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Abstract
In the projective plane, we consider congruences of straight lines with the combina-
torics of the square grid and with all elementary quadrilaterals possessing touching
inscribed conics. The inscribed conics of two combinatorially neighbouring quadri-
laterals have the same touching point on their common edge-line. We suggest that
these nets are a natural projective generalisation of incircular nets. It is shown that
these nets are planar Koenigs nets. Moreover, we show that general Koenigs nets are
characterised by the existence of a 1-parameter family of touching inscribed conics. It
is shown that the lines of any grid of quadrilaterals with touching inscribed conics are
tangent to a common conic. These grids can be constructed via polygonal chains that
are inscribed in conics. The special case of billiards in conics corresponds to incircular
nets.
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1 Introduction

The geometry of incircular nets (IC-nets) has recently been discussed in great detail
in [1]. IC-nets were introduced by Böhm [7] and they are defined as congruences
of straight lines in the plane with the combinatorics of the square grid such that each
elementary quadrilateral admits an inscribed circle. IC-nets have awealth of geometric
properties, including the distinctive feature that any IC-net comeswith a conic towhich
the gridlines are tangent. IC-nets are closely related to Poncelet(–Darboux) grids,
which were originally introduced by Darboux [10] and further studied in [17,21].

Checkerboard IC-nets constitute a natural generalisation of IC-nets. The gridlines of
checkerboard IC-nets have the combinatorics of the square grid but it is only required
that every second quadrilateral admits an inscribed circle, namely the “black” (or
“white” if the colours are interchanged) quadrilaterals if the quadrilaterals of the net
are combinatorially coloured like those of a checkerboard. Checkerboard IC-nets can
be consistently oriented so that their lines and circles are in oriented contact. Thus,
these nets are naturally treated in terms of Laguerre geometry. In [5] checkerboard IC-
nets were explicitly integrated in terms of Jacobi elliptic functions. The integration is
similar to the case of elliptic billiards [12].Recently in [4] the correspondingdefinitions
and results were extended to the cases of incircular nets in the 2-sphere and also in the
hyperbolic plane by developing the corresponding Laguerre geometries.

In this paper we suggest a purely projective generalisation of IC-nets. Namely, we
consider planar congruences of straight lines with the combinatorics of the square
grid and with all elementary quadrilaterals possessing touching inscribed conics (see
Fig. 12). It is worth mentioning that the lines of the projective grids we introduce
correspond not to the lines of IC-nets but to the lines passing through the centres of
their circles. We describe their geometry in detail and show, in particular, in Sect. 4.2
that the lines of these grids touch a common conic. A further important property is
that planar grids of quadrilaterals with touching inscribed conics are planar Koenigs
nets. Koenigs nets are an important example of integrable discrete differential geom-
etry [6]. In Sect. 3.2, we show that the property to possess touching inscribed conics
is characteristic for general Koenigs net. This characterisation of Koenigs nets via
inscribed conics (Theorem 3.5) was independently discovered by Christian Müller.

Our geometric analysis is based essentially on Theorem 4.2, which is an incidence
theorem for five conics and six touching lines, see Fig. 12. The corresponding implica-
tions for grids of quadrilaterals with touching inscribed conics are described in Sect. 4.
In particular, it is shown that these grids can be constructed via polygonal chains that
are inscribed in conics. In Sect. 4.4 it is demonstrated how the special case of billiards
in conics can be used to generate incircular nets (see Fig. 1).

2 Preliminaries

In this section we present some known results about inscribed conics. Many theorems
about quadrilaterals with inscribed conics can be found in, for instance, [9, Chaps.
XII, XVI, and XVIII]. Many other theorems about conics can be found in [13].
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Fig. 1 For any billiard in the grey conic, there is an associated incircular net. More generally, for any
polygonal chain inscribed in the grey conic, there is an associated grid of quadrilaterals with touching
inscribed conics. The inscribed circles and the touching inscribed conics are in combinatorially dual line
grids. The line grid with touching inscribed conics is given by the lines passing through the centres of the
circles

In the projective plane P
2, any arrangement of lines is called generic if

and only if no three of the lines are concurrent. Let �(v1, v2, v3, v4) denote
the quadrilateral with the vertices v1, v2, v3, v4 and with the generic edge-lines
(v1, v2), (v2, v3), (v3, v4), (v4, v1). The lines (v1, v3) and (v2, v4) are the diagonals of
the quadrilateral. The notation pi,i+1 will be used to denote a point that is contained in
the line (vi , vi+1). Proposition 2.1 is a degenerate case of Brianchon’s theorem [2,13].

Proposition 2.1 Let p1,2, p2,3, p3,4, p4,1 be the four tangency points of a non-
degenerate conic that is inscribed in a quadrilateral in P

2. Then, the lines (p1,2, p3,4)
and (p2,3, p4,1)are concurrent with the two diagonals of the quadrilateral. (See Fig. 4.)

Let p1,2, p2,3, p3,1 be points that are distinct from the vertices of a triangle
�(v1, v2, v3). The points form a Ceva configuration if and only if the three lines
(v1, p2,3), (v2, p3,1), and (v3, p1,2) are concurrent. The points form a Menelaus con-
figuration if and only if the three points p1,2, p2,3, and p3,1 are collinear. (See Fig. 2.)

