a variant12

of) the SIR model, the monotonicity conditions of Theorem 16 do not hold in this
setup.13 Nevertheless, our numerical results reliably yield consistent equilibria. For our
illustrations, the initial distribution of agents is given by m0 � (0.995, 0.005, 0.00),
and the model coefficients are reported in Table 2. Note that there are n = 1999
common noise times Tk = k · 0.01, k = 1, . . . , 1999, at which a vaccine can be
administered. The specifications of qSI and qIR imply a basic reproduction number
R0 � qSI/qIR = 15 in the absence of vaccination and protection efforts.

Our results for the mean field equilibrium distributions of agents μ and the corre-
sponding optimal protection efforts of susceptible agents hS are displayed in Figs. 7,
8, and 9 for different common noises configurations, i.e. vaccination times τ �. As in

11 Note that for given w ∈ W
n the stated maximizer hS is unique for times t < τ�; otherwise its specifi-

cation is immaterial. The latter applies likewise to hI and hR.
12 With action space U � [0, umax] for an arbitrary, but fixed umax < 1.
13 In fact, Assumption 14(iii) is not even satisfied in the baseline SIR model without protection or vacci-
nation.
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Fig. 7 Equilibrium distribution and protection effort for τ� = +∞: Mean field game with common noise
(top) and corresponding perfect-foresight equilibrium (bottom)

Sect. 5.1, we also display the corresponding (theoretical) perfect-foresight equilibria,
marked by the subscript ◦.

Note that an agent’s running reward is the same in state S with zero protection effort
and in state R; agents are penalized relative to these in state I and hence aim to avoid
that state. Susceptible agents can reach the state R of immunity by two ways: First,
they can become infected and overcome the disease; second, they can be vaccinated
and jump instantly from state S to state R. While the first alternative is painful, the
second comes at no cost and is hence clearly preferable. However, as the availability of
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Fig. 8 Equilibrium distribution and protection effort for τ� = 2.5: Mean field game with common noise
(top) and corresponding perfect-foresight equilibrium (bottom)

a vaccine cannot be directly controlled by the agents, they can only protect themselves
against infection at a certain running cost until the vaccine becomes available.

Figures 7, 8, and 9 demonstrate that the possibility of vaccination as a common
noise event can dampen the spread of the disease and lower the peak infection rate.
This is due to an increase in agents’ protection efforts during the time period when the
proportion of infected agents is high. By contrast, in the perfect-foresight equilibria
where the vaccination date is known, agents do not make substantial protection efforts
until the vaccination date is imminent, see Figs. 8 and 9; in the scenario without
vaccination, see Fig. 7, protection efforts are only ever made by a very small fraction
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Fig. 9 Equilibrium distribution and protection effort for τ� = 5: Mean field game with common noise (top)
and corresponding perfect-foresight equilibrium (bottom)

of the population. With perfect foresight, the agents’ main rationale is to avoid being
in state I when the vaccine becomes available. This highlights the importance of
being able to model the vaccination date as a (random) common noise event. Finally,
observe that our numerical results indicate convergence to the stationary distribution
μ̄ = (0, 0, 1) ∈ M, showing that the model is able to capture the entire evolution of
an epidemic.
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A Appendix: Proof of Theorem 13

Let E ⊆ R
d and define the space

D(E) �
{
f : [0, T ] × W

n → E : f is càdlàg and non-anticipative
}

together with the norm ‖ f ‖sup � supt∈[0,T ], w∈Wn ‖ f (t, w)‖ for f ∈ D(E). It is clear
thatD(E) is a Banach space provided E ⊆ R

d is closed; the linear subspace of regular
non-anticipative functions is denoted by

Reg(E) � { f ∈ D(E) : f is regular}.

