
INCREASING SPEED SCHEDULING AND FLOW SCHEDULING

SEBASTIAN STILLER AND ANDREAS WIESE

Abstract. Network flows and scheduling have been studied intensely, but
separately. In many applications a joint optimization model for routing and
scheduling is desireable. Therefore, we study flows over time with a demand
split into jobs. Our objective is to minimize the weighted sum of completion
times of these jobs. This is closely related to preemptive scheduling on a
single machine with a processing speed increasing over time. For both, flow
scheduling and increasing speed scheduling, we provide an EPTAS. Without
release dates we can proof a tight approximation factor of (

√
3 + 1)/2 for

Smith’s rule, by fully characterizing the worst case instances. We give exact
algorithms for some special cases and a dynamic program for speed functions
with a constant number of speeds. We can proof a competitive ratio of 2 for
the online version. We also study the class of blind algorithms, i.e., those
which schedule without knowledge of the speed function. For both online, and
blind algorithm we provide a lower bound.

1. Introduction

Scheduling and network flows are two corner stones of combinatorial optimiza-
tion. These topics are intensely treated, and rich both in theory and applicability
to real-world optimization problems. Still, many real-world applications in logis-
tic, traffic, and telecommunication require a coupled optimization of scheduling
and routing decisions. As an example consider the container terminal (cf. [5]) of a
modern harbor where containers are carried from the storage area to the loading
cranes by automatically guided vehicles. One has to make a scheduling decision on
the order in which the containers are brought to the ships, and a routing decision
for the vehicles through the small area between storage and cranes. These applica-
tions usually surpass the algorithmic means developed separately for scheduling and
flows. Thus, one either has to reside to general purpose methods, in particular IP
models, or to decouple the optimization of scheduling and routing. In this work we
take a first step towards joint, combinatorial optimization of flows and schedules.

We consider the following, simple, but hitherto untreated model. We are given
an s-t-network, static capacities for the arcs’ in-flow rates, and static transit times
for the arcs. Further, we are given a demand comprised of k jobs, each characterized
by its own flow demand and weight. The goal is to find a feasible flow over time
minimizing the sum of weighted completion times, i.e., the points in time when
the complete demand of a job has reached the sink. The problem is related to
earliest arrival flows and gives rise to a variation we call multiple deadline flows.
More importantly, in contains scheduling problems belonging to a class which is
interesting in its own right: increasing speed scheduling. Increasing speed scheduling

This work was partially supported by the DFG-research center Matheon and the DFG-focus
program 1307.

1

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 2

appears to be untreated, and forms an interesting specialization of scheduling with
varying speed and a wide generalization of scheduling with rejection. Though flow
scheduling only leads to scheduling with step wise increasing speed, we also treat
increasing speed scheduling for arbitrary (integrable) speed functions.

Clearly, our model is simpler than that required in the exemplary application.
But this paper treats fundamental models and techniques for such problems. To-
wards a more realistic model we add release dates and consider different online
models.

Related work. To the best of our knowledge flow scheduling has not been con-
sidered so far. It has some far resemblance to flow shop problems. There is a
close relation to dynamic multi-commodity, earliest arrival, and universally maxi-
mal flows.

For the single source, single sink case earliest arrival flows (EAF) always exist [4],
and can be found by a pseudopolynomial successive shortest path algorithms [12,
15]. There are instances where these algorithm take exponentially many steps in a
binary encoded input. For multiple sinks and sources EAFs need not exist [3]. In [9]
a fully polynomial-time approximation scheme for the earliest arrival s-t-problem is
given. These results have been extended in [2] to solve EAFs with multiple sources.

The solution of a flow scheduling is a multicommodity flow over time where all
commodities have common source and common sink, optimizing a for flows unusual
objective function, namely, weighted sum of completion times. Multicommodity
flow over times are NP hard even in the fractional case, and even for strongly
restricted graph classes [6, 7]. See also reference therein for a survey on flows over
time in general.

Increasing speed scheduling with release dates clearly contains 1||ri, pmtn||
∑

wjCj

as an NP-hard special case. For this an EPTAS is known [1]. For scheduling with
arbitrary varying speed, in particular, when machines stop, we can argue that the
1||pmtn||

∑
wjCj problem is weakly NP-hard by a reduction from partition similar

to that in [11].
Another closely related problem is scheduling with rejection (cf. [8] and references

there within), i.e., jobs can be excluded from the schedule at a fixed penalty cost.
This is weakly NP-hard for a single machine (reduction from knapsack). Moreover,
the case of unit weights and the case of unit lengths are shown to be polynomial. The
case where rejection costs are proportional to job weights is open. This is equivalent
to a special case of increasing speed scheduling, notably, when the machine has
constant speed until time t, and infinite (or sufficiently large) speed after t.

Definitions. This work treats the following two problems:

Definition 1 (Flow scheduling problem). Consider a directed graph G with two
distinct nodes s and t. For each arc we are given a static capacity, a static inflow-
rate, and a static transit time. Also, we are given a set of jobs J where each job Ji

has a weight wi and a demand `i. The goal is to find a multi-commodity flow over
time from s to t with |J | commodities such that

∑
Ji∈J wiCi is minimized where

Ci denotes the time when flow value corresponding to commodity i has reached `i.

For the definition of dynamic flows over time we refer to [2, 9].

Definition 2 (Increasing speed scheduling (ISS) problem). Given a machine whose
speed is given as a integrable, weakly monotonically increasing function s : R+ →

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 3

R+ and k jobs Ji = (wi, `i). Compute a schedule which minimizes the weighted
sum of completion times, i.e., we look for k integrable indicator functions χi :
R+ → {0, 1} with χi(x) · χj(x) = 0 for all x ∈ R+ and i 6= j such that Ci :=
infT∈R+{

´ T

0
χi(x)s(x)dx ≥ `i} exists and

∑
Ji∈J wiCi is minimized.

For a job (wi, `i) we call wi/`i its Smith’s ratio. A schedule processing the jobs
successively with increasing Smith’s ratio is called a Smith’s rule algorithm. Recall
that an EPTAS is a family of (1 + ε)-algorithms for all ε > 0 with running time in
O (f(ε) · poly(n)) for a function f depending only on ε.

Our contribution. In Section 2 we establish the connection between flow sched-
uling and increasing speed scheduling. We show that flows that are maximal for
a given set of deadlines can be found in polynomial time (Theorem 5). Next, we
extend the EPTAS of [1] for preemptive single machine scheduling with release
dates to the case of machines with increasing speed. Together with Theorem 5 this
yields an EPTAS for the flow scheduling problem with release dates. In Section 4
we give exact, polynomial time algorithms for the ISS problem in similar special
cases as considered in [8] for scheduling with rejection. Moreover, we device a dy-
namic program in case the speed function is a step function with constantly many
steps. In Section 5 we can show that Smith’s rule is a (

√
3+1)/2 approximation for

ISS and flow scheduling. This is a tight analysis, because we achieve the result by
constructively characterizing worst instances for Smith’s rule. In the final sections
we study online algorithms and algorithms that have no knowledge of the speed
function (blind algorithms). For both cases we show a lower bound. For the online
case we achieve a competitive ratio of 2. A blind algorithm with approximation
factor α yields an α-approximation for the flow scheduling problem. So we get a
(
√

3 + 1)/2 approximation for the flow scheduling problem.
An intriguing question that we have to leave open is, whether the ISS problem

without release dates is NP-hard. Recall that it is NP-hard with release dates.

2. From Flows to Scheduling

In flow scheduling we consider flows over time with single source and sink1. For
these it is known that earliest arrival flows (EAF) exist. Therefore it is easy to see
that any such flow scheduling problem has an optimal solution with the following
structure.

Let I be the smallest interval in time such that in the complement of I no flow
arrives at the sink. During I the inflow rate at the sink is always positive and the
interval can be partitioned into k consecutive intervals such that during each of
these intervals [Ti, Ti +1) all inflow to the sink belongs to the same job. Intuitively,
the flow over time is a machine with varying speed. To minimize the weighted sum
of completion time in the absence of release dates it is best to process the jobs
without preempting in a certain order on that machine.

We can further assume, this machine has a processing speed given by the inflow
rate of the EAF at the sink as a function of time. This rate is a piecewise constant
function which can be calculated in pseudo-polynomial time, but it is also known
to potentially have pseudo-polynomially many break-points.

1As we want to be brief on this please cf. [2, 9] for basic definitions and properties.

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 4

Naturally, the question arises, how to solve a flow scheduling in less than pseudo-
polynomial time. Assuming that the optimal order of the jobs is known this is
possible by the following concept.

Definition 3 (Multiple Deadline Flows (MDF)). Given an s-t-digraph G with non-
negative, constant transit time τ and capacities u on the arcs, and a finite set of
deadlines T = {T1, . . . , Tk}. A flow over time x for transit times τ respecting at
any point in time u as arc capacities for the inflow rate is called a Multiple Deadline
Flow (MDF), if for 1 ≤ i ≤ k its value up to time Ti is maximal among all feasible
flows over time on (G, τ, u).

2.1. A submodular algorithm for MDF. An MDF can be found in polynomial
time. Before we give a combinatorial algorithm for this problem, we present a
reduction to the single source quickest transshipment problem.

Consider the capacitated digraph G̃ = (Ṽ := V ∪ ({t1, . . . , tk−1}, Ẽ := E∪{ei :=
(t, ti)|1 ≤ i ≤ k − 1}, ũ), where u extends to ũ by ũ(e) = ∞ for all e ∈ Ẽ \ E.
We assume T to be sorted increasingly. Extend τ to τ̃ by τ̃(ei) = Tk − Ti for
all 1 ≤ i ≤ k − 1. Denote t =: tk for convenience. Then compute Di the values
of maximum dynamic flows for time horizons Ti. Define di := Di − Di−1 for all
2 ≤ i ≤ k and d1 := D1 to be the demands of the terminals ti and −Dk as the
demand of the source s.