Theorem 2.2 (Ceva’s and Menelaus’ theorems) Consider a triangle �(v1, v2, v3) in
the affine plane. Let p1,2, p2,3, and p3,1 be points on the respective edge-lines (v1, v2),
(v2, v3), and (v3, v1) that are distinct from the vertices of the triangle. Then,

l(v1, p1,2)

l(p1,2, v2)
· l(v2, p2,3)

l(p2,3, v3)
· l(v3, p3,1)

l(p3,1, v1)

(i) equals 1 if and only if the points form a Ceva configuration,
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Fig. 2 For Ceva configurations and also for Menelaus configurations, the placement of the point p3,1 can
be uniquely determined by the placement of the points p1,2 and p2,3

Fig. 3 For any quadrilateral, there is a 1-parameter family of inscribed conics. The three diagonals of the
complete quadrilateral are degenerate inscribed conics

(ii) equals −1 if and only if the points form a Menelaus configuration.

Here, l(v, p) denotes an oriented length.

Note that the quotient of the oriented lengths is invariant with respect to the line
orientation. Theorem 2.2 can be found, for example, in [6,19,20].

Proposition 2.3 is a limit of thewell-known fact that there is a unique non-degenerate
conic tangent to five generic lines. A proof can be found in [8], for example.

Proposition 2.3 For any quadrilateral in P
2, there exists a 1-parameter family of

inscribed conics. (See Fig. 3.) Any non-degenerate inscribed conic can be uniquely
determined by specifying one of its tangency points that is not a vertex of the complete
quadrilateral.

Theorem 2.4 Let p1,2, p2,3, p3,4, p4,1 be four distinct points that are distinct from the
vertices of a quadrilateral �(v1, v2, v3, v4) in P

2. These points determine a Ceva
configuration for each of the triangles �(v1, v2, v3), �(v2, v3, v4), �(v3, v4, v1),
�(v4, v1, v2). The intersection point of the diagonals of �(v1, v2, v3, v4) is a common
point of the four Ceva configurations if and only if the points p1,2, p2,3, p3,4, p4,1 are
the tangency points of a non-degenerate inscribed conic. (See Fig. 4.)

Proof Byapplying aprojective transformation toP2, the quadrilateral�(v1, v2, v3, v4)

can be mapped to a square. Then, any inscribed conic is symmetric with respect to
the diagonals of the square. So, the intersection point of the diagonals is a common
point of the four Ceva configurations. For the converse, suppose that the intersection
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Fig. 4 For any non-degenerate conic that is inscribed in the quadrilateral, the two lines connecting the
opposite tangency points are concurrent with the two diagonals. The tangency points determine a Ceva
configuration on each of the triangles�(v1, v2, v3),�(v2, v3, v4),�(v3, v4, v1),�(v4, v1, v2). The inter-
section point (v1, v3) ∩ (v2, v4) is a common point of the four Ceva configurations
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Fig. 5 The points p1,2, p2,3, p3,4, p4,1 are the tangency points of an inscribed conic. Lemma 2.5 defines
an inscribed conic with tangency points q1,2, q2,3, q3,4, q4,1 such that q1,2, q3,4, p2,3, p4,1 are collinear
and q2,3, q4,1, p1,2, p3,4 are collinear

point of the diagonals is a common point of the four Ceva configurations. Then, the
four points on the edge-lines of the square must be symmetric about the diagonals of
the square. So, they are the tangency points of an inscribed conic. ��

Theorem 2.4 is a generalisation of the fact that Ceva configurations correspond to
non-degenerate conics that are inscribed in triangles.

Lemma 2.5 Consider a quadrilateral �(v1, v2, v3, v4) in P
2 and let r be the inte-

rsection point of the diagonals. Let p1,2, p2,3, p3,4, p4,1 be the tangency points of
an inscribed conic C . As shown in Fig. 5, construct the points q1,2, q2,3, q3,4, q4,1 by
drawing the two lines containing the collinear points {p1,2, r , p3,4} and {p2,3, r , p4,1}.
The points q1,2, q2,3, q3,4, q4,1 are the tangency points of a conic that is inscribed in
�(v1, v2, v3, v4).

Proof By applying a projective transformation, the quadrilateral �(v1, v2, v3, v4) can
be mapped to a square. Then, the inscribed conic C is symmetric with respect to
the two diagonals of the quadrilateral. The two lines containing the collinear points
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Fig. 6 If a bipartite loop of planar quadrilaterals admits one instance of touching inscribed conics, then it
admits a 1-parameter family of touching inscribed conics

{p1,2, r , p3,4} and {p2,3, r , p4,1} are also symmetric with respect to both of the diag-
onals. In particular, the points q1,2, q2,3, q3,4, q4,1 are symmetric with respect to both
of the diagonals. So, by Theorem 2.4, they are the tangency points of an inscribed
conic. ��
For any quadrilateral �(v1, v2, v3, v4) in P2, Lemma 2.5 establishes an involution on
the 1-parameter family of inscribed conics. However, there is one degenerate case. For
any quadrilateral, there is a unique inscribed conic that is projectively equivalent to a
circle inscribed in a square. It is mapped under the involution to a degenerate inscribed
conic, namely the double line ((v1, v2)∩ (v3, v4), (v2, v3)∩ (v4, v1)). We are mostly
interested in the generic case.