Lemma A.1 (Backward Gronwall estimate) Let f ∈ D([0,∞)) and α, β, ϑ, ρ, η ≥ 0.
Suppose that f (T , w) ≤ ρ · η for all w ∈ W

n,

f (t, w) ≤ f (Tk+1−, w) + α(Tk+1 − t) · η + β ·
∫ Tk+1

t
f (s, w)ds,

t ∈ [Tk, Tk+1〉, w ∈ W
n, (28)

for k ∈ [0 : n], and

f (Tk−, w) ≤
∑

w̄k∈W
γk(w−k, w̄k) · f (Tk, (w−k, w̄k)) + ϑ · η, w ∈ W

n, (29)

for k ∈ [1 : n], where for all w1, . . . , wk−1 ∈ W the family {γk(w−k, w̄k)}w̄k∈W
consists of probability weights on W. Then we have

f (t, w) ≤ C · η for all (t, w) ∈ [0, T ] × W
n,

where C �
(
ρ + αT + (n + 1)ϑ

) · eβT .

Proof We recursively define Cn+1 � 1 and

Ck �
(
Ck+1 + α(Tk+1 − Tk) + ϑ

) · eβ(Tk+1−Tk ) for k ∈ [0 : n]
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and note that Cn+1 ≤ Cn ≤ · · · ≤ C1 ≤ C0 ≤ C . Hence it suffices to show that

f (t, w) ≤ Ck · η for all (t, w) ∈ [Tk, Tk+1〉 × W
n, k ∈ [0 : n]. (30)

By assumption, f (Tn+1−, w) = f (T , w) ≤ ρ ·η for allw ∈ W
n . Next let k ∈ [0 : n]

and assume that

f (Tk+1−, w) ≤ Ck+1 · η for all w ∈ W
n .

It follows from (28) and Gronwall’s inequality on [Tk, Tk+1〉 that for all w ∈ W
n

f (t, w) ≤ (
f (Tk+1−, w) + α(Tk+1 − t) · η

) · eβ(Tk+1−t)

≤ (
Ck+1 + α(Tk+1 − Tk)

) · eβ(Tk+1−Tk ) · η.

In particular, we have f (t, w) ≤ Ck · η for t ∈ [Tk, Tk+1〉, and by (29)

f (Tk−, w) ≤
∑

w̄k∈W
γk(w1, . . . , wk−1, w̄k) · f (Tk, (w−k, w̄k)) + ϑ · η

≤ (
Ck+1 + α(Tk+1 − Tk) + ϑ

) · eβ(Tk+1−Tk ) · η = Ck · η.

Hence (30) follows by backward induction on k = n, n − 1, . . . , 0. �	

In the following, we first consider the backward system (E2), (E4), (E6) and sub-
sequently the forward system (E1), (E3), (E5).

Lemma A.2 Suppose that Assumption 11 holds and let μ ∈ D(M). Then there exists a
unique solution v̄ of (E2) subject to (E4) and (E6). Moreover, we have v̄ ∈ Reg(Rd)

and ‖v̄(t, w)‖ ≤ vmax for all (t, w) ∈ [0, T ] × W
n.

Proof Step 1: Construction of v̄. We construct v̄ by backward induction on k ∈
[0 : n] on each segment [Tk, Tk+1〉 × W

n . First, we set v̄(T , w) � �(w,μ(T , w))

for w ∈ W
n . Suppose that k ∈ [0 : n], fix w ∈ W

n , and let ṽ(Tk+1, wTk ) ∈ R
d be

given and independent of wk+1, . . . , wn . Using Assumptions 11(i)-(ii) it follows that
the Carathéodory conditions are satisfied, so [36, Theorem I.5.3] yields the unique
Carathéodory solution ṽ( · , wTk ) : [Tk, Tk+1] → R

d of

ṽ(t, wTk ) = ṽ(Tk+1, wTk ) +
∫ Tk+1

t

(
ψ̂
(
s, wTk , μ(s, wTk ), ṽ(s, wTk )

)