Call T̃ the time a quickest transshipment, x̃, needs on the resulting network. At
time T̃−τ(ei) this optimal flow must have sent (at least) Di units of flow through t.
Else the flow could not reach all of the terminals tj(i ≤ j) until time T̃ . Therefore,
this flow—restricted to the original network, x̃|G—is an MDF, iff T̃ = Tk. But
T̃ ≥ Tk follows by the same argument. An MDF on G can immediately be extended
to a dynamic transshipment on G̃. Hence, T̃ ≤ Tk and we have reduced MDF to
quickest transshipment. A quickest transshipment can be solved in polynomial
time, using an algorithm of Hoppe and Tardos [10] that minimizes a submodular
function.

2.2. A combinatorial MDF algorithm. The submodular function in Hoppe’s
algorithm is a tribute to an ingredient of the general quickest transshipment prob-
lem, which our reduction does not exploit: namely that there can be multiple sinks
and multiple sources. Therefore it is promising to look for a more direct algorithm,
which will give us more insight to the structure of the solution. This we show next.

We keep the above notation, in particular |T | = k. Moreover, p(a,b) denotes the
subpath of a (simple) s-t-path p from a to b, if a and b are vertices in p, of which a
is closer to s. If a or b are arcs, they denote their starting vertex. Finally, ê denotes
the residual arc to e.

In order to analyse the algorithm, we alternate it slightly. We often change a
circle to a path and vice versa. Therefore, we write p + e for the circle that arises
when closing the path p by arc e.

We changed the lines 5 to 8 (and irrelevantly line 1). In the second version of
the algorithm at line 5 we calculate a Min-Cost-Circulation on the original, static
network, G, and in the first version on a residual network, Gx̄, for some feasible,
static flow, x̄, on G. If we add to the later the circulation given by the set of circles
P + (t, s), where P is a path decomposition of x̄, we will also arrive at a Min-
Cost-Circulation on G. We may assume that sum of circulations to be identical to
the circulation found in the second version. Thus the circulation found in the first

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 5

AlgData : G, T
AlgResult: x
begin

x̄ ≡ 0, P = ∅;1

Sort T increasing;2

foreach T ∈ T do3

G′ = Gx̄ ∪ {(t, s)}, τ((t, s)) = Ti, u((t, s)) = ∞;4

Compute static Min-Cost-Circulation c′ on G′ for cost function τ ;5

Turn c′ to a static flow x′ on Gx̄;6

Find standard s-t-path decomposition P ′ for x′;7

P = P ∪ P ′, x̄ = x̄ + x′;8

end
x(e, θ) =

∑
e∈p∈P

τ(p(s,e))≤θ
θ≤τ(p(e,t))

|p| −
∑

ê∈p∈P
τ(p(s,ê))≤θ
θ≤τ(p(ê,t))

−|p| ∀e ∈ G, 0 ≤ θ ≤ Tk;

9

return x10
end

Algorithm 1: MDF-Algorithm

AlgData : G, T
AlgResult: x
begin

P = ∅;1

Sort T increasing;2

foreach T ∈ T do3

G′ = G ∪ {(t, s)}, τ((t, s)) = Ti, u((t, s)) = ∞;4

Compute static Min-Cost-Circulation c′ on G′ for cost function τ ,5

starting with the circulations P + (t, s);
Turn c′ to a static flow x′ on G;6

Find non-standard s-t-path decomposition P ′ for x′, starting with the7

path in P ;
P = P ′;8

end
x(e, θ) =

∑
e∈p∈P

τ(p(s,e))≤θ
θ≤τ(p(e,t))

|p| −
∑

ê∈p∈P
τ(p(s,ê))≤θ
θ≤τ(p(ê,t))

−|p| ∀e ∈ G, 0 ≤ θ ≤ Tk ;

9

return x;10
end

Algorithm 2: MDF-Algorithm, alternative interpretation

algorithm at line 5 together with the (circular) flow on P + (t, s) can be the same
as the circulation found in the second algorithm at line 5. We assume w.l.o.g. that
they are identical.

At line 7 and 8—after deleting the (t, s)-arcs—we decompose the flows on G
into sets of paths, P . We will show later that the decompositions invoked are
actually possible. For the moment, observe that we may obtain the same set of
paths, P , in either of the two algorithms. This is true, because both by definition

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 6

contain the set of paths P ′, and both are decompositions that stem from the same
Min-Cost-Circulation, as we have established before.

All together, we know that both algorithms on every instance may produce the
same set of paths and therefore return the same dynamic flow x.

For the second algorithm it is clear from the analysis of the standard algorithm
for quickest flow and the corresponding results of Hoppe and Tardos [9] on the
time expansion of non-standard path decompositions, that the algorithm produces
a maximum dynamic flow for the time horizon Tk. Actually, if we jumped out of the
foreach-section after j iterations, we would have a maximum dynamic flow for time
horizon Tj . By the first algorithm it is clear that the path decomposition P contains
a set of paths, namely those found in the first iteration of the foreach-section, which
gives rise to a (standard) time expansion, which is a maximum dynamic flow for
time horizon T1. An easy induction on k gives that the set P admits a partition
into sets Pi, such that the (non-standard) time expansions of the sets

⋃j
i=1 Pi are

maximum dynamic flows for the time horizons Tj . It is left to establish, that the
paths in a later subsets of P (i.e. Pi, i > j) do not spoil the optimality at time Tj .

First, observe that in the jth iteration of the first algorithm the path decom-
position of the flow on Gx̄, say Pj , contains paths longer than Tj−1 only. If there
was a shorter path in Gx̄ the circulation found in the previous iteration would not
be minimal. And, as P ′ is decomposed into standard path on Gx̄, all its path will
be longer than Tj−1. Note that though the union of the path decompositions is a
non-standard path decomposition on G, each set Pj is found as a standard path
decomposition on some Gx̄.

Now, consider the time expanded graph, GTk . Insert the expanded paths of Pj

iteratively. In order to diminish the amount of flow that reached the sink when the
expansions up to the one of Pj−1 are already in GTk the expanded paths added in
the jth step had to use an (residual) arc originating from one of the terminals tθ,
with θ ≤ Tj−1. But, as all of them have to start from a source sθ, with 0 ≤ θ, they
need to be shorter than Tj−1. But this is impossible for a path in Pj , as we have
just shown.

Finally to the token we left open above: We still have to proof, that the flows
that occurring during the algorithm can be fully decomposed into paths, as claimed
by the algorithm. In the algorithm of Ford and Fulkerson for quickest flow, this is
due to the fact, that the static graph on which we look for a Min-Cost-Circulation
has only one negative arc, namely (t, s). Thus all standard, negative cycles must
contain this arc, and hence turn into path after its deletion. But in our case, we
come across residual graphs. These may contain other negative arcs. Yet, they
must not contain a negative arc before the arc (t, s) is added. Else, the negative
cycle could have been used by the Min-Cost-Circulation of the previous iteration
already. This contradicts its optimality.

Lemma 4. Given a finite set of deadlines and a digraph with inflow rate capacities
and transit times on the arcs. An MDF can be found in strongly polynomial time.

From this we immediately get:

Theorem 5. There is a strongly polynomial time algorithm for flow scheduling
given that the optimal order of the jobs is known.

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 7

3. EPTAS

In this section we present an EPTAS for the increasing speed scheduling problem
with arbitrary release dates, i.e., an approximation algorithm with approximation
ratio 1 + ε and runtime O (f(ε) · poly(n)) for a function f depending exponentially
only on ε. We show later that this yields also an EPTAS for the flow scheduling
problem.

Let ε > 0. We describe an algorithm which guarantees an approximation ratio
of 1 + O(ε). By abuse of notation whenever we use the term O(ε) we refer to a
function bounded by k ·ε for some positive k. For technical reasons, we assume that
ε < 1. W.l.o.g. we assume that at any time the speed of the machine is at least 1.
First, we derive a couple of properties which we can assume for the instance and the
schedules without losing more than a factor of 1 + O(ε) in the objective function
in comparison to the optimum. Some of the techniques used here are borrowed
from [1] and adapted to our problem. Then, we show how to compute the optimal
schedule with these properties by a dynamic program. We will use the notions “with
1 + ε loss” and “with 1 + O(ε) loss”, meaning that by requiring a certain property
for the schedule we might lose at most a factor of 1 + ε or 1 + O(ε), respectively, in
the optimal objective function value. In each of the following lemmata we assume
that all adjustments allowed by virtue of all previous lemmata have already been
done.

We define R(w) to be the timestep when the total work that the machine has
done so far equals w. As short notation we use Rx := R ((1 + ε)x). Note that
since we assume that the machine always runs with at least unit speed we have
that Rx+1 ≤ (1 + ε) Rx. We split the time scale into intervals of the form Ix :=
[Rx, Rx+1). In order to simplify notation we will use the notion Ix for the interval
as well as for the work that the machine does within Ix. Note that Ix = ε (1 + ε)x.

Lemma 6. With 1 + O(ε) loss, we can assume for each job Ji that ri ≥ R (ε`i)
and that `i is a power of (1 + ε).

Proof. Assume we are given an optimal schedule OPT . We construct a new sched-
ule OPT ′ as follows: whenever a job Ji is processed within a time interval [x, y] in
OPT then it is processed in the interval [(1 + ε) x, (1 + ε) y] in OPT ′. We say we
scale time by a factor of 1 + ε. We have that OPT ′ ≤ (1 + ε) OPT . The resulting
schedule is feasible for an instance in which Ji has a processing demand of (1 + ε) `i.
Thus, we can safely shift the release time of Ji to max {ri, R (ε`i)} and still obtain
a valid schedule for processing demand `i.