3 Nets of Planar Quadrilaterals with Touching Inscribed Conics

3.1 Porism

In projective space Pn , n ≥ 2, nets of planar quadrilaterals (or Q-nets) are discrete
surfaces that are defined by gluing together planar quadrilaterals. By definition, two
planar quadrilaterals are glued together if and only if they have two common vertices
on a common edge-line. Nets of planar quadrilaterals with touching inscribed conics
are nets of planar quadrilaterals such that each planar quadrilateral is equipped with an
inscribed conic such that, for any two neighbouring quadrilaterals, the two inscribed
conics have the same tangency point on their common edge-line.

A loop of planar quadrilaterals is a net of planar quadrilaterals where every quadri-
lateral is glued with exactly two other quadrilaterals. A loop of planar quadrilaterals
is called bipartite if the vertices can be bicoloured so that the vertices have different
colours if they share an edge.

Theorem 3.1 Consider a bipartite loop of finitely many planar quadrilaterals in pro-
jective space Pn, n ≥ 2. If it admits one instance of touching inscribed conics, then it
admits a 1-parameter family of touching inscribed conics (See Fig. 6.)

Proof Enumerate the quadrilaterals {Qi }n
i=1 of the bipartite loop so that Qi and Qi+1

are neighbouring quadrilaterals for any i ∈ Z/nZ. Let li denote the common edge-line
of the two neighbouring quadrilaterals Qi and Qi+1. Let ri denote the intersection of
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Fig. 7 The central projection fi : li−1 → li is defined in the proof of Theorem 3.1. In the first case, the
centre is ri . In the second case, the centre is r∗

i

Fig. 8 If a Q-net admits an instance of touching inscribed conics, then it admits a 1-parameter family of
touching inscribed conics and, by Theorem 3.5, it is a Koenigs net

the diagonals of Qi . For each i ∈ Z/nZ, define a central projection fi : li−1 → li .
There are two cases to consider. First, suppose that the lines li−1 and li do not intersect
at a vertex of the quadrilateral Qi , as shown in the left of Fig. 7. Then fi is defined
to be the central projection with centre ri . Second, suppose that the lines li−1 and li
do intersect at a vertex of the quadrilateral Qi , as shown in the right of Fig. 7. Then,
the map fi : li−1 → li is defined to be the central projection with centre r∗

i defined as
the intersection of two of the three diagonals of the complete quadrilateral determined
by Qi . The two diagonals are chosen so that they determine a quadrilateral where li−1
and li are opposite edge-lines. Because the loop is bipartite, the two common vertices
of the quadrilaterals Qn and Q1 are two fixed points of the projective transformation
f := fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1 : l0 → l0. Suppose that the bipartite loop admits an
instance of touching inscribed conics. For each conic inscribed in Qi , Proposition 2.1
shows that the central projection fi maps the tangency point of li−1 to the tangency
point of li . So, the touching point on the line l0 is a fixed point of the projective
transformation f . The map f must be the identity because it has three fixed points.
So the loop admits a 1-parameter family of touching inscribed conics. ��
Corollary 3.2 A Q-net f : Z2 → P

n, n ≥ 2, admits an instance of touching inscribed
conics if and only if it admits a 1-parameter family of touching inscribed conics. (See
Fig. 8.)
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Theorem 3.3 In projective space P
n, n ≥ 2, the double cover of a non-bipartite loop

always admits a 1-parameter family of touching inscribed conics.

Proof As in the proof of Theorem 3.1, enumerate the quadrilaterals and let li denote
the common edge-line of the two neighbouring quadrilaterals Qi and Qi+1 for all
i ∈ Z/nZ. Define f : l0 → l0 to be the projective transformation fn ◦ fn−1◦· · ·◦ f2◦ f1
that was defined in the proof of Theorem 3.1. Let v1 and v2 be the two common vertices
of Q1 and Qn . Because the loop of planar quadrilaterals is not bipartite, it follows that
f (v1) = v2 and f (v2) = v1. However, any projective transformation P

1 → P
1 is an

involution if it exchanges two distinct points [20, Lem. 8.1]. Therefore, f ◦ f ≡ id. ��

3.2 Koenigs Nets

Two planar quadrilaterals �(a, b, c, d) and �(a∗, b∗, c∗, d∗) in Rn , n ≥ 2, are called
dual quadrilaterals if and only if their corresponding edge-lines are parallel and their
non-corresponding diagonals are parallel. For any planar quadrilateral, a dual quadri-
lateral exists and it is uniquely determined up to translation and rescaling. It is worth
mentioning that the notion of dual quadrilaterals is not projective.

A net f : Z2 → A
n of planar quadrilaterals in affine space An , n ≥ 2, is called a

2-dimensional Koenigs net if there exists a Christoffel dual net f ∗ : Z2 → A
n such

that the corresponding quadrilaterals are dual [6]. Although 2-dimensional Koenigs
nets are defined in terms of affine geometry, it is known that the class of 2-dimensional
Koenigs nets is invariant under projective transformations.

Definition 3.4 Consider a Q-net f : Z2 → A
n , n ≥ 2. Denote by Mi, j the intersection

point of the diagonals of the quadrilateral �( fi, j , fi+1, j , fi+1, j+1, fi, j+1). Then, the
net f : Z2 → A

n is a 2-dimensional Koenigs net if and only if the following condition
is satisfied for all (i, j) ∈ Z

2:

l(Mi, j , fi+1, j )

l(Mi, j , fi, j+1)
· l(Mi−1, j , fi, j+1)

l(Mi−1, j , fi−1, j )
· l(Mi−1, j−1, fi−1, j )

l(Mi−1, j−1, fi, j−1)
· l(Mi, j−1, fi, j−1)

l(Mi, j−1, fi+1, j )
= 1

(1)

This algebraic characterisation and further projective geometric properties of Koenigs
nets can be found in [6].