+ Q̂
(
s, wTk , μ(s, wTk ), ṽ(s, wTk )

) · ṽ(s, wTk )
)
ds

= ṽ(Tk+1, wTk ) +
∫ Tk+1

t

(
ψ̂
(
s, w,μ(s, w), ṽ(s, wTk )

)

+ Q̂
(
s, w,μ(s, w), ṽ(s, wTk )

) · ṽ(s, wTk )
)
ds, t ∈ [Tk , Tk+1],
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where the final identity is due to the fact that ψ̂( · , · , m̄, v̄) and Q̂( · , · , m̄, v̄) are
non-anticipative. Define

v̄(t, w) � ṽ(t, wTk ) for t ∈ [Tk, Tk+1〉 and each w ∈ W
n .

By construction, v̄( · , w) solves (E2) on [Tk, Tk+1〉 and does not depend on
wk+1, . . . , wn . Having constructed v̄ on [Tk, Tk+1〉 × W

n , we use (E4) and define

v̄(Tk, wTk−1) � �k(w,μ(Tk−, w), v̄(Tk, · ))

for w ∈ W
n . By (10) and the fact that μ and J are non-anticipative, it follows that

this definition does not depend on wk, . . . , wn . Consequently, the above construction
can be iterated, and hence we obtain v̄ as the unique solution of (E2) subject to (E4)
and (E6). By definition, v̄ is non-anticipative and regular, i.e. v̄ ∈ Reg(Rd).

Step 2: A priori bound. For k ∈ [0 : n] and (t, w) ∈ [Tk, Tk+1〉 × W
n we have

‖v̄(t, w)‖ ≤ ‖v̄(Tk+1−, w)‖ +
∫ Tk+1

t

∥∥ψ̂(s, w,μ(s, w), v̄(s, w))
∥∥

+ ∥∥Q̂(s, w,μ(s, w), v̄(s, w))
∥∥ · ‖v̄(s, w)‖ds

≤ ‖v̄(Tk+1−, w)‖ + ψmax · (Tk+1 − t) + Qmax ·
∫ Tk+1

t
‖v̄(s, w)‖ds.

(31)

On the other hand, for k ∈ [1 : n], w ∈ W
n and i ∈ S we observe from (10) that

‖v̄(Tk−, w)‖ ≤
∑

w̄k∈W
κk(w̄k |w1, . . . , wk−1, μ(Tk−, wTk−)) · ‖v̄(Tk, (w−k, w̄k)‖.

(32)

Since ‖v̄(T , w)‖ = ‖�(w,μ(T , w))‖ ≤ �max it follows from (31), (32) and
Lemma A.1 with η � ψmax, ϑ � 0 and ρ � �max/ψmax that

‖v̄(t, w)‖ ≤ C · η ≤ (
�max + T · ψmax

) · eQmax·T = vmax for all (t, w) ∈ [0, T ] × W
n .

�	
Lemma A.3 Suppose that Assumption 11 is satisfied and let v ∈ D(Rd). Then there
is a unique solution μ̄ of (E1) subject to (E3) and (E5), and we have μ̄ ∈ Reg(M).

Proof The proof is analogous to (but somewhat simpler than) that of Lemma A.2. �	
Proof of Theorem 13 We divide the proof into four steps:

Step 1: Solution operators. We define

�

χ : D(M) → Reg(Rd),
�

χ[μ] � v̄,
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where v̄ ∈ Reg(Rd) is the unique solution of (E2) subject to (E4) and (E6) given
μ ∈ D(M);

�

χ is well-defined by Lemma A.2. Moreover, let

�

χ : D(Rd) → Reg(M),
�

χ[v] � μ̄,

where μ̄ ∈ Reg(M) is the unique solution of (E1) subject to (E3) and (E5) given
v ∈ D(Rd);

�

χ is well-defined by Lemma A.3.
Step 2: Continuity of

�

χ . Let μ0 ∈ D(M), set v̄0 � �

χ[μ0] and fix some ε > 0. We
set

α � Lψ̂ + L Q̂ · vmax, β � Lψ̂ + Qmax + L Q̂ · vmax,

C � (αT + n + 2) · eβT and η � ε

C
.