Scaling time again by a factor of 1 + ε again yields that a demand of (1 + ε) `i

is processed for each job Ji. We increase the demand of Ji to the largest value
(1 + ε)x (for an integer x) such that (1 + ε)x ≤ (1 + ε) `i. ¤

Lemma 7. Assume the adjustments of Lemma 6. With 1 + ε loss, we can addi-
tionally assume that each job is released at a time Rx.

Proof. In this proof we use a technique which we call interval-hopping. Consider
any schedule S. For each interval Ix, we take the work that is done in Ix in S
and process it in the interval Ix+1 rather than in Ix. This results in a loss of
at most 1 + ε. Now each job Ji which was originally released within an interval
Ix := [Rx, Rx+1) is not processed before Rx+1. Thus, we can safely move its release
time to Rx+1. ¤

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 8

In order to simplify the complexity of the problem we want that to calculate the
objective function as if each job finished at the end of an interval. Therefore, for the
remainder of this section we do not consider the objective function

∑
Jj∈J wjCj but

the objective function
∑

Jj∈J wj min {Rx : Cj ≤ Rx}. As an effect, we can assume
that the machine has constant speed within an interval.

Lemma 8. Assume the adjustments of the previous lemmata. For completion times
Ci resulting from any schedule we have that

∑
Ji∈J wiCi ≤

∑
Ji∈J wi min {Rx : Ci ≤ Rx} ≤

(1 + ε)
∑

Ji∈J wiCi.

Proof. The first inequality is obvious. The second inequality holds since min {Rx : Ci ≤ Rx} ≤
(1 + ε) Ci for all values Ci. ¤

In the algorithm we will distinguish between large and small jobs. A job Ji is
small if it is released at a time Rx such that `i ≤ εIx. Otherwise it is large. We
denote by Hx and Tx the large and small jobs, respectively, which were released
at time Rx. We introduce the following lemma in order to show that there is a
(1 + ε)-approximate schedule which has a simple structure.

Lemma 9. Assume the adjustments of the previous lemmata. With 1 + O(ε) loss,
we can additionally assume that

• no small job is ever preempted,
• no small job is processed in more than one interval,
• the order in which the small jobs are executed obeys Smith’s rule,
• each large job Ji ∈ Hx is preempted only if there is an integer k ≤ 1

ε3 such
that a fraction of exactly k · εIx

`i
of the job has already been processed, and

• at any point in time in each set Hx there is at most one job which has
already been processed but which has not been finished yet.

Proof. We can assume the last claim without any loss. For the other claims we
again use the technique of interval-hopping. For the sake of analysis, we first
consider a relaxation of our instance I (i.e., an instance I ′ such that OPT (I ′) ≤
OPT (I)). Starting with OPT (I ′) we construct a schedule S for I such that S ≤
(1 + ε)2 OPT (I ′).

The instance I ′ is defined as follows: Let δ > 0 be a constant which divides
the demands of all small jobs. Then we replace each small job Ji by `i

δ jobs with
demand δ and weight δwi/`i, all with the same release date as Ji. We call those
new jobs the tiny jobs. Clearly, in this instance it is optimal to schedule the small
jobs according to Smith’s rule, i.e., whenever a small job is scheduled the available
job with the highest Smith’s ratio is scheduled. W.l.o.g. we can assume that if in
OPT (I ′) a tiny job is processed which corresponds to a small job Ji then for all
other small jobs Ji′ we have that either all of their tiny jobs are already scheduled
or none of them (i.e., the tiny jobs corresponding to the different small jobs do not
mix). Also, w.l.o.g. we assume that in OPT (I ′) jobs are only preempted at the
end of intervals (since jobs are released only at the beginning of intervals).

We now perform an interval-hop of two intervals: For a loss of (1 + ε)2 we
take the work that is done in each interval Ix in the schedule OPT (I ′) and pro-
cess it in the interval Ix+2 rather than in Ix. We call the resulting schedule
OPT (I ′)hop. However, now in each interval Ix+2 (which processes jobs which were
processed in Ix by OPT (I ′)) there is a spare space of at least 2εIx. We have that

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 9

OPT (I ′)hop ≤ (1 + ε)2 OPT (I ′). We define the instances Ihop and I ′hop by taking
I and I ′, respectively, and for each small/tiny job which was released at time Rx

we move its release time to Rx+2. Note that OPT (I ′)hop is a valid schedule for
I ′hop in which the tiny jobs are ordered according to Smith’s rule.

Now we construct a schedule S for Ihop based on OPT (I ′)hop which has the
properties stated in the lemma. First, we process each small job Ji whenever its
corresponding tiny jobs were processed within OPT (I ′)hop. Now there can be at
most one small job Ji which starts within one interval Ix+2 and does not finish
within it. If there is such a job Ji then we use at most εIx of the spare space to
finish Ji. If at the end of Ix+2 a large job Ji ∈ Hy is preempted then - using again
at most εIx of the spare space - we can continue processing it until a fraction of
exactly k · εIy

`i
of the job has been processed for an integer k. Due to our slightly

changed objective function we have that S ≤ OPT (I ′)hop ≤ (1 + ε)2 OPT (I ′) ≤
(1 + ε)2 OPT (I). ¤

For a set of jobs J ′ ⊆ J we denote by p (J ′) their total demand.

Lemma 10. Assume the adjustments of the previous lemmata. Without any loss
we can assume that

• the number of distinct job sizes in Hx is bounded by |Hx| ≤ 3 log1+ε
1
ε + 1,

• the number of jobs in each distinct size is bounded by 1/ε, and
• p (Tx) ≤ Ix.

Proof. Let Ji ∈ Hx. Since Ji is large we know that `i > εIx. Due to Lemma 6
we have that ri = Rx ≥ R (ε · `i) which implies that (1 + ε)x ≥ ε · `i. Since all
demands are powers of 1 + ε the number of distinct job sizes equals the number of
integers y such that

ε2 (1 + ε)x
< (1 + ε)y ≤ 1

ε (1 + ε)x

⇔ 2 log1+ε ε + x < y ≤ log1+ε
1
ε + x

⇔ 2 log1+ε ε < y − x ≤ log1+ε
1
ε

This implies that |Hx| ≤ 3 log1+ε
1
ε +1. At most Ix

εIx
= 1/ε jobs of each particular

size can be scheduled in Ix. Within each size the jobs are ordered by their weight.
Thus, we can safely move the release times of all other jobs of each size to Rx+1.
Note that here we need that ε < 1 since this is necessary for ε2 (1 + ε)x

< 1
ε (1 + ε)x.

For the small jobs recall that due to Lemma 9 we can assume that they are
ordered by Smith’s rule. Also, we assume that no small job is processed in more
than one interval. Thus, we can assume that p (Tx) ≤ Ix: We sort the jobs in Tx

non-decreasingly by their Smith’s ratio and then pick jobs according to this order
until the next job would not fit in Ix anymore. The release time of all other jobs
can safely be moved to Rx+1 since we will not process them in Rx anyway. ¤

The following lemma gives an upper bound on the time a job has to wait before
it completes.

Lemma 11. Assume the adjustments of the previous lemmata. With 1+ε loss, we
can additionally assume that each job which is released at time Rx finishes in the
interval Ix+s(ε) the latest, where s(ε) is a constant which does only depend on ε.

Proof. We use interval-hopping again and shift the work being done in each interval
Ix to the interval Ix+1. From Lemma 10 we conclude that p (Tx) + p (Hx) ≤

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 10

Ix + 1
ε ·

(
3 log1+ε

1
ε + 1

)
· 1

ε (1 + ε)x. We define

s(ε) :=
⌈
log1+ε

(
1
ε

+
1
ε4

(
3 log1+ε

1
ε

+ 1
))⌉

+ 1

Our interval-hop creates a spare space of size εIx in each interval Ix+1. Thus, in
the interval Ix+s(ε) there is now a spare space of at least εIx+s(ε)−1. We calculate
that

Ix +
1
ε
·
(

3 log1+ε

1
ε

+ 1
)
· 1
ε

(1 + ε)x = (1 + ε)x

(
ε +

1
ε2
·
(

3 log1+ε

1
ε

+ 1
))

= (1 + ε)x · ε2 ·
(

1
ε

+
1
ε4

(
3 log1+ε

1
ε

+ 1
))

≤ (1 + ε)x · ε · Is(ε)−1

= ε · Ix+s(ε)−1

and thus we can process all jobs Tx ∪Hx in the spare space in the interval Ix+s(ε).
This implies that there is a (1 + ε)-approximative solution in which all jobs Tx∪Hx

finish in the interval Ix+s(ε) the latest. ¤

Now we partition the ordered list of the jobs in each set Tx into at most 2/ε2

packs, each with size at most ε2 · Ix. Denote by Px,i the ith pack of small jobs
which are released at time Rx.

Lemma 12. Assume the adjustments of the previous lemmata. With 1+ε loss, we
can additionally assume that

• in each interval Ix either all or none of the jobs in a pack Px′,i are scheduled,
• each job which is released at time Rx finishes in the interval Ix+s(ε)+2 the
latest, and

• the ordering of the small jobs does not necessarily obey Smith’s rule any-
more.

Proof. We use interval-hopping and shift the work which is done in each interval Ix

to the interval Ix+2. This gives us a free space of εIx+1 in each interval Ix+2. Now
consider all packs Px′,i such that some but not all of the jobs in Px′,i are scheduled
within Ix. Due to the original ordering by Smith’s Rule, this holds for at most one
pack from each release time. The total demand of these packs is upper bounded by

x∑
i=x−s+1

ε2 · Ii =
x∑

i=x−s+1

ε3 · (1 + ε)i

≤ ε3 ·
x∑

i=0

(1 + ε)i

= ε3 · 1− (1 + ε)x+1

1− (1 + ε)

= ε2 ·
(
(1 + ε)x+1 − 1

)
≤ ε2 · (1 + ε)x+1

= ε · Ix+1

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 11

Thus, in the gained free space we can schedule all jobs from packs Px′,i which have
partly but not fully been processed. ¤

Before we describe the dynamic program we summarize our adjustments on the
instance:

• for each job Ji we have that rj and `j are powers of (1 + ε),
• for each job Ji we have it holds that ri ≥ R (ε`i),
• the number of jobs in Hx is bounded by a constant for each release time

Rx, and
• p (Tx) ≤ Ix.

