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C. Meyer, u. Prüfert, and F. Tröltzsch

Preprint 2005/05

Preprint-Reihe des Instituts für Mathematik
Technische Universität Berlin

Report 2005/05 February 2005



A linear-quadratic elliptic control problem with pointwise box constraints on the state
is considered. The state-constraints are treated by a Lavrentiev type regularization. It
is shown that the Lagrange multiplier associated with the regularized state-constraints
are functions in L2. Moreover, the convergence of the regularized controls is proven
for regularization parameter tending to zero. To solve the problem numerically, an
interior point method and a primal-dual active set strategy are implemented and
treated in function space.

AMS subject classifications. 49J20, 49M20, 90C51, 65K10



ON TWO NUMERICAL METHODS FOR STATE-CONSTRAINED

ELLIPTIC CONTROL PROBLEMS∗

christian meyer, uwe prüfert, fredi tröltzsch 1
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1. Introduction. In this paper, we consider the numerical solution of the elliptic
optimal control problem

(P)



































minimize J(y, u) :=
1

2

∫

Ω

(y − yd)
2 dx +

κ

2

∫

Ω

(u − ud)
2 dx

subject to A y(x) = u(x) in Ω

∂ny(x) = 0 on Γ

and ya(x) ≤ y(x) ≤ yb(x) a.e. in Ω,

where Ω is a bounded domain and Γ is the boundary of Ω. Moreover, ∂n = ∂~n denotes
directional derivative with respect to the outward unit normal ~n and A is a uniformly
elliptic differential operator. The functions yd, ud, ya, and yb are given and κ > 0 is
a regularization parameter.

The main difficulty of the problem is the presence of pointwise state constraints. It
is known from the Karush-Kuhn-Tucker theory in function spaces that the Lagrange
multipliers associated with the state constraints are regular Borel measures. This fact
is crucial both for the theory and for the the numerical solution.

There are different ideas to deal with the state-constraints numerically. For instance,
the problem can be discretized and then solved by a primal-dual active set strategy
applied in the finite dimensional space. The efficiency of this technique has been
demonstrated by Bergounioux and Kunisch in [3]. On the other hand, interior point
methods can be applied to the discretized problem as well, see Haddou et al. [1].
In the case of supremum-norm functional, also Grund and Rösch applied an interior
point method to the discrete problem, see [5].

The situation is different when the problem is considered in function spaces. Primal-
dual active set strategies need the solution of equations such as (y(u))(x) = d(x)
on subsets of Ω, where d(x) = ya(x) or d(x) = yb(x). The mapping u → y(u) is
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compact, hence these equations for u may cause effects of ill-posedness. It is well
known from the theory of inverse problems that a Lavrentiev type regularization of
the type λu + y = d is helpful to overcome this difficulty.

This is one reason to approximate the pointwise state constraints in (P) by

ya(x) ≤ λu(x) + y(x) ≤ yb(x). (1.1)

A regularization of this type has several advantages. First, the associated Lagrange
multipliers can assumed to be functions of L2(Ω). This result has been shown for
convex elliptic problems for a more general setting including also certain pointwise
control constraints by Tröltzsch [10]. For (P), the proof of regularity of Lagrange
multipliers is almost trivial, since box constraints on the control are missing, see
Section 2 below.

Second, primal-dual active set strategies are be well defined in functions space for
this type of regularized constraints. In this way, we are able to directly compare the
performance of a primal-dual active set strategy and an interior point method.

Our paper complements the discussion of a semilinear version of (P) in [8], where the
existence of regular Lagrange multipliers, second-order sufficient optimality conditions
and the application of an SQP method with primal-dual active set strategy for the
quadratic subproblems have been discussed for fixed λ > 0. Here, we concentrate
on the convergence for λ ↓ 0. Moreover, we briefly sketch the implementation of the
active set method and an interior point method with classical continuation technique.
With that part we continue the work in Prüfert et al. [9] on the applicaton of a
classical interior point method in function spaces. The existence of a central path was
shown there for a single state constraint. In the case of upper and lower bounds that
is given here, the situation is so simple that we present the proof for convenience of
the reader.