Theorem 3.5 A Q-net f : Z2 → P
n, n ≥ 2, is a 2-dimensional Koenigs net if and only

if it admits (a 1-parameter family of) touching inscribed conics.

Proof Consider the four quadrilaterals of the Q-net in Fig. 9. Suppose that the four
quadrilaterals have touching inscribed conics. Equivalently, by Theorem 2.4, the
touching points of the inscribed conics determine four Ceva configurations that are
highlighted in Fig. 9. The points M , which are the intersections of the diagonals of the
quadrilaterals, are points of the four Ceva configurations. Each of the Ceva configura-
tions implies themulti-ratio identity (i) of Theorem 2.2, saying that the product of three
ratios of oriented lengths equals 1. Consider the product of the four equations. The
product gives the identity (1) because the lengths can be oriented so that cancellations
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f 1i, j +

Mi, j 

Mi –1,  j

fi –1,  j

Mi –1,  j–1

f 1i + ,  j

M 1i, j –

f 1i, j –

fi, j 

Fig. 9 The identity (1) is valid if and only if the net of planar quadrilaterals admits a 1-parameter family
of touching inscribed conics. The identity (1) says that the product of the oriented lengths of the dashed
arrows is equal to the product of the oriented lengths of the solid arrows

occur on the common edge-lines of the four Ceva configurations. For the converse,
Ceva’s theorem can be used to show that the identity (1) is sufficient to ensure that
there is a 1-parameter family of Ceva configurations as shown in Fig. 9. Equivalently,
by Theorem 2.4, there is a 1-parameter family of touching inscribed conics. ��
Corollary 3.6 If all the edge-lines of a Q-net f : Z2 → P

n, n ≥ 2, are tangent to
a quadric and if none of the planes of the Q-net are contained in the quadric, then
generically f is a 2-dimensional Koenigs net.

Proof Consider a planar quadrilateral of the Q-net. As the plane of the quadrilateral is
not contained in the quadric, the plane intersects the quadric in a conic. Generically,
the conic is non-degenerate. So, the Q-net admits an instance of touching inscribed
conics. By Theorem 3.5, the Q-net is a Koenigs net. ��
Examples of Q-nets with their edge-lines tangent to a sphere are given by Koebe poly-
hedra, which are used in [3] to construct discrete minimal surfaces. The corresponding
touching conics are circles. Koebe polyhedra have a 1-parameter family of touching
inscribed conics.

4 Line Grids with Quadrilaterals with Touching Inscribed Conics

4.1 Polygonal Chains Inscribed in Conics

Now we are going to give a direct application of Lemma 2.5. Let p0, p1, . . . , pm

and q0, q1, . . . , qn be the vertices of two polygonal chains that are inscribed in a
non-degenerate conic C . Let k0, k1, . . . , km and l0, l1, . . . , ln be the respective tan-
gent lines of C . The notation �(ki−1, l j−1, ki , l j ) stands for the quadrilateral with
the vertices ki−1 ∩ l j−1, ki−1 ∩ l j , ki ∩ l j , ki ∩ l j−1. By Lemma 2.5, the points
(pi−1, pi ) ∩ l j−1, (pi−1, pi ) ∩ l j , (q j−1, q j ) ∩ ki−1, (q j−1, q j ) ∩ ki are the tan-
gency points of a conic that is inscribed in �(ki−1, l j−1, ki , l j ). Therefore, the m × n
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p0 p1

p2

q0

q1

q2

Fig. 10 Two polygonal chains are inscribed in a conic. The dotted lines are the lines
(p0, p1), (p1, p2), (q0, q1), (q1, q2). By construction, the tangency points of the touching inscribed conics
lie on the dotted lines

Fig. 11 An inscribed polygon and a grid of quadrilaterals with touching inscribed conics such that the
tangency points are contained in the dotted edge-lines of the inscribed polygon

grid {�(ki−1, l j−1, ki , l j )}1≤i≤m,1≤ j≤n admits an instance of touching inscribed con-
ics such that the tangency points satisfy some non-trivial collinearities. An example
is shown in Fig. 10 where the non-trivial collinearities are represented by the dotted
lines.

In the above construction of grids of quadrilaterals with touching inscribed conics,
the two polygonal chains determine the “horizontal” and “vertical” lines of the grid.
However, they can be merged. (See Fig. 11.)

4.2 Generic Lines Tangent to a Conic

Theorem 4.1 is a consequence of two classical theorems which are referenced in the
proof.

Theorem 4.1 Let k0, k1 and l0, l1, . . . , ln, n ≥ 2, be lines in the projective plane such
that each quadrilateral Qi := �(k0, li−1, k1, li ) has four generic edge-lines. Let ri

be the intersection point of the diagonals of Qi . Then the following are equivalent:
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(i) The lines k0, k1 and l0, l1, . . . , ln are tangent to a non-degenerate conic.
(ii) The points {ri }n

i=1 lie in a line that does not contain the point k0 ∩ k1.

Suppose that the lines k0, k1 and l0, l1, . . . , ln are tangent to a non-degenerate conic
C . Let k0,1 be the line containing the collinear points {ri }n

i=1. Then, k0 ∩ k0,1 and
k1 ∩ k0,1 are the tangency points of the tangent lines k0 and k1.