We showed that all these adjustments lose at most a factor of 1 + O(ε) in the
optimal objective value. Further, we showed that for an adjusted instance as above
there is a (1 + O(ε))-approximative solution with the following properties:

• no small job is ever preempted,
• the small jobs are grouped into packs and no pack is processed in more

than one interval,
• each large job Ji ∈ Hx is preempted only if there is an integer k ≤ 1

ε3 such
that a fraction of exactly k · εIx

`i
of the job has already been processed,

• at any point in time in each set Hx there is at most one job which has
already been processed but which has not finished yet,

• the value of the solution is measured according to the objective function∑
Jj∈J wj min {Rx : Cj ≤ Rx} (which results in a higher value than the

original objective function), and
• each job with release time Rx finishes before time Rx+s(ε)+1.

Now we describe the dynamic program which finds the best solution with the above
properties. Each table entry is identified by a combination of

• an interval Ix,
• for each interval Iy with x− s(ε) ≤ y < x,

– the subset of jobs in Hy which have already been fully processed,
– a job Ji ∈ Hy and an integer k ≤ 1

ε3 such that a fraction of exactly
k · εIx

`i
of Ji has been processed, and

– the subset of the packs Py,i which have already been fully processed.
Since we need to consider at most s(ε) · |J | intervals in total, the number of table
entries is bounded by

(s(ε) + 2) · |J | ·
(

2
1
ε ·3 log1+ε

1
ε + 1

ε ·
(

1
ε
· 3 log1+ε

1
ε

+
1
ε

)
· 1
ε3
· 2

2
ε2

)s(ε)+2

∈ O
(
|J | 2poly(1/ε)

)
In order to compute the value for each table entry which corresponds to an inter-
val Ix we need to enumerate all possibilities to schedule the available large jobs and
packs of small jobs in Ix. Note that due to our changed objective function it does
not matter at what exact time within the interval a job finishes: each job which
finishes within Ix is charged Rx+1. For one table entry this computation can be
done in time O

(
2s(ε)·(1

ε 3 log1+ε
1
ε + 1

ε + 2
ε2)

)
.

The preprocessing of the jobs can be done in O (n · log n + s(ε) · n): It requires
to

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 12

• round the release times and demands of all jobs: O(n),
• partition the jobs into small and large jobs: O(n),
• define the packs of small jobs and adjust their release times. This requires

O(n log n + s(ε) ·n) since we need to sort the small jobs and define the sets
Tx for each interval Ix, and

• define the adjusted release times of the large jobs. This requires O(n log n+
s(ε) ·n) again since we need to sort the jobs and define the sets Hx for each
interval Ix.

We obtain the following theorem:

Theorem 13. There is a polynomial time approximation scheme for the increasing
speed scheduling problem with release dates with running time O

(
2poly(1/ε)n + n log n

)
.

In order to do the computation in the dynamic program it is not necessary to
know the exact speed function. It is sufficient to know the points in time when a
total demand of (1 + ε)x has already been processed for the relevant values of x.
Recall that at most s(ε) · |J | intervals are relevant for us. Thus, we obtain the
following theorem:

Corollary 14. There is an efficient polynomial time approximation scheme for the
flow scheduling problem with release dates.

Proof. Follows from Theorems 5 and 13. ¤

4. Tractable Cases of ISS

In this section we analyze the structure of the increasing speed scheduling prob-
lem. We identify some properties which allow efficient algorithms for certain special
cases. Moreover, we provide the necessary insights for our analysis of the Smith’s
Rule algorithm in Section 5. Throughout this section we assume that all jobs are
released at time t = 0. Accordingly, we can restrict ourselves to non-preemptive
schedules.

If all jobs have unit weight a simple exchange argument shows that it is optimal
to order the jobs ascendingly by demand. However, we can prove a slightly more
general result:

Theorem 15. If in the instance there is an ordering J1, J2, ..., J|J | for the jobs
such that wi

`i
≥ wi+1

`i+1
and `i ≤ `i+1 for each i then it is optimal to order the jobs

ascendingly by demand (or descendingly by ratios wi

`i
, respectively).

The theorem can be shown using the following lemma repeatedly.

Lemma 16. Assume that in a schedule there are two jobs Ji, Jj with wi

`i
≤ wj

`j

and `i ≥ `j and Jj is executed directly after Ji. Then the objective value does not
increase if we swap Ji and Jj. If additionally wi

`i
<

wj

`j
then swapping Ji and Jj

will strictly decrease the objective function.

Proof. We denote the original schedule by 〈i, j〉 and the schedule obtained by swap-
ping Ji and Jj by 〈j, i〉. Denote by t0 the time when Ji starts in 〈i, j〉, by t1 the
time when Jj terminates in 〈j, i〉, by t2 the time when Ji terminates in 〈i, j〉 and by
t3 the time when Jj terminates in 〈i, j〉. W.l.o.g. we assume that the machine has
constant speed within the interval [ti, ti+1) for each i ∈ {0, 1, 2} (see Figure 4.1).

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 13

.j

t0 t1 t3

j

t0 t1 t3t2

k1 k3

j j

t2

k1 k3k2k2

Figure 4.1. Proof of Lemma 16: We can assume w.l.o.g. that our
machine has three different speeds within the interval [t0, t3).

Denote the respective speeds by s1, s2, s3. W.l.o.g. we assume that s3 = 1. For
ease of notations we define ki := ti − ti−1 for i ∈ {1, 2, 3}.

We calculate that

cost (〈i, j〉)− cost (〈j, i〉) ≥ 0
⇔ t2 · wi + t3 · wj − t1 · wj − t3 · wi ≥ 0
⇔ t2 · wi + t3 · wj ≥ t1 · wj + t3 · wi

⇔ (k1 + k2) wi + (k1 + k2 + k3) wj ≥ k1 · wj + (k1 + k2 + k3) wi

⇔ (k2 + k3) wj ≥ k3 · wi

⇔ wj

`j
≥ wi

k2+`j

The latter holds since wj

`j
≥ wi

`i
= wi

`j+s2·k2
≥ wi

`j+k2
. If additionally wi

`i
<

wj

`j
then

the above calculation gives strict inequality. ¤

For machines with constant speed one there is a well known exchange argument
showing that in an optimal schedule the jobs are ordered non-decreasingly by their
Smith’s factors [14]. In our setting, this argument can easily be applied to jobs
starting and finishing within an interval A in which the machines has constant
speed. We show that the statement also holds for the set of all jobs which end in
such an interval A (and not necessarily start in A).

We split the time axis into intervals in which the speed function does not change
its value. We denote by s1, s2, ..., sk the different speeds of the machine and by
A1, A2, ..., Ak the corresponding intervals, i.e., Ai := s (si)

−1. Assume a schedule
S is given. We say a job j is in an interval Ai if the finishing time of j in S lies
within Ai. Denote by Ji the jobs which lie in the interval Ai.

Proposition 17. In an optimal schedule the jobs in Ji are ordered according to
Smith’s Rule.

Proof. This can be shown by an exchange argument. Assume on the contrary
that there is an optimal schedule and for two jobs Jj , Jj′ ∈ Ji we have that Jj is
scheduled before Jj′ but

wj

`j
<

wj′

`j′
. W.l.o.g. we can assume that Jj′ is scheduled

directly after Jj . We call this schedule 〈j, j′〉 and compare it with the schedule

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 14

.

t1 t3

Ai

t2t0 t∗0
t0 t1 t3

Ai

t2

j′ j′

j

j

Figure 4.2. We can assume w.l.o.g. that our machine has three
different speeds within the interval [t0, t3).

〈j′, j〉 which is obtained by exchanging Jj and Jj′ . If `j′ ≤ `j then Lemma 16
proves the claim. So now assume that `j′ > `j .

We denote by t0 the starting time of Jj in 〈j, j′〉, by t1 the starting time of
interval Ai, by t2 the finishing time of Jj in 〈j, j′〉, and finally by t3 the finishing
time of Jj′ in 〈j, j′〉. See Figure 4.2 for a sketch. We observe that the finishing
times of Jj and Jj′ in both schedules (〈j, j′〉 and 〈j′, j〉) do not change if we adjust
the machine as follows: Denote by t∗0 the timestep with

´ t1
t0

s(x)dx = (t∗0 − t0) si.
We redefine our machines by setting s(x) := 0 for x ∈ [t0, t∗0) and s(x) := si for
x ∈ [t∗0, t1). Now in both schedules Jj and Jj′ start and finish within interval Ai.
Thus, the claim can be shown with the same argument which shows that Smith’s
Rule is optimal for 1||

∑
wjCj :

〈j′, j〉 > 〈j, j′〉
⇔ wj′

`j′

si
+ wj

`j+`j′

si
> wj

`j

si
+ wj′

`j+`j′

si

⇔ wj · `j′ > wj′ · `j

⇔ wj

`j
>

wj′

`j′

This is contradicts our assumption that wj

`j
<

wj′

`j′
. ¤

Knowing these properties we can present the dynamic program for the special
case of limited number of speed changes. The dynamic program gets a list of the
jobs ordered by Smith’s Rule. It successively removes a job Jj from the list and
chooses the interval Ai = [ai, ai+1) in which Jj finishes. Inside Ai, the job Jj is
scheduled right after the last job finishing within Ai. If Jj is the first job assigned
to Ai we try all start offsets less or equal ai for which Jj finishes within Ai. Thus,
in the dynamic programming table we need to encode how many jobs have already
been removed from the list and how much space (at the beginning and at the end)
of each interval is already occupied by jobs.