Throughout this paper, the domain Ω is a subset of R
n, n = 2, 3, with a C0,1-boundary

Γ. As mentioned above, A is an elliptic differential operator. More precisely, it has
the form

A y(x) = −
n

∑

i,j=1

Di(aij(x) Djy(x)) + c(x) y(x),

where Di denotes the partial derivative with respect to xi. Here c is a given function
in L∞(Ω) with c(x) ≥ 0 a.e., and aij ∈ L∞(Ω), i, j = 1, ..., n satisfy the ellipticity
condition

n
∑

i,j=1

aij(x) ξi ξj ≥ θ |ξ|2 ∀ (x, ξ) ∈ Ω × R
n

with some positive constant θ. Furthermore, the bounds ya and yb in (P) are fixed
functions in L∞(Ω) with yb(x) − ya(x) ≥ cad > 0 a.e. in Ω. The desired state yd and
the function ud are defined in L∞(Ω).

With (1.1) at hand, we transform (P) into the following optimal control problem
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(Pλ)



































minimize J(y, u) :=
1

2

∫

Ω

(y − yd)
2 dx +

κ

2

∫

Ω

(u − ud)
2 dx

subject to A y(x) = u(x) in Ω

∂ny(x) = 0 on Γ
(1.2)

and ya(x) ≤ λ u(x) + y(x) ≤ yb(x) a.e. in Ω, (1.3)

where λ > 0 is a fixed regularization parameter. In the following, we show that (Pλ)
admits Lagrange multipliers in L2(Ω) and that the corresponding solution (ūλ, ȳλ)
converges strongly to the solution of (P) if λ converges to zero.

For n ≤ 3, (1.2) admits for every u ∈ L2(Ω) a unique solution y ∈ H1(Ω)∩L∞(Ω) (see
for instance [4]). Hence, we may introduce the control-to-state operator G : L2(Ω) →
H1(Ω) ∩ L∞(Ω) that assigns y to u.

Notation. By ‖.‖ = ‖.‖L2(Ω) and (. , .) = (. , .)L2(Ω) we denote the natural norm
and the associated inner product of L2(Ω), respectively. For the L∞(Ω)-norm, we
abbreviatory write ‖.‖∞ = ‖.‖L∞(Ω). Furthermore, I : L2(Ω) → L2(Ω) is the identity.
Given two normed spaces U and Y and a linear operator S : U → Y , the associated
adjoint operator is denoted by S∗ : Y ∗ → U∗. Throughout the paper, we say that u ∈
L2(Ω) is feasible for (P) if ya(x) ≤ (G u)(x) ≤ yb(x) holds true a.e. in Ω. Analogously,
u ∈ L2(Ω) is said to be feasible for (Pλ) if ya(x) ≤ λ u(x)+(G u)(x) ≤ yb(x) is fulfilled
a.e. in Ω. By E2 : H1(Ω) ∩ L∞(Ω) → L2(Ω) we denote the embedding operator of
H1(Ω) ∩ L∞(Ω) in L2(Ω), whereas E∞ denotes the analogous embedding operator
with range in L∞(Ω).

2. First-order optimality conditions. If we consider the state y as a function
in L2(Ω), then the associated solution operator of (1.2) is given by S := E2 G. Since
E2 is compact, the same holds for S : L2(Ω) → L2(Ω).

