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Abstract

In this note, we aim at reducing the state space of dynamic programming algorithms used as col-
umn generators in solving the linear programming relaxation of set partitioning problems arising
from practical applications. We propose a simple generic lower bounding criterion based on the
respective dual optimal solution of the restricted master program.
Key words: Dynamic programming, column generation, state space reduction

1 Motivation

Column generation is a well-established method to solve large-scale (integer) linear programs, see
e.g., [3, 5, 8]. In recent years we have seen the optimal solution of problems with millions of variables
in various practical application areas. Often, a natural modeling approach is a formulation as a set
partitioning style program. Classical examples are airline crew pairing [2] and vehicle routing [5].
Here, the pricing problem, i.e., the task to compute a favorable column to enter the basis or to prove
that none such exists, commonly constitutes an N P -complete combinatorial optimization problem;
dynamic programming algorithms have been proposed for exact solutions, see e.g., [2, 4, 5, 6, 9].
This note provides a simple means to reduce the state space of these algorithms, rediscovering the
fathoming technique in dynamic programming [1, 10, 12].

2 Dynamic Programs as Column Generators

Stressing their practical relevance [3], we confine ourselves to linear programming (LP) relaxations
of set partitioning problems. That is, we minimize cT x subject to Ax = 1, x ≥ 0, where A ∈ {0,1}m×n,
and n is typically very large. We assume c ≥ 0. The columns of A encode a set S of admissible subsets
of an m-set S via ai j = 1 iff i ∈ j ∈ S ⊆ 2S , i = 1, . . . ,m. Usually n = |S| � 2m, and set membership
in S is defined by a set C of problem specific constraints. An example: A set S of m customers
has to be visited, each exactly once, by a fleet of vehicles. Rules C ensure e.g., that time windows,
vehicle capacities, and precedence relations among customers are respected. This results in the set S
of (incidence vectors of) feasible vehicle routes, and associated costs c j , j ∈ S.
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The generic column generation scheme starts off with a small subset of S, the associated variables
constitute the initial restricted master program (RMP). Adjoining negative reduced cost columns,
and re-optimization of the RMP alternately proceed. Modern implementations usually use problem
specific heuristics for solving the pricing problem, cf. [3, 4], but this is not followed up here. Instead,
we concentrate on an exact algorithm which has to be executed at some point in time, at least when
one wishes to prove optimality of the RMP.

Let x and u denote the primal and dual optimal solutions, respectively, associated with the current
RMP. Then, the pricing problem amounts to determining

z := min
{

c j −∑i∈ j ui | j ∈ S
}

. (1)

If z ≥ 0, no reduced cost coefficient is negative, and x, embedded in R
n, optimally solves the original

LP as well. Otherwise, when the minimum in (1) is attained for index j ′ ∈ S, column a j′ is adjoined to
the RMP. Implicit enumeration of S can be accomplished by a dynamic program, which starts from
R = /0, and successively appends elements from S , the most recent of which is denoted by k. The
current stage of the algorithm is represented by state (R,k) with R ⊆ S , k ∈ R. A transition from
(R,k) to (R′,k′) is feasible iff (R′,k′) is compliant to a set of constraints C , which usually depend on
(R,k). In the simplest case, each state is associated with its reduced cost c(R,k). Note the assumption
of additive costs along transitions. For every R generated during the process there exists a superset
R ⊇ R with R ∈ S. These so-called final states—which represent the feasible solutions for the pricing
problem—are finally considered by the dynamic program, at least implicitly. The minimum reduced
cost feasible solution among these determines z in (1).

3 Dual Variable Based Fathoming

Besides classical dominance relations among states, lower bounds can be exploited to reduce the state
space of dynamic programs [1, 10, 12]. Consider a particular state (R,k) during the assumed dynamic
programming pricing algorithm. Denote by z the cost of a currently cheapest final state—referred to
as the incumbent, initialized with a known upper bound, possibly infinity. Candidates for extension of
R come from (but because of C need not be identical to) S \R. Now only final states having negative
cost are interesting. Therefore, if LB(R,k) ≥ min{0,z} holds for a lower bound LB(R,k) on the best
possible reduced cost coefficient obtainable by (subsequent) transitions of state (R,k), we prune the
search, which we call fathoming of the current state. In the following we present such a simple bound.