Now we describe the dynamic program in detail. First, we order the jobs in a
list according to Smith’s Rule. Ties are broken arbitrarily. We define L :=

∑
j `j .

Note that there are at most L possible start times for a job. Each entry in the
dynamic programming table is identified by

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 15

• the number of jobs which are still in the job list, i.e., an entry equal to k
means that the last k jobs in the job list are still unscheduled and

• for each interval Ai = [ai, ai+1) there are values ti ≤ L and t′i ≤ L such
that the intervals

[
ai, ai + ti

si

)
and

[
ai+1 − t′i

si
, ai+1

)
are already used by

some jobs.
We store in each table entry the best possible objective value for the remaining jobs
which is possible with the given constraints. Note that the number of entries in the
table is bounded by n · L2k. The value for an entry (k, t1, t

′
1, ..., tk, t′k) is computed

as follows: We take the job Jn−k+1 and try to schedule it. We try each interval
Ai: if ti > 0 we try to schedule Jn−k+1 with start time ai + ti

si
. If ti = 0 we try to

schedule it with each start time ai − m
si

with m < `n−k+1. By “try” we mean that
we check carefully if scheduling the job at the respective position contradict the
fact that other intervals are already occupied by some jobs. We pick the position
for Jn−k+1 which yields the minimum total objective value.

Theorem 18. If the number of different values for the speed function is bounded
by a constant there is a pseudopolynomial dynamic program which solves the ISS
problem optimally.

Proof. Computing an entry in the dynamic programming table can be done in
pseudopolynomial time. The number of entries in the dynamic programming table
is bounded by n · L2k. Lemma 17 implies that our procedure finds the optimal
solution. ¤

Note that this pseudopolynomial algorithm cannot be combined with the pseu-
dopolynomial algorithm for earliest arrival flows [12, 15] to achieve an exact, pseu-
dopolynomial algorithm for the entire problem. An EAF corresponds to a machine
with pseudopolynomially many speeds. Our result requires a constant number of
speeds.

Now we study the special cases where all jobs have the same demand or the
same Smith’s factors. We will benefit from these insights in the analysis in Sec-
tions 5 and 7, respectively. The following lemma holds not only for increasing speed
functions but also for speed functions which might increase or decrease.

Lemma 19. If all jobs have the same demand then it is optimal to order the jobs
descendingly by their weight. This is still true if the speed of the machine can
decrease and increase.

Proof. This can be shown by an exchange argument. Assume on the contrary that
there is an optimal schedule in which a job Ji is scheduled before a job Jj but
wi < wj . W.l.o.g. we can assume that Jj is scheduled directly after Ji. Then the
objective value strictly decreases if we swap Ji and Jj . This contradicts that the
original schedule was optimal. ¤

Proposition 20. If in an instance I all jobs have the same Smith’s ratio then
• there is an optimal schedule which orders the jobs ascendingly by demand
and

• there is a worst possible schedule which orders the jobs descendingly by
demand.

Proof. Follows from Lemma 16 and its proof. ¤

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 16

5. A Tight Analysis of Smith’s Rule

In this section we present a tight analysis which shows that the Smith’s Rule
Algorithm is exactly a

√
3+1
2 -approximation. Let I = (J , M) be an instance of

the increasing speed scheduling problem. We denote by SR(I) the worst possible
schedule which obeys Smith’s rule (i.e., tie-breaking decisions are taken such that
the total weight of the schedule is maximized). We show how to transform I into
an instance with a special structure without decreasing SR(I)/OPT (I). Then we
show that on instances with this structure the Smith’s Rule algorithm is exactly a√

3+1
2 -approximation.
Assume on the contrary that there is an instance I such that SR(I)

OPT (I) >
√

3+1
2 ,

again with SR(I) being the objective value of the worst possible schedule which
obeys Smith’s rule. We will show later by perturbing the weights of the jobs that
one cannot prove a better approximation factor for the Smith’s Rule algorithm even
if all tie breaking decisions are done optimally.

In the following lemmas we show how one can transform I into an instance with
a special structure without decreasing SR(I)/OPT (I). First we define a partition
of the jobs in I into classes Ci such that two jobs belong to the same class if and
only if they have the same Smith’s ratio. The classes are sorted descendingly by
the Smith’s ratios of their elements, i.e., for two jobs Ji ∈ Ci′ and Jj ∈ Cj′ it holds
that wi

`i
≥ wj

`j
if and only if i′ ≤ j′. Now we show that there are instances with the

worst possible fraction SR(I)/OPT (I) in which all jobs have a Smith’s ratio of 1.

Lemma 21. For any instance I there is an instance I ′ = (J ′, M) such that wi/`i =
1 for all jobs J ′i ∈ J ′ and SR(I′)

OPT (I′) ≥
SR(I)

OPT (I) . Moreover, if in I the demands of all
jobs are integral then in I ′ the demands of all jobs are integral as well.

Proof. Let Ĩ be an instance with as few classes Ci as possible such that SR(Ĩ)

OPT (Ĩ)
≥

SR(I)
OPT (I) =: α. If in Ĩ there is only one class then we can scale the weights of the
jobs such that wi/`i = 1 for all jobs and we are done. So now assume that there
are at least two classes in Ĩ. Denote by SR (Ci) and OPT (Ci) the amount that a
class Ci contributes SR

(
Ĩ
)
and OPT

(
Ĩ
)
, respectively. Since SR(Ĩ)

OPT (Ĩ)
≥ α there

must be a class Ck such that SR(Ck)
OPT (Ck) ≥ α. Now there are two cases:

(1) The class Ck is the class with the highest Smith’s ratio (i.e., k = 1). We
create I ′ by removing the jobs of all other classes from Ĩ. We have that
SR(I ′) = SR (Ck) and OPT (I ′) ≤ OPT (Ck) since in SR(Ĩ) the jobs in
Ck are the first jobs which are scheduled. This implies that SR(I′)

OPT (I′) ≥
SR(Ck)

OPT (Ck) ≥ α.
(2) The class Ck is not the class with the highest Smith’s ratio (i.e., Ck 6= C1).

Then we increase the weights of the jobs in Ck until they all have the
Smith’s ratio of Ck−1. Denote by I ′ the resulting instance. Clearly, I ′ has
one class less than I. Let β > 1 denote the factor by which we increased the
weights of the jobs in Ck. Then we calculate that OPT (I ′) ≤ OPT

(
Ĩ
)

+

(β − 1) OPT (Ck) and SR(I ′) = SR(Ĩ) + (β − 1) SR (Ck). Then we have

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 17

that

SR(I ′)
OPT (I ′)

≥ SR(Ĩ) + (β − 1) SR (Ck)

OPT
(
Ĩ
)

+ (β − 1) OPT (Ck)

≥
α

(
OPT

(
Ĩ
)

+ (β − 1) OPT (Ck)
)

OPT
(
Ĩ
)

+ (β − 1) OPT (Ck)

=
SR(I)

OPT (I)

Note that in both cases above we do not introduce any fractional job demands.
Thus, if in I the demands of all jobs are integral then in I ′ the demands of all jobs
are integral, too. ¤

Recall from Proposition 20 that if all Smith’s ratios are identical then we can
assume that OPT (I) orders the jobs ascendingly by demand and the worst Smith’s
Rule schedule SR(I) orders the jobs descendingly by demand. Now we want to
study the demands of the jobs. W.l.o.g. we assume that all jobs have integral
demands. Assume that in J =

{
J1, J2, ..., J|J |

}
the jobs are ordered ascendingly by

their demand. Let k denote the largest integer such that
∑k

i=1 `i ≤ 1
2

∑|J |
i=1 `i. We

define Jsmall := {J1, J2, ..., Jk} ⊂ J . For an instance I ′ we denote the respective
set by J ′

small.

Lemma 22. For any instance I = (J , M) such that all jobs in J have a Smith’s
ratio of 1 there is an instance I ′ = (J ′, M) such that

• J ′
small consist only of jobs of demand 1 and

• SR(I′)
OPT (I′) ≥

SR(I)
OPT (I) .

Moreover, if in I the demands of all jobs are integral then in I ′ the demands of all
jobs are integral as well.

Proof. W.l.o.g. we assume that SR(I) orders the jobs increasingly by their demand
and OPT (I) orders the jobs decreasingly by their demand. If in Jsmall there are
only jobs of demand 1 then there is nothing to show. So now assume that Jsmall

contains a job whose demand is at least two. Let Jj denote the job with smallest
index such that `j ≥ 2.

For I ′ = (J ′, M) we use the machine M without any changes and we define
J ′ := J \{Jj}∪{Jj′ , Jj′′} where Jj′ is a job with demand `j′ := 1 and Jj′′ is a job of
demand `j′′ := `j−1. Since we want the Smith’s factors of all jobs to be 1 we define
wj′ := 1 and wj′′ := `j − 1. Note that J1, J2, ..., Jj−1, Jj′ , Jj′′ , Jj+1, ..., J|J | orders
the jobs in J ′ in increasing order. Figure 5.1 shows a sketch of the modification.
Now we show that SR(I′)

OPT (I′) ≥
SR(I)

OPT (I) .
Denote by t1 the start time of Ji in OPT (I). Denote by t2 and t3 the finish time

of Jj′ and Jj′′ in OPT (I ′), respectively. Similarly, let t̄1 be the start time of Jj in
SR(I). Denote by t̄2 the finish time of Jj′′ in SR(I ′) and by t̄3 the finish time of
Jj′′ in SR(I ′). Figure 5.1 shows a sketch. We define SR∆ := SR(I) − SR(I ′) =
t̄3 · `j − t̄3 · `j′ − t̄2 · `j′′ and OPT∆ := OPT (I)−OPT (I ′) = t3 · `j − t2 · `j′ − t3 · `j′′ .
In order to show that SR(I′)

OPT (I′) ≥
SR(I)

OPT (I) we first prove that SR∆ ≤ OPT∆ (in
other words: the optimal solution saves more than the Smiths rule solution when

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 18

...