The objective functional f is strictly convex and lower semicontinuous. Therfore, the
existence of solutions of (P) and (Pλ), respectively, is obtained by standard methods.
Moreover, the solutions are unique in both cases. However, considering first-order
necessary optimality conditions, both optimal control problems behave different. As
mentioned above, the Lagrange multipliers associated to the pure state-constraints in
(P) are in general regular Borel measures. Their singular part is concentrated on the
boundary of the active set, see Bergounioux and Kunisch [2]. In contrast to that, we
are able to prove the existence of regular Lagrange multipliers in L2(Ω) in the case
of (Pλ). To that end, we convert this problem into one with box-constraints on the
control by substituting v = λ u + y. Thanks to the compactness of S, (λ I + S) repre-
sents a Fredholm operator that has only countably many eigenvalues accumulating at
0. Moreover, since S is positive definite, the eigenvalues of −S are negative. Thus, for
every λ > 0, the theory of Fredholm operators ensures that (λ I +S) has a continuous
inverse operator B : L2(Ω) → L2(Ω), i.e.

B v = (λ I + S)−1 v = u. (2.1)

Therefore, (Pλ) can be transformed into the following optimization problem with
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simple box constraints on the new control v

(PV)







minimize F (v) =
1

2
‖S B v − yd‖

2 +
κ

2
‖B v − ud‖

2

subject to ya(x) ≤ v(x) ≤ yb(x) a.e. in Ω.

Since F is continuously Fréchet-differentiable from L2(Ω) to R, the Riesz representa-
tion theorem implies that its derivative can be identified with a function in L2(Ω).
We denote this function by g(x). Then, by standard arguments, one can show the
existence of Lagrange multipliers νλ, µλ ∈ L2(Ω) that are given by

νλ(x) = g(v̄)(x)+ =
1

2
(g(v̄)(x) + |g(v̄)(x)|)

µλ(x) = g(v̄)(x)− =
1

2
(−g(v̄)(x) + |g(v̄)(x)|) ,

where v̄ denotes the unique optimal solution of (PV). Together with νλ and µλ, v̄
fulfills the following optimality system:

S∗(S B v̄ − yd) + κ(B v̄ − ud) + (B−1)∗µλ − (B−1)∗νλ = 0

(νλ, ya − v̄) = (µλ, v̄ − yb) = 0

νλ(x) ≥ 0 , µλ(x) ≥ 0 , ya(x) ≤ v̄(x) ≤ yb(x) a.e. in Ω.



















(2.2)

Because of the equivalence of (PV) to (Pλ), ūλ = B v̄ represents the optimal solution
of (Pλ). With B−1 = λ I + S, the first equation in (2.2) is transformed into

S∗(S ūλ − yd − νλ + µλ) + κ(ūλ − ud) + λ(µλ − νλ) = 0.

Then, by substituting ȳλ = S ūλ and pλ := S∗(ȳλ − yd − νλ + µλ) in (2.2), we obtain
the following optimality system for (Pλ):

A ȳλ = ūλ in Ω

∂nȳλ = 0 on Γ

A∗ pλ = ȳλ − yd + µλ − νλ in Ω

∂npλ = 0 on Γ

pλ(x) + κ(ūλ(x) − ud(x))+λ(µλ(x) − νλ(x)) = 0 a.e. in Ω

(νλ, ya − λ ūλ − ȳλ) = (µλ, λ ūλ + ȳλ − yb) = 0

νλ(x) ≥ 0 , µλ(x) ≥ 0 , ya(x) ≤ λ ūλ(x) + ȳλ(x) ≤ yb(x) a.e. in Ω.







































(2.3)

Here A∗ denotes the formal adjoint operator of A. The partial differential equation

A∗ pλ = ȳλ − yd + µλ − νλ in Ω

∂npλ = 0 on Γ
(2.4)

is called adjoint equation. Similar to (1.2), it admits a unique solution in H1(Ω) ∩
L∞(Ω) for every right hand side in L2(Ω). Therefore, due to µλ, νλ ∈ L2(Ω), we
have pλ ∈ H1(Ω) ∩ L∞(Ω). As above, we introduce the solution operator to (2.4) by
G~ : L2(Ω) → H1(Ω) ∩ L∞(Ω). Notice that G∗ would transform (H1(Ω) ∩ L∞(Ω))∗

into L2(Ω)∗. For the adjoint operator of S, we find S∗ = E2 G~.