Proof By the dual of Steiner’s theorem on the projective generation of non-degenerate
conics, the lines k0, k1, l0, l1, . . . , ln are tangent to a non-degenerate conic if and only if
there is a projective transformation f : k0 → k1 such that f (k0∩li ) = k1∩li for all i ∈
{1, . . . , n} and such that f (k0∩k1) 
= k0∩k1 [8, Thms. 8.1.4 and 8.1.8]. Equivalently,
by the cross-axis theorem [8, Thm. 5.3.5] and [8, Prop. 5.3.7], the points {ri }n

i=1 are
contained in a line which is called the cross-axis of f : k0 → k1. The cross-axis is not
concurrent with the lines k0 and k1, because otherwise the projective transformation
f : k0 → k1 would be a central projection so that f (k0 ∩ k1) = k0 ∩ k1. Therefore
(i) and (ii) are equivalent. Suppose that the generic lines k0, k1 and l0, l1, . . . , ln are
tangent to a non-degenerate conic C . Let p0 and p1 be the tangency points of the
tangent lines k0 and k1. Because C is inscribed in each of the quadrilaterals {Qi }n

i=1,
Proposition 2.1 ensures that the points {ri }n

i=1 are contained in the line (p0, p1).
Therefore, p0 = k0 ∩ k0,1 and p1 = k1 ∩ k0,1. ��
Let k0, k1, . . . , km and l0, l1, . . . , ln be generic lines in the projective plane. Con-
sider the m × n grid of quadrilaterals Qi, j := �(ki−1, l j−1, ki , l j ). We use Ki−1,i
and L j−1, j to denote the strips of quadrilaterals {�(ki−1, l j−1, ki , l j )}n

j=1 and
{�(ki−1, l j−1, ki , l j )}m

i=1, respectively.

Theorem 4.2 For six generic lines k0, k1, k2, l0, l1, l2 in the projective plane, consider
the 2 × 2 grid of quadrilaterals Qi, j := �(ki−1, l j−1, ki , l j ). We use ri, j to denote
the intersection point of the diagonals of the quadrilateral Qi, j . Then the following
are equivalent:

(i) The six lines k0, k1, k2, l0, l1, l1 are tangent to a non-degenerate conic.
(ii) The 2 × 2 grid of quadrilaterals admits an instance of touching inscribed con-

ics Ci, j such that the following sets are sets of collinear points. (See Fig. 12.)

{K0,1l0, r1,1, K0,1l1, r1,2, K0,1l2}, {k0L1,2, r1,2, k1L1,2, r2,2, k2L1,2},
{K1,2l0, r2,1, K1,2l1, r2,2, K1,2l2}, {k0L0,1, r1,1, k1L0,1, r2,1, k2L0,1}.

The points Ki−1,i l j−1, Ki−1,i l j , ki−1L j−1, j , ki L j−1, j are defined to be the tan-
gency points of the conic Ci, j that is inscribed in the quadrilateral Qi, j . The
tangency points are labelled by their tangent lines and by the strips of quadri-
laterals.

(iii) The 2×2 grid of quadrilaterals admits an instance of touching inscribed conics.
(iv) The2×2 grid of quadrilaterals admits a1-parameter family of touching inscribed

conics.
(v) The three lines (r1,1, r2,1), (r1,2, r2,2), and l1 are concurrent.
(vi) The three lines (r1,1, r1,2), (r2,1, r2,2), and k1 are concurrent.
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Fig. 12 The six generic gridlines are tangent to a non-degenerate conic if and only if the 2 × 2 grid of
quadrilaterals admits a 1-parameter family of touching inscribed conics. Among the 1-parameter family of
touching inscribed conics, there is one instance of touching inscribed conics such that the tangency points
satisfy some non-trivial collinearities which are represented by the dotted lines

Proof Suppose that the generic lines k0, k1, k2, l0, l1, l2 are tangent to a non-degenerate
conic C . Let p0, p1, p2, q0, q1, q2 be the tangency points of the tangent lines
k0, k1, k2, l0, l1, l2. Consider the two polygonal chains p0, p1, p2 and q0, q1, q2 that
are inscribed in the non-degenerate conicC . By the construction in Sect. 4.1, the 2×2
grid of quadrilaterals admits an instance of touching inscribed conics such that the
following sets are sets of collinear points:

{K0,1l0, r1,1, K0,1l1, r1,2, K0,1l2}, {k0L1,2, r1,2, k1L1,2, r2,2, k2L1,2},
{K1,2l0, r2,1, K1,2l1, r2,2, K1,2l2}, {k0L0,1, r1,1, k1L0,1, r2,1, k2L0,1}.

Therefore, (i) implies (ii). Obviously, (ii) implies (iii). By Theorem 3.1, (iii) im-
plies (iv).

Suppose that the 2×2 grid of quadrilaterals admits a 1-parameter family of touching
inscribed conics. By Theorem 3.5, it is a Koenigs net. So, in any affine image of P2,

l(k0 ∩ l1, r1,1)

l(r1,1, k1 ∩ l0)
· l(k1 ∩ l0, r2,1)

l(r2,1, k2 ∩ l1)
· l(k2 ∩ l1, r2,2)

l(r2,2, k1 ∩ l2)
· l(k1 ∩ l2, r1,2)

l(r1,2, k0 ∩ l1)
= 1. (2)

By applying Menelaus’ theorem to the triangles�(k0 ∩ l1, k2 ∩ l1, k1 ∩ l2) and�(k0 ∩
l1, k2 ∩ l1, k1∩ l0), the identity (2) implies that the two lines (r1,1, r2,1) and (r1,2, r2,2)
are concurrent with the line l1. By applyingMenelaus’ theorem to the triangles�(k1∩
l0, k1 ∩ l2, k0 ∩ l1) and �(k1 ∩ l0, k1 ∩ l2, k2 ∩ l1), the identity (2) implies that the two
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lines (r1,1, r1,2) and (r2,1, r2,2) are concurrent with the line k1. Therefore, (iv) implies
both (v) and (vi).