By Assumptions 11(iii)-(iv), for each k ∈ [1 : n] we can pick δk > 0 such that

∣∣∣∣
∑

w̄k∈W

(
κk
(
w̄k |w1, . . . , wk−1,m

)
v̄
J i (Tk ,(w−k ,w̄k ),m)

0 (Tk , (w−k , w̄k))

− κk
(
w̄k |w1, . . . , wk−1, μ0(Tk−, w)

)
v̄
J i (Tk ,(w−k ,w̄k ),μ0(Tk−,w))

0 (Tk , (w−k , w̄k))
)∣∣∣∣ ≤ η

for all i ∈ S and (m, w) ∈ M × W
n with ‖m − μ0(Tk−, w)‖ ≤ δk , (33)

and δn+1 > 0 such that

‖�(w,m) − �(w,μ0(T , w))‖ ≤ η

for all (m, w) ∈ M × W
n with ‖m − μ0(T , w)‖ ≤ δn+1. (34)

We define δ > 0 via

δ � η ∧ δ1 ∧ · · · ∧ δn+1 (35)

and let μ ∈ D(M) such that ‖μ − μ0‖sup ≤ δ; set v̄ � �

χ[μ]. For each w ∈ W
n , it

follows from Assumptions 11(i)-(ii) and (35) that for all t ∈ [Tk, Tk+1〉, k ∈ [0 : n],
we have

∥∥v̄(t, w) − v̄0(t, w)
∥∥ ≤ ∥∥v̄(Tk+1−, w) − v̄0(Tk+1−, w)

∥∥

+
∫ Tk+1

t

∥∥ψ̂(s, w,μ(s, w), v̄(s, w)
)− ψ̂

(
s, w,μ0(s, w), v̄0(s, w)

)∥∥ds

+
∫ Tk+1

t

∥∥Q̂(s, w,μ(s, w), v̄(s, w)
) · v̄(s, w) − Q̂

(
s, w,μ0(s, w), v̄0(s, w)

) · v̄0(s, w)
∥∥ds

≤ ∥∥v̄(Tk+1−, w) − v̄0(Tk+1−, w)
∥∥+ (

Lψ̂ + L Q̂ · vmax
) · (Tk+1 − t) · η

+ (
Lψ̂ + Qmax + L Q̂ · vmax

) ·
∫ Tk+1

t

∥∥v̄(s, w) − v̄0(s, w)
∥∥ds
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= ∥∥v̄(Tk+1−, w) − v̄0(Tk+1−, w)
∥∥+ α(Tk+1 − t) · η + β ·

∫ Tk+1

t

∥∥v̄(s, w) − v̄0(s, w)
∥∥ds.

(36)

Moreover, for k ∈ [1 : n] we obtain from (33) that

∥∥v̄(Tk−, w) − v̄0(Tk−, w)
∥∥

≤
∑

w̄k∈W
κk
(
w̄k |w1, . . . , wk−1, μ(Tk−, wTk−)

)

· ∥∥v̄(Tk, (w−k, w̄k)) − v̄0(Tk, (w−k, w̄k))
∥∥+ η (37)

and from (34) that

‖v̄(T , w) − v̄0(T , w)‖ = ‖�(w,μ(T , w)) − �(w,μ0(T , w))‖ ≤ η. (38)

In view of (36), (37) and (38), it follows from Lemma A.1 that

‖v̄(t, w) − v̄0(t, w)‖ ≤ C · η = ε for all (t, w) ∈ [0, T ] × W
n,

i.e. ‖�

χ [μ] − �

χ[μ0]‖sup = ‖v̄ − v̄0‖sup ≤ ε. Thus
�

χ is continuous with respect to
‖ · ‖sup.