... ...

...

...

...

...

...

t̄1

OPT (I ′)

OPT (I)

Jj′′Jj′

J2

J1 J2

J|J |

J|J |

JjJ1

J1J2JjJ|J |

J1J2Jj′Jj′′J|J |

t1 t2 t3

x y

SR(I)

SR(I ′)

t̄3

x̄ ȳ

t̄2

t

Figure 5.1. The sketch shows the jobs in I and I ′ in the orders in
which they are sorted in SR and OPT . To simplify the readability
of the sketch we assume that the machine runs constantly with
unit speed.

we replace Jj by Jj′ and Jj′′). W.l.o.g. we assume that the machine M runs
constantly with speed s in the time interval [t2, t3). Similarly, we assume that M
runs with speed s̄ in the time interval [t̄2, t̄3). Note that s ≤ s̄ since Jj ∈ Jsmall

and thus t3 ≤ t̄2. We define x := t2 − t1 and y := t3 − t2. Similarly, we define
x̄ := t̄2 − t̄1 and ȳ := t̄3 − t̄2.

We calculate that

OPT∆ = (t1 + x + y) `j − (t1 + x) `j′ − (t1 + x + y) `j′′

= y`j − y`j′′

and

SR∆ = (t̄1 + x̄ + ȳ) `j − [(t̄1 + x̄) `j′′ + (t̄1 + x̄ + ȳ) `j′]
= ȳ`j − ȳ`j′

and thus

OPT∆ − SR∆ = y`j − y`j′′ − ȳ`j + ȳ`j′

= (`j − `j′′)
(

`j − 1
s

)
+

1
s̄

(1− `j)

≥ (`j − `j′′)
(

`j − 1
s̄

)
+

1
s̄

(1− `j)

=
1
s̄

[(`j − `j′′) (`j − 1) + 1− `j]

= 0

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 19

We define β := OPT (I)−OPT∆
OPT (I) and γ := SR(I)−OPT∆

SR(I) . A simple calculation shows
that γ ≥ β. We further obtain that

SR(I ′)
OPT (I ′)

=
SR(I)− SR∆

OPT (I)−OPT∆

≥ SR(I)−OPT∆

OPT (I)−OPT∆

=
γ · SR(I)

β ·OPT (I)

≥ β · SR(I)
β ·OPT (I)

≥ SR(I)
OPT (I)

We repeat the operation described above until we obtain an instance in which there
are only jobs of demand 1 in the respective set J small. ¤

Now we are interested in the first job which does not have demand 1. Denote
this job by Jm. Let sm and tm denote its start and finish times in OPT (I) and let
s̄m and t̄m denote its start and finish times in SR(I).

Lemma 23. For any instance I such that all jobs in J have a Smith’s ratio of 1,
Jsmall contains only jobs of demand 1, and the demands of all jobs are integral,
there is an instance I ′ = (J ′, M) such that

• J ′
small consist only of jobs of demand 1,

• s̄m ≤ sm,
• SR(I′)

OPT (I′) ≥
SR(I)

OPT (I) , and
• all jobs in J ′ have integral demand and a Smith’s ratio of 1.

Proof. If s̄m > sm then we apply in Jm the procedure described in the proof of
Lemma 22. This is possible since the start times of Jm guarantee that s̄ ≥ s (with
the notation in the proof). ¤

Now we show how we can change our instance I to an instance I ′ in which there
is at most one (long) job which is not contained in Jsmall.

Lemma 24. Let ε > 0. For any instance I such that all jobs in J have a Smith’s
ratio of 1, Jsmall contains only jobs of demand 1, and s̄m ≤ sm there is an instance
I ′ = (J ′, M ′) such that

• J ′
small consist only of jobs of demand 1,

• |J ′ \ J ′
small| = 1 (i.e., there is exactly one job which is larger than 1),

• M ′ has at most one speed change which occurs when the large job is finished
in SR(I ′), and

• SR(I′)
OPT (I′) ≥ (1− ε) SR(I)

OPT (I) .

Proof. First, we do the following two changes on I in order to obtain an instance
I ′′: we combine all jobs which are not contained in Jsmall to one long job Jm′′ .
Then we dramatically increase the speed of M after a timestep t∗ to be defined
later.

Denote by si and ti the start and finish time of each job in OPT (I) and by s̄i

and t̄i the start and finish time of each job in SR(I). Assume that J1, J2, ..., J|J |

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 20

t
0 t∗ + δt∗

...

...

......

...

...

Jm

JmOPT (I)

OPT (I ′′)

SR(I)

SR(I ′′)

Jm′′

Jm′′

Figure 5.2. The time intervals in which the jobs are processed
according to the respective schedules. In order to simplify the
sketch we assume that M runs constantly with unit speed. It is
easy to see that M ′′ runs significantly faster than M after t∗.

orders the jobs in J ascendingly by demand. We define I ′′ = (J ′′, M ′′) as follows:
J ′′ := Jsmall∪{Jm′′} where Jm′′ is a new job with weight wm′′ := `m′′ :=

∑|J |
i=m `i.

Moreover, we obtain M ′′ with the following operations: We start with M . Let t∗

denote the timestep with
´ t∗

0
s(x)dx = `m′′ . Let δ > 0 be a constant to be defined

later. In the time interval [t∗, t∗ + δ] we define M ′′ to have speed |J ′′
small| /δ. We

allow only values for δ such that M ′′ never slows down (i.e., there are not timesteps
x and x′ with x < x′ but s′′(x) > s′′(x′) with s′′ being the speed function of M ′′).
Note that M ′′ completes all jobs within the interval [0, t∗ + δ].

We claim that for any given ε > 0 there is a δ > 0 such that SR(I′′)
OPT (I′′) ≥

(1− ε) SR(I)
OPT (I) .

In order to analyze SR(I′′)
OPT (I′′) we split the jobs into bricks of demand 1. Let

Ji be a job. For Ji we introduce `i bricks Bi,1, ..., Bi,`i
. Let paySR(I) (Ji) the

amount that Ji contributed towards the objective function in SR(I). We de-
fine paySR(I) (Bi,j) := paySR(I) (Ji) /`i for all j with 1 ≤ j ≤ `i. We define
payOPT (I) (Ji) and payOPT (I) (Bi,j) similarly. Let B denote the set of all bricks.
Note that some of the bricks correspond to J ′′m in I ′′ and to some other jobs from
J \ Jsmall in I. We say a brick Bi,j is processed in OPT (I) during a time interval
[s, t] if until time s a fraction of j−1

`i
of Ji is processed in OPT (I) and until time t

a fraction of j
`i

of Ji is processed in OPT (I).
For a schedule S we define Bearly(S) to be all bricks which are processed up to

time t∗ in S. We define Blate(S) := B \ Bearly(S). We observe that for all bricks
Bi,j ∈ Bearly(OPT (I)) we have that payOPT (I) (Bi,j) ≥ payOPT (I′′) (Bi,j). More-
over, for all bricks Bi,j ∈ Blate(OPT (I)) we have that payOPT (I) (Bi,j) ≤ t∗ + δ.
We observe that for all bricks Bi,j ∈ Bearly(SR(I)) we have that paySR(I′′) (Bi,j) ≥
paySR(I) (Bi,j). Moreover, for all bricks Bi,j ∈ Blate(SR(I)) we have that paySR(I′′) (Bi,j) ≥
t∗. Figure 5.2 shows a sketch of the above.

We calculate that

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 21

SR(I ′′)
OPT (I ′′)

=

∑
B∈Bearly(SR(I′′) paySR(I′′) (B) +

∑
B∈Blate(SR(I′′) paySR(I′′) (B)∑

B∈Bearly(OPT (I′′)) payOPT (I′′) (B) +
∑

B∈Blate(OPT (I′′)) payOPT (I′′) (B)

≥
∑

B∈Bearly(SR(I) paySR(I) (B) + |Blate(SR(I))| · t∗∑
B∈Bearly(OPT (I)) payOPT (I) (B) + |Blate(OPT (I))| · (t∗ + δ)

We observe that
∑

B∈Blate
payOPT (I) (B) ≥

∑
B∈Blate

paySR(I) (B) ≥ |Blate(SR(I))|·
t∗ = |Blate(SR(I))| · t∗. This implies that∑

B∈Bearly(SR(I) paySR(I) (B) + |Blate(SR(I))| · t∗∑
B∈Bearly(OPT (I)) payOPT (I) (B) + |Blate(OPT (I))| · t∗

≥ SR(I)
OPT (I)

(in other words: if we increased the speed of M to infinity after time t∗ then the
optimal schedule saves more than the Smith’s rule schedule). Thus, for every given
ε > 0 there is a δ > 0 such that∑

B∈Bearly(SR(I) paySR(I) (B) + |Blate(SR(I))| · t∗∑
B∈Bearly(OPT (I)) payOPT (I) (B) + |Blate(OPT (I))| · (t∗ + δ)

≥ (1− ε)
SR(I)

OPT (I)

It remains to modify I ′ such that the machine has at most two different speeds
(without reducing the factor between the two schedules). Recall that in J ′′ there
are some jobs of demand 1 and one large job. Moreover, in OPT (I ′′) the jobs of
demand 1 are all finished before t∗. We define I ′ := (J ′′, M ′) and specify M ′ as
follows: we start with M ′′. Let z :=

´ t∗

0
s′(x)dx/t∗ (i.e., z is the average speed of

the machine during the time interval [0, t∗] . Then we define
• s′′(x) := z for all x ∈ [0, t∗) and
• s′′(x) := s′(x) for all x ∈ [t∗, t∗ + δ]

We have that SR(I ′) = SR(I ′′) and OPT (I ′) ≤ OPT (I ′′). The former holds since
the Smith’s rule schedule cannot benefit from our adjustments. The latter holds
since at each point in time M ′ has processed at least as much as M ′′ (i.e., the
finishing times of the jobs cannot increase). ¤

Now we prove the approximation ratio of
√

3+1
2 for the algorithm.