In this way, we have derived the following theorem:
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Theorem 2.1. Let ūλ be the optimal solution of (Pλ) with associated state ȳλ, then
there exist non-negative Lagrange multipliers νλ ∈ L2(Ω) and µλ ∈ L2(Ω) and an
associated adjoint state pλ ∈ H1(Ω) ∩L∞(Ω) such that the optimality system (2.3) is
satisfied.

Remark 2.2. Due to the convexity of the objective functional J , the optimality
conditions in (2.3) are also sufficient.

3. Pass to the limit. In this section, we prove the convergence of the solutions
of the regularized problem (Pλ) to the solution of the original problem (P). The theory
is similar to the technique presented in [7]. However, here the situation is a little bit
more difficult, since the state is bounded from above and below in our case, whereas
in [7] only lower constraints are imposed on the state. This especially complicates the
proof of Lemma 3.1 below.

In the following, the unique solution of (P) is denoted by ū ∈ L2(Ω) with associ-
ated state ȳ and associated adjoint state p. Furthermore, we introduce the reduced
objective functional f by

f(u) :=
1

2
‖S u − yd‖

2 +
κ

2
‖u− ud‖

2

and a function uλ that is defined by

uλ := (λ I + S)−1ȳ. (3.1)

Notice that uλ ∈ L2(Ω) is well defined for all λ > 0 because of the compactness of S as
described above. The feasibility of ū for (P) yields ya(x) ≤ λ uλ(x)+(S uλ)(x) ≤ yb(x)
a.e. and thus, uλ is feasible for (Pλ). In the following, we will show that uλ converges
to ū as λ ↓ 0. To that end, we introduce by {λn} a sequence of positive numbers
tending to zero and the sequence {un} whose elements are defined by un = (λn I +
S)−1ȳ according to (3.1).

Lemma 3.1. The sequence {un} converges strongly in L2(Ω) to ū, as n → ∞.

Proof: By inserting ȳ = S ū in (3.1), we obtain for a fixed, but arbitrary λ

uλ − ū = (λ I + S)−1S ū − (λ I + S)−1(λ I + S) ū

= (λ I + S)−1(S + λ I − S)ū

= λ (λ I + S)−1 ū.

(3.2)

The set of eigenvectors of S, denoted by vi, i = 1, ...,∞, represents an orthonormal
basis of L2(Ω). The associated eigenvalues of S are denoted by µi, i ∈ N. We obtain
for all i ∈ N

(λ I + S)−1 vi =
1

λ + µi

(λ I + S)−1 (λ + µi) vi =
1

λ + µi

(λ I + S)−1(λ I + S) vi

=
1

λ + µi

vi.

Since {vi} is an orthonormal basis of L2(Ω), we have that ū =
∑∞

i=1(ū , vi) vi. There-



6 C. MEYER, U. PRÜFERT, F. TRÖLTZSCH

fore, (3.2) implies

uλ − ū = λ (λ I + S)−1 ū = λ

∞
∑

i=1

(ū , vi) (λ I + S)−1 vi

=

∞
∑

i=1

λ

λ + µi

(ū , vi) vi,

and we obtain for the L2-norm of uλ − ū

‖uλ − ū‖2 =

∥

∥

∥

∥

∥

∞
∑

i=1

λ

λ + µi

(ū , vi) vi

∥

∥

∥

∥

∥

2

=

∞
∑

i=1

(

λ

λ + µi

)2

(ū , vi)
2.