Suppose that the three lines (r1,1, r2,1), (r1,2, r2,2), and l1 are concurrent. Let q1
be the concurrency point. The generic lines k0, k1, k2, l0, l1 are tangent to a uniquely
determined non-degenerate conic [8, Cor. 8.1.12], say A . By Theorem 4.1, q1 is a
tangency point of A . Likewise, the generic lines k0, k1, k2, l1, l2 are tangent to a
uniquely determined non-degenerate conic, sayB, with the tangency point q1. Then,
by Proposition 2.3, A = B because A and B have four common generic tangent
lines k0, k1, k2, l1 and the common tangency point q1. Therefore, (v) implies (i). Sym-
metrically, (vi) also implies (i). ��
Corollary 4.3 Let k0, k1, . . . , km, m ≥ 2, and l0, l1, . . . , ln, n ≥ 3, be generic
lines in the projective plane. Consider the m × n grid of quadrilaterals Qi, j :=
�(ki−1, l j−1, ki , l j ). We use ri, j to denote the intersection point of the diagonals of
the quadrilateral Qi, j . Then the following are equivalent:

(i) The generic lines k0, k1, . . . , km, l0, l1, . . . , ln are tangent to a non-degenerate
conic.

(ii) The m × n grid of quadrilaterals admits an instance of touching inscribed con-
ics Ci, j such that the following are collections of sets of collinear points. (See
Fig. 13.)

{{Ki−1,i l j }n
j=0}m

i=1, {{ki L j−1, j }m
i=0}n

j=1.

The points Ki−1,i l j−1, Ki−1,i l j , ki−1L j−1, j , ki L j−1, j are defined to be the tan-
gency points of the conic Ci, j that is inscribed in the quadrilateral Qi, j . The
tangency points are labelled by their tangent lines and by the strips of quadri-
laterals.

(iii) The m ×n grid of quadrilaterals admits an instance of touching inscribed conics.
(iv) The m × n grid of quadrilaterals admits a 1-parameter family of touching

inscribed conics.
(v) {{ri, j }m

i=1}n
j=1 and {{ri, j }n

j=1}m
i=1 are collections of sets of collinear points.

(vi) {{ri, j }n
j=1}m

i=1 is a collection of sets of collinear points.

Proof As in theproof ofTheorem4.2, (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v)⇒ (vi) are straight-
forward. The only step we comment on is (vi)⇒ (i). Suppose that {{ri, j }n

j=1}m
i=1 is

a collection of sets of collinear points. By Theorem 4.1, for any i ∈ {1, . . . ,m}, the
generic lines ki−1, ki , l0, l1, . . . , ln are tangent to a non-degenerate conic, say Ci . For
any i ∈ {1, . . . ,m − 1}, the non-degenerate conics Ci and Ci+1 are identical because
they have five common tangent lines ki , l0, l1, l2, l3. Therefore, (vi)⇒ (i). ��

By Corollary 4.3, any generic net of lines with the combinatorics of the square grid
and with all elementary quadrilaterals possessing touching inscribed conics can be
constructed from two polygonal chains that are inscribed in a non-degenerate conic
as explained in Sect. 4.1. The inscribed conics of two combinatorially neighbouring
quadrilaterals have the same touching point on their common edge-line. Corollary 4.3
implies the incidence theorem that is illustrated in Fig. 14
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Fig. 13 If a 3 × 3 grid of quadrilaterals admits an instance of touching inscribed conics, then there is a
1-parameter family of touching inscribed conics. Among the 1-parameter family, there is one instance of
touching inscribed conics such that the tangency points satisfy some non-trivial collinearities which are
represented by the dotted lines

Q1,3
Q2,3

Q2,2
Q1,2

Q2,1

Q3,2

Q3,1

Q3,3

Q1,1

Fig. 14 Suppose that each of the quadrilaterals Q1,1, Q1,2, Q1,3, Q2,1, Q2,2, Q2,3, Q3,1, Q3,2 is
equipped with an inscribed conic such that, for any two neighbouring quadrilaterals, the inscribed con-
ics are touching. Then, Q3,3 admits an inscribed conic that touches the two conics that are inscribed in
Q3,2 and Q2,3. By Corollary 4.3, the eight lines are tangent to a conic

Koenigs nets can be treated as discrete conjugate nets with equal Laplace invari-
ants [6]. By Theorem 3.5, grids of quadrilaterals with touching inscribed conics are
planar 2-dimensional Koenigs nets. It is worthmentioning that Koenigs showed in [16]
that planar nets with equal Laplace invariants can be understood locally by the condi-
tion that six lines are tangent to a conic.

4.3 Conics Associated to the Strips

Theorem 4.4 Let k0, k1, . . . , km and l0, l1, . . . , ln, m, n ∈ N≥2, be generic lines
in the projective plane. Suppose that the m × n grid of quadrilaterals Qi, j :=
�(ki−1, l j−1, ki , l j ) has touching inscribed conics. Equivalently, the gridlines are
tangent to a conic C . Then, along each strip of quadrilaterals, the touching points are
contained in a conic that has double contact with C . (See Fig. 15.)