Step 3: Continuity of
�

χ . Let v0 ∈ D(Rd), set μ̄0 � �

χ [v0] and fix some ε > 0. We
set δn+1 � ε and c � Qmax + L Q̂ and recursively determine δ1, . . . , δn ∈ (0, ε) using
Assumption 11(v) such that

‖�k(w,m) − �k(w, μ̄0(Tk−, w))‖ ≤ δk+1
2 · e−c(Tk+1−Tk )

for all (m, w) ∈ M × W
n with ‖m − μ̄0(Tk−, w)‖ ≤ δk . (39)

We define δ > 0 by

δ � e−cT

2cT · δ1 ∧ · · · ∧ δn (40)

and let v ∈ D(Rd) such that ‖v − v0‖sup ≤ δ; put μ̄ � �

χ [v]. We fix k ∈ [0 : n] and
suppose that

‖μ̄(Tk, w) − μ̄0(Tk, w)‖ ≤ δk+1
2 · e−c(Tk+1−Tk ), w ∈ W

n . (41)

For each w ∈ W
n , we have from Assumption 11(ii)

∥∥μ̄(t, w) − μ̄0(t, w)
∥∥ ≤ ∥∥μ̄(Tk , w) − μ̄0(Tk , w)

∥∥

+
∫ t

Tk

∥∥μ̄(s, w) · Q̂(s, w, μ̄(s, w), v(s, w)) − μ̄0(s, w) · Q̂(s, w, μ̄0(s, w), v0(s, w))
∥∥ds

≤ ‖μ̄(Tk , w) − μ̄0(Tk , w)‖ + c(t − Tk) · ‖v − v0‖sup + c ·
∫ t

Tk

∥∥μ̄(s, w) − μ̄0(s, w)
∥∥ds
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on [Tk, Tk+1〉, so using Gronwall’s inequality it follows that

∥∥μ̄(t, w) − μ̄0(t, w)
∥∥ ≤ (∥∥μ̄(Tk , w) − μ̄0(Tk , w)

∥∥+ c(t − Tk) · ‖v − v0‖sup
) · ec(t−Tk ).

Since by (40) we have c(t − Tk) · δ · ec(t−Tk ) ≤ δk+1
2 , we obtain

∥∥μ̄(t, w) − μ̄0(t, w)
∥∥ ≤ δk+1 for all (t, w) ∈ [Tk, Tk+1〉 × W

n . (42)

In particular, using (39) we conclude that

‖μ̄(Tk+1, w) − μ̄0(Tk+1, w)‖ = ‖�k+1(w, μ̄(Tk+1−, w)) − �k+1(w, μ̄0(Tk+1−, w))‖
≤ δk+2

2 · e−c(Tk+2−Tk+1), w ∈ W
n .

Since μ̄(0, w) = μ̄0(0, w) = m0 for all w ∈ W
n , it follows by induction that (41)

holds for all k ∈ [0 : n], and thus (42) implies

‖μ̄(t, w) − μ̄0(t, w)‖ ≤ ε for all (t, w) ∈ [0, T ] × W
n .

Hence ‖�

χ [v] − �

χ [v0]‖sup = ‖μ̄ − μ̄0‖sup ≤ ε, so
�

χ is continuous with respect to
‖ · ‖sup.