Since S is positive definite, all µi are positive. Therefore

∞
∑

i=1

(

λ

λ + µi

)2

(ū , vi)
2 ≤

∞
∑

i=1

(ū , vi)
2 = ‖ū‖2, (3.3)

follows from the Bessel inequality. Consider the real valued functions

ϕi(λ) :=

(

λ

λ + µi

)2

(ū , vi)
2,

which are continuous and zero at λ = 0. The series
∑∞

i=1(ū, vi)
2 majorizes the one of

the left hand side in (3.3), which represents a function series with continuous functions.
Thus, we are allowed to interchange summation and pass to the limit and obtain

lim
n→∞

‖un − ū‖2 = lim
n→∞

∞
∑

i=1

ϕi(λn) =

∞
∑

i=1

ϕi(0) = 0.

Now, let {ūn} be the sequence of associated optimal solutions of (Pλn
) with associated

optimal states ȳn = S ūn. Lemma 3.1 implies f(un) → f(ū). Hence, the optimality
of ūn and the feasibility of un for (Pλn

) yields f(ūn) ≤ f(un) ≤ f(ū) + 1 for all
sufficiently large n. Therefore, we have

‖un‖
2 ≤

2

κ
(f(ū) + 1)

giving the uniform boundedness of {un} in L2(Ω). Thus we can select a weakly
converging subsequence, ūnk

⇀ ũ. Everything what follows is also valid for any other
weakly converging subsequence. Thus, a known argument yields that w.l.o.g. ūn ⇀ ũ.

Lemma 3.2. Let ũ be the weak limit of {ūn}. Then ũ is feasible for (P).

Proof: For every λn > 0, the associated ūn is feasible for (Pλ) and hence fulfills the
constraints

ya(x) ≤ λn ūn(x) + ȳn(x) ≤ yb(x) a.e. on Ω.

The boundedness of ‖ūn‖ implies λn ūn → 0 in L2(Ω). Furthermore, we have ȳn =
S ūn → S ũ in L2(Ω) due to the compactness of S and the weak convergence of {ūn}.
Therefore, passing to the limit n → ∞, ũ is feasible for (P), i.e.

ya(x) ≤ (S ũ)(x) ≤ yb(x) a.e. in Ω,
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since the set {y ∈ L2(Ω) | ya(x) ≤ y(x) ≤ yb(x) a.e. in L2(Ω)} is closed.

Now, we are able to prove our main result:

Theorem 3.3. The sequence of optimal solutions {ūn} of (Pλn
) converges strongly

in L2(Ω) to the solution ū of (P), i.e.

ūn → ū , n → ∞.

Proof: Thanks to Lemma 3.1, i.e. the strong convergence of un to ū in L2(Ω), the
states yn = S un converge strongly in L2(Ω) to ȳ = S ū. This implies

f(un) → f(ū) , n → ∞. (3.4)

Since un = (λn I +S)−1ȳ is feasible for (Pλn
) and ūn is the optimal solution of (Pλn

),
f(un) ≥ f(ūn) holds true for all n ∈ N. On the other hand, the feasibilty of ũ and
the optimality of ū for (P) imply f(ũ) ≥ f(ū). Therefore, passing to the limit, (3.4)
yields

f(ū) = lim
n→∞

f(un) ≥ lim sup
n→∞

f(ūn) ≥ lim inf
n→∞

f(ūn) ≥ f(ũ) ≥ f(ū), (3.5)

since f is weakly lower semicontinuous. Thus we get f(ũ) = f(ū) and the strict
convexity of f implies

ũ = ū,

and hence ūn ⇀ ū.

To show the strong convergence of {ūn}, we will prove the norm convergence of ‖ūn‖
to ‖ū‖. It follows from the convergence

lim
n→∞

f(ūn) = f(ū),

that is obtained from (3.5). Thus, by definition of f , we have

lim
n→∞

‖ūn‖
2 = lim

n→∞

2

κ

(

f(ūn) −
1

2
‖ȳn − yd‖

2

)

=
2

κ

(

f(ū) −
1

2
‖ȳ − yd‖

2

)

= ‖ū‖2,

where we again used ȳn → ȳ in L2(Ω). It is well known that weak and norm conver-
gence together yield strong convergence, i.e. un → ū for n → ∞.