Theorem 25. For any instance I it holds that SR(I)
OPT (I) ≤

√
3+1
2 .

Proof. Let ε > 0. Using the lemmata above we derive an instance I ′ = (J ′, M ′)
with the following properties:

• for all jobs J ′i ∈ J ′ it holds that w′i/`′i = 1,
• the demands (and thus the weights) of all jobs are integral,
• in SR(I ′) the jobs are sorted descendingly by their demand,
• in OPT (I ′) the jobs are sorted ascendingly by their demand, and
• J ′small consists only of jobs of demand 1.
• There is exactly one job in J ′ which does not have demand 1. Denote by

`′m its demand.
• M ′ has at most one speed change which occurs when the large job is finished

in SR(I ′). Denote by t∗ the time of the speed change.
• SR(I′)

OPT (I′) ≥ (1− ε) SR(I)
OPT (I) .

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 22

We define L :=
∑

J′i∈J ′
`′i. Let s1 and s2 denote the two speed values of M ′ with

s1 ≤ s2. Denote by tmax the time when the last job finishes. We set k := L − `′m
(i.e., we have k small jobs of demand 1) and calculate that

SR(I ′) = t∗ · `′m +
k∑

i=1

(
t∗ +

i

s2

)
= t∗ · `′m + k · t∗ +

k (k + 1)
2 · s2

= L · t∗ +
k (k + 1)

2 · s2

and

OPT (I ′) = `′m · tmax +
k∑

i=1

i

s1

= `′m · tmax +
k (k + 1)

2 · s1

We substitute tmax = `′m
s1

+ k
s2

and obtain

SR(I ′)
OPT (I ′)

=
`′m
s1
· k + (`′m)2

s1
+ k(k+1)

2s2

(`′m)2

s1
+ k·`′m

s2
+ k(k+1)

2s1

≤
`′m
s1
· k + (`′m)2

s1

(`′m)2

s1
+ k(k+1)

2s1

=
`′m · k + (`′m)2

(`′m)2 + k2+k
2

≤ `′m · k + (`′m)2

(`′m)2 + k2

2

using that k ≤ `′m. For fixed `′m we define f(k) :=
`′m·k+(`′m)2

(`′m)2+ k2
2

. We calculate that

f ′(k) = 0 ⇔ (`′m)2 +
k2

2
− k2 − k · `′m = 0

⇔ k2 + 2k · `′m − 2 · (`′m)2 = 0

⇔ k = −`′m ±
√

3 (`′m)2

⇔ k =
(
−1±

√
3
)
· `′m

and conclude with further calculus that f has its maximum for [0, `′m] in k =(
−1 +

√
3
)
· `′m. We further calculate that

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 23

SR(I ′)
OPT (I ′)

≤ f
((√

3− 1
)
· `′m

)
=

`′m ·
(√

3− 1
)
· `′m + (`′m)2

(`′m)2 + (4−2
√

3)·(`′m)2

2

=
√

3
1 + 2−

√
3

=
√

3 + 1
2

So for any ε > 0 we can show that SR(I)
OPT (I) ≤

1
1−ε ·

SR(I′)
OPT (I′) ≤

1
1−ε ·

√
3+1
2 . This

implies that SR(I)
OPT (I) ≤

√
3+1
2 . ¤

Proposition 26. For any ε > 0 there are instances Iε such that SR(Iε)
OPT (Iε) ≥

√
3+1
2 ·

(1− ε).

Proof. Let ε > 0. Let `m be an integer to be defined later. We introduce k :=⌊(√
3− 1

)
`m

⌋
jobs with demand and weight 1 and one job with demand and weight

`m. We define our machine Mε to have speed 1 in the time interval [0, `m] and speed
s in the time interval

[
`m, `m + k

s

]
(we will define s later). We calculate that

OPT (Iε) ≤
k(k + 1)

2
+ `m ·

(
`m +

k

s

)
and

SR (Iε) = (`m)2 + k · `m +
k(k + 1)

2s
We further calculate that

SR (Iε)
OPT (Iε)

≥
(`m)2 + k · `m + k(k+1)

2s
k(k+1)

2 + `m ·
(
`m + k

s

)
=

(`m)2 +
⌊(√

3− 1
)
`m

⌋
· `m + b(√3−1)`mc(b(√3−1)`mc+1)

2s

b(√3−1)`mc(b(√3−1)`mc+1)

2 + `m ·
(

`m + b(√3−1)`mc
s

)
Now we choose s and `m large enough such that

SR (Iε)
OPT (Iε)

≥ (1− ε)
(`m)2 +

((√
3− 1

)
`m

)
· `m

((
√

3−1)`m)2

2 + (`m)2

= (1− ε)
√

3
2−

√
3 + 1

= (1− ε)
√

3 + 1
2

¤

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 24

Corollary 27. Any algorithm respecting Smith’s rule is a
√

3+1
2 -approximation, and

none of these algorithms can achieve a better approximation factor for all instances.

Proof. So far we considered the worst among these algorithms. Now consider a
best among these. This algorithm respects Smith’s rule, but breaks ties optimally
for each instance. Let I be an instance. For any ε > 0 we can find a perturbation
of the weights of the jobs in I yielding an instance Iε such that

• there is only one possible ordering for the jobs in Iε which obeys Smith’s
rule and still

• SR(Iε)
OPT (Iε) ≥ (1− ε) SR(I)

OPT (I) .

Applying this reasoning to the worst-case instances presented in Proposition 26
shows that no Smith’s rule algorithm can achieve a better approximation factor
than

√
3+1
2 .

¤

6. Blind algorithms

We note that the Smith’s Rule algorithm orders the jobs without knowledge of
the machine. We call algorithms with this property blind algorithms. With Theo-
rem 5 any polynomial time blind algorithm for the ISS problem yields a polynomial
time algorithm for the flow scheduling problem. Therefore, we have the following
corollary.

Corollary 28. There is an approximation algorithm for the flow scheduling problem
with approximation factor

√
3+1
2 which runs in polynomial time.

Now we establish a lower bound for the possible performance ratio of blind
algorithms.

Theorem 29. The performance ratio of a blind algorithm is at best 1.1215.

Proof. We consider the following instance I: We have n + 1 jobs with w0 = β · n,
`0 = n, w1 = w2 = ... = wn = 1 = `1 = `2 = ... = `n (for n and β to be
defined later). A blind algorithm must schedule these jobs in some order without
knowledge of the machine. We denote by Sk the schedule in which the job J0 is
scheduled at position k (note that {S1, ..., Sn} is the set of all possible schedules for
I without preemption). We use the notation Sk,M for the objective value obtained
when executing the schedule Sk on machine M . We claim that for each schedule
Sk there is a machine M such that Sk,M

OPTM
≥ 1.1215 (where OPTM denotes the best

possible schedule for I on M).
Let M be a machine which runs constantly with unit speed. Clearly, on M the

schedule S1 is the optimal schedule (since S1 orders the jobs according to Smith’s
rule and M has no speed changes). We calculate that

Sk,M =
k−1∑
i=1

i + (k − 1 + n) · βn +
n∑

i=k

(n + i)

= n2 (1.5 + β) + n (1.5− k + βk − β)

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 25

Since OPTM = S1,M we obtain that
Sk,M

OPT
=

Sk,M

S1,M

=
n2 (1.5 + β) + n (1.5− k + βk − β)

n2 (1.5 + β) + 0.5n

=: f (n, k, β)

Now for each schedule Sk we define a machine Mk by the following speed function:

sk(t) =

{
1 if t < k + n− 1
L if t ≥ k + n− 1

for a large constant L to be defined later. We calculate that

Sk,Mk
≥

k−1∑
i=1

i + βn (k + n− 1) + (n− k + 1) (k + n− 1)

=
(k − 1) k

2
+ βnk + βn2 − βn + nk + n2 − n− k2 − kn + k + k + n− 1

= n2 (β + 1) + n (βk − β)− k2

2
+

3
2
k − 1

and

Sn+1,Mk
=

n∑
i=1

i + βn

(
k + n− 1 +

n− k + 1
L

)
=

n(n + 1)
2

+ βnk + βn2 − βn +
1
L

(βn(n− k + 1))

We calculate that
Sk,Mk

OPT
≥ Sk,Mk

Sn+1,Mk

≥
n2 (β + 1) + n (βk − 1)− k2

2 + 3
2k − 1

n(n+1)
2 + βnk + βn2 − βn + 1

L (βn(n− k + 1))
=: g(n, k, β, L)

The approximation factor of any blind algorithm is bounded from below by lb with

lb := max
n,β,L

min
k

max {f (n, k, β) , g(n, k, β, L)}

By choosing n := 1000, β := 1.96, and L sufficiently large one can calculate that
mink max {f (n, k, β) , g(n, k, β, L)} ≥ 1.1215. The minimum value for k is obtained
with k = 439. Thus, we have established our lower bound of 1.1215. ¤

7. Online Algorithms

In this subsection, we consider the increasing speed scheduling problem in an
online setting. We assume the following online model:

• each job Ji has a release time ri,
• the existence and all data of a job become known at its release time, and
• at time t the speed of the machine up to time t is known, the speed of the

machine after time t is not known.

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 26

The Smith’s rule algorithm in the online-setting works as follows: We always pro-
cess the job which has the largest Smith’s factor among all available jobs. Denote
by SRonline(I) the resulting schedule (and its objective function value) for an in-
stance I. If rj = 0 for all jobs then certainly SR(I) = SRonline(I).