The idea is to relax constraints in C imposed on the extension of R. An immediate choice would
be a total relaxation, i.e., disregarding C altogether. Denote by S+ = {i ∈ S | ui > 0}. No state derived
from (R,k) can have cost smaller than

LB(R,k) = c(R,k)−∑i∈S+\R ui , (2)

which—although straightforward—has not been generally stated, to the best of our knowledge. In
general, this lower bound is possibly weak, but can be refined as follows. Not relaxing all C , and
utilizing some structural information on elements in S one might be able to restrict S+ to a more
meaningful set to be substituted in (2). For instance, upper bounds on max j∈S | j| can be applied to
strengthen LB(R,k). In practical applications, such information is often available, e.g., the maximal
number of customers on a vehicle tour. Another likely situation is to have i1, i2 ∈ S+ such that there
is no j′ ∈ S with R∪ {i1, i2} ⊆ j′, that is, two incompatible elements, implied by C , e.g., due to
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conflicting time windows. We would eliminate from S+ one which attains min{ui1 ,ui2}. This can be
generalized to more than two elements [7], still, the tradeoff between such efforts and computational
gains should be kept in mind. If known, the minimal cost incurred by transitions from the current to a
final state can be added to LB(R,k), e.g., the cost for a vehicle to return to a depot.

Suppose we fathom a state (R,k) when γ · LB(R,k) ≥ min{0,z} with 0 ≤ γ ≤ 1. We already
discussed the case γ = 1. For γ = 0, the inequality becomes redundant; all states would be eliminated.
Assume that LB(R,k) ≤ 0, for otherwise the multiplication by γ would have no effect on the criterion.
Then, for 0 < γ < 1, we have γ ·LB(R,k) > LB(R,k); more states than before are fathomed. In other
words, an incumbent possibly with z > z will be considered optimal. Note, that (z− z)/z < 1 always
holds for any incumbent with 0 > z ≥ z. That is, as long as some negative reduced cost column is
computed, we have a trivial upper bound on the relative error incurred for any pricing heuristic. Most
notably, in this case the heuristic just described allows for a better approximation guarantee.

Lemma 1 Let z ≤ z < 0. When LB(R,k) is replaced by γ ·LB(R,k) with 0 < γ ≤ 1, then (z− z)/z ≤
1− γ.

Proof. The modified lower bound is more effective only if LB(R,k) < z ≤ γ ·LB(R,k) for some state
(R,k). When such an additional elimination takes place, we obtain for the incumbent

z− z ≤ γ ·LB(R,k)− z ⇐⇒
z− z

z
≥ γ ·

LB(R,k)
z

−1 ≥ γ ·1−1 .

The last inequality follows from LB(R,k) ≤ z < 0, which holds by definition of the lower bound.
Constraining z to be non-positive immediately yields the claim. �

The case z ≥ 0 is uninteresting; the assumed dynamic program truly returns that no negative
reduced cost columns exist.

Let us finally remark that a variant of (2) is suited for preprocessing the data prior to solving a
pricing problem. Again, we assume non-negative cost coefficients. If u p < 0 and ∑i∈S+

ui + up ≤ 0,
then the element in S corresponding to p cannot be promisingly incorporated in any feasible solution
to the pricing problem, and therefore can be discarded throughout the calculation.

4 Concluding Remarks

Our fathoming criterion also applies in the common presence of convexity constraints in the LP. When
the cost structure is such that j1 ⊆ j2 ⊆ S ⇒ c j1 ≤ c j2 , considering the set covering relaxation Ax ≥ 1
is no loss of optimality. The assumption A ∈ {0,1}m×n may be temporarily relaxed for computational
ease. The non-binary columns encode the repeated appearance of elements in a set S. In this case,
(2) is no longer a lower bound. Independently of our work a similar bound has been proposed [11],
however, in a pricing algorithm of branch-and-bound style, where the use of bounds is essential to the
method.

Traditionally used dominance rules in dynamic programming require an efficiently manageable
global overview of states, and only allow for discarding states which are already generated. Opposed
to that, the benefit and advantage of our criterion is its ability to be checked locally in the sense that
only knowledge about the current state is necessary. Future state transitions may be avoided in the
first place. Computational experiments with (2), conducted in the context of a locomotive scheduling
problem at in-plant railroads [9], indicate considerable state space reductions of more than 90%.
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[8] M.E. Lübbecke and J. Desrosiers. Selected topics in column generation. Les Cahiers du GERAD
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