Step 4: Construction of the fixed point. Let χ : D(M) → Reg(M), χ � �

χ ◦ �

χ and
note that χ is continuous with respect to ‖ · ‖sup by Steps 2 and 3. We define

Lip(M) �
{
μ ∈ D(M) : μ( · , w) is Qmax − Lipschitz

on [Tk, Tk+1〉, k ∈ [0 : n], for all w ∈ W
n}

and note from (E1) that χ : D(M) → Lip(M), i.e. χ [μ] ∈ Lip(M) for every μ ∈
D(M). It is clear that Lip(M) is a non-empty, convex subset of D(M); we now argue
that Lip(M) is compact. Given a sequence {μ�}�∈N ⊆ Lip(M), for each k ∈ [0 : n]
and w ∈ W

n we define

μ
(k,w)
� : [Tk, Tk+1] → M, μ

(k,w)
� (t) �

{
μ�(t, w) if t ∈ [Tk, Tk+1〉,
μ�(Tk+1−, w) if t = Tk+1,

and note that by the Arzelà-Ascoli theorem, the sequence {μ(k,w)
� }�∈N ⊆

C([Tk, Tk+1]; M) contains a uniformly convergent subsequence. Taking
sub-subsequences for k ∈ [0 : n] and w ∈ W

n , we obtain a subsequence {�ν}ν∈N
such that ‖μ�ν − μ‖sup → 0 as ν → ∞ for some μ ∈ D(M). It is easy to see that
μ ∈ Lip(M), and thus Lip(M) is indeed compact. Now Schauder’s fixed point theorem
implies that the continuous map χ : Lip(M) → Lip(M) has a fixed pointμ ∈ Lip(M);
upon setting v � �

χ[μ] ∈ Reg(Rd) it follows thatμ = �

χ [v] ∈ Reg(M) and that (μ, v)

is a solution of (E1)-(E6). �	

123



3212 Applied Mathematics & Optimization (2021) 84:3173–3216

B Appendix: Proof of Theorem 16

Proof of Theorem 16 Suppose that (μ1, v1) and (μ2, v2) are solutions of (E1)-(E6). In
the following, we omit arguments to simplify notation when there is no ambiguity;
e.g., Ĥ(μ1, v2) = Ĥ(t, w,μ1(t, w), v2(t, w)).

Step 1: Dynamics between Common Noise Times. Let k ∈ [0 : n]. The product rule
and (E1)-(E2) yield

d

dt

[
(μ1(t, w) − μ2(t, w)) · (v1(t, w) − v2(t, w))

] = d

dt

[
(μ1 − μ2) · (v1 − v2)

]

= [
μ1 · Q̂(μ1, v1) − μ2 · Q̂(μ2, v2)

] · (v1 − v2) − (μ1 − μ2) · [Ĥ(μ1, v1) − Ĥ(μ2, v2)
]

= μ2 · [Ĥ(μ2, v1) − Ĥ(μ2, v2) − Q̂(μ2, v2) · (v1 − v2)
]

+ μ1 · [Ĥ(μ1, v2) − Ĥ(μ1, v1) − Q̂(μ1, v1) · (v2 − v1)
]

+ μ1 · [Ĥ(μ2, v2) − Ĥ(μ1, v2)
]+ μ2 · [Ĥ(μ1, v1) − Ĥ(μ2, v1)

]

and thus by Assumptions 14(ii)-(iii) we obtain

d

dt

[
(μ1(t, w) − μ2(t, w)) · (v1(t, w) − v2(t, w))

]

≥ γ · ‖μ1(t, w) − μ2(t, w)‖α, (t, w) ∈ [Tk, Tk+1〉 × W
n . (43)

Step 2: Boundary Conditions at CommonNoise Times.Let k ∈ [1 : n] andw ∈ W
n .

For j = 1, 2 and w̄k ∈ W we briefly write

μ j � μ j
(
Tk , (w−k , w̄k)

)
and μ−

j � μ j (Tk−, w) = μ j
(
Tk−, (w−k , w̄k)

)
,

v j � v j
(
Tk , (w−k , w̄k)

)
, J (μ−

j ) � J
(
Tk , (w−k , w̄k), μ

−
j

)

and κk(μ
−
j ) � κk

(
w̄k |w1, . . . , wk−1, μ

−
j ).