Theorem 30. In the online setting, the Smith’s rule algorithm has a competitive
factor of 2.

Let I be an instance of our problem. With the same reasoning as in Lemma 21
we can show that w.l.o.g. we can assume that all wj

`j
= 1 for all jobs in I. However,

note that since we now allow the preemption of jobs, in the worst possible Smith’s
rule schedule a job Ji might be preempted at any time by a job Ji′ , even if wi′

`i′
= wi

`i
.

We choose ε such that it divides the demand of each job and each release time.
Now we create a lower bound instance I ′ by replacing each job Ji by `i/ε jobs, each
with demand ε and weight wi

`i
ε.

Lemma 31. It holds that OPT (I ′) ≤ OPT (I).

Proof. We start with OPT (I). We show that splitting the jobs into pieces of
demand ε does not increase the value of the objective function. Denote by S the
schedule obtained by taking OPT (I) and splitting each jobs Ji into `i/ε equal jobs
with demand ε. Let Ji ∈ J denote a job which is executed in the time interval [si, ti)
in OPT (I). Then Ji contributes wi · ti towards the sum of weighted completion
times. Denote by Ji the jobs resulting from splitting Ji. For a job Ji′ ∈ Ji denote
by t(i′) its completion time in S. In S the jobs resulting from splitting Ji contribute∑

Ji′∈Ji

t(i′) · wi

`i
ε ≤

∑
Ji′∈Ji

ti ·
wi

`i
ε

=
`i

ε
· ti ·

wi

`i
ε

= ti · wi

towards the objective function. Applying this reasoning to all jobs shows that
S ≤ OPT (I). This implies that OPT (I ′) ≤ OPT (I). ¤

Lemma 32. The schedule SRonline(I ′) is optimal.

Proof. Due to the choice of ε no job is ever preempted. The claim follows from
Lemma 19. ¤

We observe that the time until the last job finishes can be partitioned into time
intervals in which the machine has no idle time. Denote by L the set of these
intervals. We now show the competitive factor of 2 for the Smith’s rule algorithm.

Proof of Theorem 30. We consider each interval L = [x, y] ∈ L separately. Let
JL ⊆ J be the jobs which finish within L in I and let J ′

L ⊆ J ′ be the jobs which
finish within L in I ′. We denote by cost (JL) and cost (J ′

L) the value that the jobs
in JL and J ′

L contribute towards the objective function in I and I ′, respectively.
We want to show that cost (JL) ≤ 2 · cost (J ′

L).
We define a function f as follows: Assume that a job starts its execution at time

x and is never interrupted. We define f (`) to be its completion time depending
on its demand. Note that since the machine does never slow down we have that

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 27

f

x y `

C

Figure 7.1. The function f together with the scheduling of the
jobs in JL and J ′

L. The narrow bars represent the value of our
lower bound. The dotted line represents our upper bound on the
value for the real objective function.

f is concave. We define k := 1
ε

∑
j∈JL

`j , i.e., the schedule I ′ executes k jobs the
interval L. We want to show that cost (JL) ≤ 2 · cost (J ′

L). We calculate that

cost (J ′
L) =

k∑
i=1

εf (i · ε)

≥
ˆ kε

0

f(z) dz

≥ f (kε) + f (0)
2

· kε

(see Figure 7.1 for a sketch) and thus

cost (JL) ≤
∑

j∈JL

f (kε) · wj

= f (kε) ·
∑

j∈JL

`j

= f (kε) · kε

≤ f (kε) · kε + f (0) · kε

= 2 · cost (JL′)

Doing this reasoning for each interval L ∈ L proves the claim. ¤

Note that our analysis is tight since there are examples (even for the case that
the speed of the machine does not change) where the online Smith’s Rule algorithm
does not perform better than factor 2 [13].

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 28

7.1. Lower Bound for Online Algorithms. The lower bound construction pre-
sented in Section 6 carries over to a bound for online algorithms. It actually also
holds if all jobs are released at time t = 0 and only the information about the
machine becomes available online.

Theorem 33. No online algorithm for the increasing speed scheduling problem can
achieve a better competitive ratio than 1.1215, even if all jobs have the same release
time.

Proof. Like in the proof of Theorem 29 we use the following set of jobs: We have
n jobs with w0 = β · n, `0 = n, w1 = w2 = ... = wn = 1 = `1 = `2 = ... = `n. The
adversary runs the machine with unit speed until the job J0 has completely been
processed. Assume that the job J0 was the kth job which was scheduled. Let L
be a large constant to be defined later. We define f (n, k, β) and g(n, k, β, L) as in
the proof of Theorem 29. If f (n, k, β) ≥ g(n, k, β, L) then the adversary continues
to run the machine with unit speed after J0 is finished. If f (n, k, β) < g(n, k, β, L)
then once J0 is finished the adversary accelerates the machine to speed L. With
the same reasoning as in the proof of Theorem 29 we obtain that the competitive
ratio of the algorithm is at best 1.1215 for suitable choices of n, β, and L. ¤

7.2. Unit Weight Case, Online. In this section we prove that for the unit weight
case the shortest remaining processing time algorithm (SRPT) is optimal (we will
define the algorithm in the sequel). This extends the fact that SRPT is optimal for
the problem 1|ri, pmtn|

∑
Cj .

The SRPT-algorithm works as follows: at each point in time, we process the
available job which has the shortest remaining demand. Ties are broken arbitrarily.
For an instance I denote by SRPT (I) the resulting schedule.

Theorem 34. If all jobs in an instance I have the same weight then SRPT (I) is
optimal.

Proof. Assume on the contrary that SRPT (I) is not optimal. Let OPT (I) be the
optimal schedule which differs from SRPT (I) for the first time as late as possible.
Let time t be the first timestep where OPT (I) and SRPT (I) differ. Let Jlong

denote the job which is processed by OPT (I) at time t and let Jshort be the job
which is processed by SRPT (I) at time t. Then at time t the remaining demand
of Jshort is strictly shorter than the remaining demand of Jlong. (If both remaining
demands equal then by an exchange argument we can show that there must be an
optimal schedule which also schedules Jshort at time t.) Let tshort and tlong denote
the finishing times of Jshort and Jlong in OPT (I). Let I denote the union of the
time intervals after t in which OPT (I) processes either Jshort or Jlong. We define
a new schedule OPT ′(I) as follows: outside I the schedules OPT ′(I) and OPT (I)
are identical. Within I the schedule OPT ′(I) processes Jshort and Jlong according
to the SRPT-rule. Denote by t′short and t′long the finishing times of Jshort and Jlong

in OPT ′(I), respectively. If tshort < tlong then t′short < tshort and t′long = tlong. If
tshort > tlong then t′short < tlong and t′long = tshort. In both cases we derive that
tshort + tlong > t′short + t′long. The finishing times of all other jobs are the same in
both schedules. This contradicts that OPT (I) is an optimal schedule. ¤

INCREASING SPEED SCHEDULING AND FLOW SCHEDULING 29

8. Acknowledgements

We are grateful to Ekki Köhler for the discussion at Schloss Dagstuhl in which
the Flow scheduling problem was conceived.

References

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis, M. Queyranne,
M. Skutella, C. Stein, and M. Sviridenko. Approximation schemes for minimizing average
weighted completion time with release dates. In Proceedings of the 40th Annual Symposium
on Foundations of Computer Science (FOCS 1999), pages 32–44. IEEE, 1999.

[2] N. Baumann and M. Skutella. Earliest arrival flows with multiple sources. Mathematics of
Operations Research, 34:499–512, 2009.

[3] L. Fleischer. Faster algorithms for the quickest transshipment problem with zero transit times.
In Proceedings of the 9th Annual Symposium on Discrete Algorithms (SODA 1998), pages
147–156, 1998.

[4] D. Gale. Transient flows in networks. Michigan Mathematical Journal, 6:59–63, 1959.
[5] E. Gawrilow, E. Köhler, R. H. Möhring, and B. Stenzel. Dynamic routing of automated

guided vehicles in real-time. In Mathematics — Key Technology for the Future, pages 165–
178. Springer, 2008.

[6] A. Hall, S. Hippler, and M. Skutella. Multicommodity flows over time: Efficient algorithms
and complexity. In Proceedings of the 30th Annual International Colloquium on Automata,
Languages and Programming (ICALP 2003), pages 397–409, 2003.

[7] A. Hall, S. Hippler, and M. Skutella. Multicommodity flows over time: Efficient algorithms
and complexity. Theoretical Computer Science, 379:387–404, 2007.

[8] H. Hoogeveen, M. Skutella, and G. J. Woeginger. Preemptive scheduling with rejection.
In Prceedings of the 8th European Symposium on Algorithms (ESA 2000), volume 1879 of
Lecture Notes in Computer Science, pages 268–277. Springer, 2000.

[9] B. Hoppe and É. Tardos. Polynomial time algorithms for some evacuation problems. In Pro-
ceedings of the 5th Annual Symposium on Discrete Algorithms (SODA 1994), pages 433–441,
1994.

[10] B. Hoppe and É. Tardos. The quickest transshipment problem.Math. Oper. Res., 25(1):36–62,
2000.

[11] J. Labetoulle, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Preemptive scheduling
of uniform machines subject to release dates. In Progress in Combinatorial Optimization,
pages 245–261. Academic Press, 1984.

[12] E. Minieka. Maximal, lexicographic, and dynamic network flows. Operations Research,
21:517–527, 1973.

[13] A. S. Schulz and M. Skutella. The power of α-points in preemptive single machine scheduling.
Journal of Scheduling, pages 121–133, 2002.

[14] W. E. Smith. Various optimizers for single-stage production. Naval Research and Logistics
Quarterly, pages 59–66, 1956.

[15] W. L. Wilkinson. An algorithm for universal maximal dynamic flows in a network. Operations
Research, 19:1602–1612, 1971.