We start with Lemma 4.5, which will be used in the proof of Theorem 4.4.

Lemma 4.5 Let p1,2, p2,3, p3,4, p4,1 be the tangency points of a conic that is inscribed
in a quadrilateral �(v1, v2, v3, v4) in P

2. Let q1,2, q2,3, q3,4, q4,1 be the tangency
points of another inscribed conic. Then, there exists a unique conic containing the
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Fig. 15 The gridlines are tangent to a conic C . The tangency points of the touching inscribed conics are
contained in conics that have double contact with C

v3

p
2,3

q
2,3

v2

v1

v4

p
1,2

q
1,2

p
3,4

q
3,4p

4,1

q
4,1

Fig. 16 For any two inscribed conics, there exists a conic containing the points p1,2, q2,3, p3,4, q4,1
and with the tangent lines (v2, v3), (v4, v1). Symmetrically, there exists a conic containing the points
q1,2, p2,3, q3,4, p4,1 and with the tangent lines (v1, v2), (v3, v4)

points p1,2, q2,3, p3,4, q4,1 and tangent to the lines (v2, v3) and (v4, v1). Symmetri-
cally, there exists a unique conic containing the points q1,2, p2,3, q3,4, p4,1 and with
the tangent lines (v1, v2) and (v3, v4). (See Fig. 16.)

Proof By applying a projective transformation, the quadrilateral �(v1, v2, v3, v4) can
be mapped to a square. Let r be the intersection point of the diagonals of the square.
Consider the pencil of conics through the four points p1,2, q2,3, p3,4, q4,1. Any conic
in the pencil can be determined by the four base points and a fifth point. One can show,
for example by using Pascal’s theorem, that the reflection about r of the fifth point is
also contained in the conic. So, all of the conics in the pencil are symmetric about the
point r . Therefore, if a conic containing the points p1,2, q2,3, p3,4, q4,1 is tangent to
the line (v2, v3), then it must also be tangent to the line (v4, v1) because the two lines
are symmetric about the point r . ��
Proof of Theorem 4.4 The quadrilaterals Qi, j are equipped with inscribed conics Ci, j

such that, for any two neighbouring quadrilaterals, the inscribed conics are touching.
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Fig. 17 A non-generic 3 × 2 grid of quadrilaterals with touching inscribed conics. The corresponding
common conic is degenerate. The lines ki are concurrent and so too are the lines l j . For each strip of
quadrilaterals, the double contact conics containing the tangency points are also degenerate. They are pairs
of lines passing through the concurrency points

Let ki−1L j−1, j , ki L j−1, j , Ki−1,i l j−1, Ki−1,i l j be the corresponding tangency points,
labelled by their tangent lines and by the strips of quadrilaterals. By Corollary 4.3,
the lines k0, k1, . . . , km and l0, l1, . . . , ln are tangent to a non-degenerate conic C .
Let p0, p1, . . . , pm and q0, q1, . . . , qn be the respective tangency points. The aim is
to show that for any fixed i , the points {Ki−1,i l j }n

j=0 are contained in a conic Ai

that has double contact with the conic C . Symmetrically, for any fixed j , the aim is
to show that the points {ki L j−1, j }m

i=0 are contained in a conic B j that has double
contact with the conic C . For any fixed i ∈ {1, . . . ,m}, consider the strip Ki−1,i of
quadrilaterals {Qi, j }n

j=1. For each quadrilateral Qi, j in Ki−1,i , Lemma 4.5 determines
a conic, say D j , containing the points pi−1, pi , Ki−1,i l j−1, Ki−1,i l j and with the
tangent lines ki−1, ki . The conics D j and D j+1 are equal because pi−1, pi , Ki−1,i l j

are common points and the lines ki−1, ki are common tangents. Thus,Ai is the conic
D1 = . . . = Dn . Therefore, the conics {Ai }m

i=1 exist and, symmetrically, the conics
{B j }n

j=1 also exist. Figure 17 illustrates a degenerate case of Theorem 4.4. ��

4.4 Incircular Nets and Billiards in Conics

Incircular nets are line grids with quadrilaterals with inscribed circles. The following
characterisation of incircular nets can be found in [1, Defn. 2.3].

Definition 4.6 Let a0, a1, . . . , am and b0, b1, . . . , bn be lines in the Euclidean plane.
The m × n grid of quadrilaterals �(ai−1, b j−1, ai , b j ) is an incircular net if and only
if the following conditions are satisfied.

(i) The lines a0, a1, . . . , am and b0, . . . , bn are tangent to a conic C .
(ii) The points ai−1 ∩ ai and b j−1 ∩ b j are contained in a conic D that is confocal

with C .

Billiards in conics are examples of integrable systems. An important property of bil-
liards in conics is that they have caustics that are confocal conics. (See Fig. 18.)
An introduction to billiards can be found in [22]. The lines a0, a1, . . . , am and
b0, b1, . . . , bn in Definition 4.6 can be interpreted as the lines of two billiards in
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Fig. 18 The billiard reflection law says that the angle of reflection equals the angle of incidence. For billiards
in conics, the trajectory forever remains tangent to a confocal conic

e

b

c

a

f

d

Fig. 19 The complete quadrilateral has an inscribed circle if and only if, for any inscribed conic, there are
three confocal conics that contain the pairs of opposite vertices

the conic D that have the same confocal caustic C . Confocal conics have four com-
mon imaginary tangent lines [18]. Conics that are tangent to four real lines appeared
in the study of elliptic billiards in the Lorentz plane [15].