By (E3) we have for j, � = 1, 2

μ j · v� = μ−
j · v

J ·(μ−
j )

� for all w̄k ∈ W (44)

where it is understood that μ j , v�, J (μ−
j ), κk(μ

−
j ) depend on w̄k . Using (E4) in the

first identity and (44) in the second and fourth, we find by elementary algebraic manip-
ulations

(μ1(Tk−, w) − μ2(Tk−, w)) · (v1(Tk−, w) − v2(Tk−, w))

=
∑

w̄k∈W
κk(μ

−
1 ) · (μ−

1 − μ−
2 ) · v

J ·(μ−
1 )

1 −
∑

w̄k∈W
κk(μ

−
2 ) · (μ−

1 − μ−
2 ) · v

J ·(μ−
2 )

2

= 1

2

∑
w̄k∈W

κk(μ
−
1 ) · (μ−

1 − μ−
2 ) · v

J ·(μ−
1 )

1

+ 1

2

∑
w̄k∈W

κk(μ
−
1 ) ·

{
(μ1 − μ2) · v1 − μ−

2 · [v J ·(μ−
1 )

1 − v
J ·(μ−

2 )

1

]}
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− 1

2

∑
w̄k∈W

κk(μ
−
2 ) · (μ−

1 − μ−
2 ) · v

J ·(μ−
2 )

2

− 1

2

∑
w̄k∈W

κk(μ
−
2 ) ·

{
(μ1 − μ2) · v2 + μ−

1 · [v J ·(μ−
2 )

2 − v
J ·(μ−

1 )

2

]}

= 1

2

∑
w̄k∈W

[
κk(μ

−
1 ) + κk(μ

−
2 )
] · (μ1 − μ2) · (v1 − v2)

− 1

2

∑
w̄k∈W

[
κk(μ

−
2 ) · v1 − κk(μ

−
1 ) · v2

] · (μ1 − μ2)

+ 1

2

∑
w̄k∈W

κk(μ
−
1 ) ·

{
(μ−

1 − μ−
2 ) · v

J ·(μ−
1 )

1 − μ−
2 · [v J ·(μ−

1 )

1 − v
J ·(μ−

2 )

1

]}

− 1

2

∑
w̄k∈W

κk(μ
−
2 ) ·

{
(μ−

1 − μ−
2 ) · v

J ·(μ−
2 )

2 + μ−
1 · [v J ·(μ−

2 )

2 − v
J ·(μ−

1 )

2

]}

= 1

2

∑
w̄k∈W

[
κk(μ

−
1 ) + κk(μ

−
2 )
] · (μ1 − μ2) · (v1 − v2)

− 1

2

∑
w̄k∈W

{
κk(μ

−
1 ) · [μ−

2 · v
J ·(μ−

2 )

2 − μ−
1 · v

J ·(μ−
1 )

2

]+ κk(μ
−
2 ) · [μ−

1 · v
J ·(μ−

1 )

1 − μ−
2 · v

J ·(μ−
2 )

1

]}

+ 1

2

∑
w̄k∈W

κk(μ
−
1 ) ·

{
μ−
1 · v

J ·(μ−
1 )

1 − μ−
2 · v

J ·(μ−
2 )

1 − 2μ−
2 · [v J ·(μ−

1 )

1 − v
J ·(μ−

2 )

1

]}

− 1

2

∑
w̄k∈W

κk(μ
−
2 ) ·

{
2μ−

1 · [v J ·(μ−
2 )

2 − v
J ·(μ−

1 )

2

]+ μ−
1 · v

J ·(μ−
1 )

2 − μ−
2 · v

J ·(μ−
2 )

2

}

= 1

2

∑
w̄k∈W

[
κk(μ

−
1 ) + κk(μ

−
2 )
] · (μ1 − μ2) · (v1 − v2)

− 1

2

∑
w̄k∈W

[
κk(μ

−
1 ) − κk(μ

−
2 )
] · [μ−

2 · v
J ·(μ−

2 )

1 − μ−
1 · v

J ·(μ−
1 )

1 + μ−
2 · v

J ·(μ−
2 )

2 − μ−
1 · v

J ·(μ−
1 )

2

]

−
∑

w̄k∈W

{
κk(μ

−
2 ) · μ−

1 · [v J ·(μ−
2 )

2 − v
J ·(μ−

1 )

2

]+ κk(μ
−
1 ) · μ−

2 · [v J ·(μ−
1 )

1 − v
J ·(μ−

2 )

1

]}
.