Remark 3.4. Clearly, the states yn = S un converge strongly in L2(Ω) to ȳ = S ū,
too.

Next, we consider two different optimization methods for handling the regularized
quadratic problem (Pλ) – an active set strategy and an interior point method.

4. Interior point method. This section is devoted to the depiction of an in-
terior point algorithm for the solution of (Pλ). We follow the lines of [9] where the
state is only bounded from below. However, here we have upper and lower bounds.
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This simplifies the proof of existence of the central path. We think that it is worth to
present this easier setting.

The idea of interior point methods is to transform problem (Pλ) into one without
inequality contraints. To that end, we penalize the constraints by a logarithmic
barrier term. For (Pλ), this amounts

(Pε
λ)



































minimize Jε(y, u) :=
1

2
‖y − yd‖

2 +
κ

2
‖u− ud‖

2

− ε
∑

i

∫

Ω

(

ln(λu + y − ya) + ln(yb − λu − y)
)

dx

subject to Ay(x) = u(x) in Ω

∂ny(x) = 0 on Γ,

with ε > 0. Introducing the solution operator S = E2G as defined in Section 2 and
the operator B defined by (2.1), we rewrite (Pε

λ) as

(Q)















min Fε(v) :=
1

2
‖SBv − yd‖

2 +
κ

2
‖Bv − ud‖

2

− ε

∫

Ω

(ln(v − ya) + ln(yb − v)) dx.

Note that we supress the sub- and superscript and write (Q) instead of of (Qε
λ) to

improve the readability.

The proof of existence of a solution of (Q) is a little bit delicate, since the logarithmic
barrier function in Fε(v) may tend to infinity as v approaches the bounds ya or yb.
To compensate for this lack of continuity, we first restrict v to a smaller set, where
we can prove existence. To that end, we introduce for fixed τ > 0 and fixed ε > 0 the
auxilliary problem

(Qτ ) min
ya+τ≤v≤yb−τ

Fε(v),

where we again supress the indices ε and λ. In the following, we will show that, for
fixed ε and λ and sufficiently small τ , the unique solution of the auxiliary problem
(Qτ ), denoted by vτ , represents the solution of (Q), that will be called vε

λ in all what
follows.

Theorem 4.1. For all 0 < τ < cad/2 and for all ε ≥ 0, problem (Qτ ) has a unique
solution vτ , and there is a constant c such that ‖vτ‖∞ ≤ c.

Proof: The admissible set associated to (Qτ ) is defined by

V τ
ad := {v ∈ L2(Ω) | ya + τ ≤ v(x) ≤ yb − τ for a.a. x ∈ Ω},

where τ < cad/2 ensures that V τ
ad is not empty. We notice that Fε is strictly convex

and continuous on V τ
ad, therefore weakly lower semicontinuous. Moreover, V τ

ad is
convex, closed and bounded. Therefore, standard arguments show the existence of a
unique solution vτ . Moreover, ‖vτ‖∞ is uniformly bounded, since ya ≤ vτ ≤ yb holds
for all τ < cad/2.

For every v ∈ V τ
ad and t ∈ [0, 1], the convexity of V τ

ad yields vτ + t(v − vτ ) ∈ V τ
ad.

Obviously, Fε is not Gateaux-differentiable in L2, since Fε(v + ht) may be undefined
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for some h ∈ L2 even for small t > 0. However, it is directionally differentiable in the
direction v − vτ , since vτ + t(v − vτ ) ∈ V τ

ad. The optimality of vτ gives

Fε(vτ + t(v − vτ )) − Fε(vτ )

t
≥ 0. (4.1)

Passing to the limit t ↓ 0, (4.1) implies for the directional derivative

F ′
ε(vτ )(v − vτ ) ≥ 0 ∀ v ∈ V τ

ad. (4.2)

By the Riesz representation theorem, F ′
ε(vτ ) can be indentified with a function in