Thegridlines of any incircular net are tangent to a conic. Therefore, byCorollary 4.3,
incircular nets are grids of quadrilaterals that admit a 1-parameter family of touching
inscribed conics. However, for two neighbouring quadrilaterals of an incircular net,
the two inscribed circles are generically not touching as they do not have the same
tangency point on the common edge-line of the two quadrilaterals. (See Fig. 1.)

Theorem 4.7 For any incircular net, there is a dual grid of quadrilaterals that has a
1-parameter family of touching inscribed conics. The vertices of the dual grid are the
centres of the circles of the incircular net. The lines of the dual grid are angle bisector
lines of the incircular net. (See Fig. 1.)

The proof of Theorem 4.7 uses the Graves–Chasles theorem, a proof of which can be
found in [1,11], for example. See also [14].

Theorem 4.8 (Graves–Chasles Theorem) Suppose that a conic C is tangent to the
four edge-lines of a complete quadrilateral inR2. Denote the pairs of opposite vertices
by {a, c}, {b, d}, {e, f } as shown in Fig. 19. Then the following are equivalent:

(i) There exists a circle that is tangent to the four edge-lines.
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pi –1

pi +1

qj –1

qi +1

qj 

pi 

Fig. 20 The two polygonal chains pi−1, pi , pi+1 and q j−1, q j , q j+1 are billiards that are inscribed in
a conic D . Suppose that the two billiards have the same confocal caustic. Then, by the Graves–Chasles
theorem, there exists a circle that is tangent to the four dotted lines. The centre of the circle is the intersection
point of the tangent lines ofD at pi and q j . These tangent lines generate a line grid with touching inscribed
conics

(ii) The points {a, c} lie on a conic that is confocal with C .
(iii) The points {b, d} lie on a conic that is confocal with C .
(iv) The points {e, f } lie on a conic that is confocal with C .

If the inscribed circle exists, then the tangent lines of the confocal conics at the vertices
of the complete quadrilateral are concurrent at the centre of the inscribed circle.

Proof of Theorem 4.7 Any incircular net determines two billiards p0, p1, . . . , pm and
q0, q1, . . . , qn that are inscribed in a conic D and that have the same confocal caus-
tic C . Let k0, k1, . . . , km and l0, l1, . . . , ln be the tangent lines of D at the points
p0, p1, . . . , pm and q0, q1, . . . , qn , respectively. By Corollary 4.3, the m × n grid of
quadrilaterals �(ki−1, l j−1, ki , l j ) admits a 1-parameter family of touching inscribed
conics. The billiard reflection law ensures that the tangent line of D at pi is an angle
bisector of the lines (pi−1, pi ) and (pi , pi+1). In other words, the tangent line of D
at pi divides one of the angles between the two lines (pi−1, pi ) and (pi , pi+1) in
half. Likewise, the tangent line of D at q j is an angle bisector of the lines (q j−1, q j )

and (q j , q j+1). By Theorem 4.8, there is a circle that is tangent to the four lines
(pi−1, pi ), (pi , pi+1), (q j−1, q j ), (q j , q j+1) and that is centred at the intersection
point of the tangent lines of D at pi and q j . (See Fig. 20.) ��

Acknowledgements Thanks to the anonymous referees for valuable suggestions that improved the paper.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


1400 Discrete & Computational Geometry (2021) 66:1382–1400

References

1. Akopyan, A.V., Bobenko, A.I.: Incircular nets and confocal conics. Trans. Am. Math. Soc. 370(4),
2825–2854 (2018)

2. Berger, M.: Geometry II. Universitext. Springer, Berlin (2009)
3. Bobenko, A.I., Hoffmann, T., Springborn, B.A.: Minimal surfaces from circle patterns: geometry from

combinatorics. Ann. Math. 164(1), 231–264 (2006)
4. Bobenko, A.I., Lutz, C.O.R., Pottmann, H., Techter, J.: Non-Euclidean Laguerre geometry and incir-

cular nets (2020). arXiv:2009.00978
5. Bobenko, A.I., Schief, W.K., Techter, J.: Checkerboard incircular nets: Laguerre geometry and

parametrisation. Geom. Dedicata 204, 97–129 (2020)
6. Bobenko, A.I., Suris, Yu.B.: Discrete Differential Geometry. Integrable Structure. Graduate Studies in

Mathematics, vol. 98. American Mathematical Society, Providence (2008)
7. Böhm, W.: Verwandte Sätze über Kreisvierseitnetze. Arch. Math. (Basel) 21, 326–330 (1970)
8. Casas-Alvero, E.: Analytic Projective Geometry. EMS Textbooks in Mathematics. European Mathe-

matical Society, Zürich (2014)
9. Chasles, M.: Traité des Sections Coniques Faisant Suite au Traité de Géométrie Supérieure. Premiere

Partie. Thesaurus Mathematicae, vol. 3. Physica, Würzburg (1962)
10. Darboux, G.: Lecons sur la Théorie Générale des Surfaces et les Applications Géométriques du Calcul

Infinitésimal, vol. 2 & 3. Gauthier-Villars & Fils, Paris (1887, 1889)
11. Darboux, G.: Principes de Géométrie Analytique. Gauthier-Villars, Paris (1917)
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