Hence by Assumption 14(iv) we conclude that

(μ−
1 − μ−

2 ) · (v−
1 − v−

2 ) ≤ 1

2

∑
w̄k∈W

[
κk(μ

−
1 ) + κk(μ

−
2 )
] · (μ1 − μ2) · (v1 − v2)

provided that (μ1 − μ2) · (v1 − v2) = [
�k(w,μ−

1 ) − �k(w,μ−
2 )
] · (v1 − v2) ≤ 0. (45)

Step 3: Backward Propagation of Monotonicity. Suppose that for some k ∈ [1 : n]
we have

(μ1(Tk+1−, w) − μ2(Tk+1−, w)) · (v1(Tk+1−, w) − v2(Tk+1−, w)) ≤ 0 for all w ∈ W
n .

(46)

By regularity, the fundamental theorem of calculus applies and using (43) we obtain

(μ1(Tk , w) − μ2(Tk , w)) · (v1(Tk , w) − v2(Tk , w))

= (μ1(Tk+1−, w) − μ2(Tk+1−, w)) · (v1(Tk+1−, w) − v2(Tk+1−, w))
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−
∫ Tk+1

Tk

d

dt

[
(μ1(s, w) − μ2(s, w)) · (v1(s, w) − v2(s, w))

]
ds ≤ 0 for all w ∈ W

n .

Thus (45) implies that (46) also holds at time Tk−, i.e.

(μ1(Tk−, w) − μ2(Tk−, w)) · (v1(Tk−, w) − v2(Tk−, w)) ≤ 0 for all w ∈ W
n .

Since (46) is satisfied for k = n by Assumption 14(i), it follows by induction that

(
μ1(Tk+1−, w) − μ2(Tk+1−, w)

) · (v1(Tk+1−, w)

− v2(Tk+1−, w)
) ≤ 0 for all k ∈ [0 : n], w ∈ W

n . (47)

Step 4: Forward Propagation of Uniqueness. Suppose that for some k ∈ [0 : n] we
have

μ1(Tk, w) = μ2(Tk, w) for all w ∈ W
n . (48)

Using the fundamental theorem of calculus, (43) and (47) we find that

γ ·
∫ Tk+1

Tk
‖μ1(s, w) − μ2(s, w)‖αds

≤
∫ Tk+1

Tk

( d

dt

[
(μ1(s, w) − μ2(s, w)) · (v1(s, w) − v2(s, w))

])
ds

= (μ1(Tk+1−, w) − μ2(Tk+1−, w)) · (v1(Tk+1−, w) − v2(Tk+1−, w))

− (μ1(Tk , w) − μ2(Tk , w)) · (v1(Tk+1−, w) − v2(Tk+1−, w)) ≤ 0 for all w ∈ W
n .

As a consequence, we have

μ1(t, w) = μ2(t, w) for all (t, w) ∈ [Tk, Tk+1〉 × W
n

and, in particular, μ1(Tk+1−, w) = μ2(Tk+1−, w), implying μ1(Tk+1, w) =
μ2(Tk+1, w) for all w ∈ W

n . Since μ1(0) = m0 = μ2(0) by (E5), (48) is satisfied
for k = 0, and we conclude that μ1 = μ2. Finally, since Assumption 14 subsumes
Assumptions 11(i)-(ii), the arguments in the proof of Lemma A.2 yield v1 = v2, and
the proof is complete. �	
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