L2(Ω) that is denoted by gε(x) in all what follows. With the definition of Fε in (Q)
at hand, gε is given by

gε = (SB)∗(SBvτ − yd) + κB∗(Bvτ − ud) −
ε

vτ − ya

+
ε

yb − vτ

. (4.3)

Notice that gε is well defined since ya(x) + τ ≤ vτ (x) ≤ yb(x) − τ . Then (4.2) is
equivalent to

F ′
ε(vτ )(v − vτ ) =

∫

Ω

gε(x)
(

v(x) − vτ (x)
)

dx ≥ 0 ∀ v ∈ V τ
ad. (4.4)

Next, we substitute

pτ := (SB)∗(SBvτ − yd) and wτ := κB∗(Bvτ − ud). (4.5)

Before we use a pointwise evaluation of (4.4) to show that vτ = vε
λ, we need the

following Lemma that covers the boundedness of pτ and wτ .

Lemma 4.2. For all 0 < τ < cad/2, there exist positive constants c1 and c2 such that
‖pτ‖∞ ≤ c1 and ‖wτ‖∞ ≤ c2 hold true a.e. in Ω.

Proof: Let z2 = Bz1, then the definition of B in (2.1) implies z1 = Sz2+λz2 and hence
λz2 = z1 − Sz2 = (I − SB)z1. It follows that z2 = 1

λ
(I − SB)z1 and with z2 = Bz1,

we get Bz1 = 1
λ
(I −SB)z1, what yields B = 1

λ
(I − SB). Now let us consider S as an

operator with range in L∞(Ω) by introducing S = E∞ G, i.e. S : L2(Ω) → L∞(Ω).
Then, together with B : L2 → L2, we obtain

B =
1

λ
(I − S B)

with B : L∞ → L∞ continuously. Moreover, the commutativity of S∗ and B∗ implies
B∗ = 1

λ
(I − S∗B∗). As above, we replace S∗ = E2G

~ by S
~ = E∞ G~ with

S
~ : L2(Ω) → L∞(Ω). Thus, we may introduce the operator

B
~ =

1

λ
(I − S

~ B∗)

with B
~ : L∞ → L∞ continuously. Hence, with the definitions in (4.5) at hand, we

obtain

‖pτ‖∞ = ‖B~
S

~(SBvτ − yd)‖∞

≤ ‖B~‖L(L∞(Ω))‖S
~‖L(L2(Ω),L∞(Ω))‖SBvτ − yd‖ ≤ c1
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and

‖wτ‖∞ = ‖κB
~(Bvτ − ud)‖∞

≤ κ‖B~‖L(L∞(Ω))

(

‖B‖L(L∞(Ω))‖vτ‖∞ + ‖ud‖∞
)

≤ c2

where we used Theorem 4.1 for the boundedness of vτ .

In preparation of the proof of the next theorem, we define the following sets:

M+(τ) := {x ∈ Ω | gε(x) > 0} ,

M0(τ) := {x ∈ Ω | gε(x) = 0} ,

M−(τ) := {x ∈ Ω | gε(x) < 0} .

Theorem 4.3. For all sufficiently small τ > 0, the solution vτ of (Qτ ) is the unique
solution vε

λ of (Q).

Proof: A pointwise evaluation of (4.4) yields

gε(x) vτ (x) = min
ya(x)+τ≤v≤yb(x)−τ

gε(x) v

with v ∈ R. Hence, we have vτ (x) = ya(x) + τ for almost all x ∈ M+(τ) and
vτ (x) = yb(x) − τ for almost all x ∈ M−(τ). Therefore, with the definition of M+(τ)
and gε, Lemma 4.2 implies

0 < gε(x) = pτ (x) + wτ (x) −
ε

τ
+

ε

yb(x) − ya(x) − τ
≤ c1 + c2 −

ε

τ
+

2 ε

cad

(4.6)

for almost every x ∈ M+(τ). For τ ↓ 0, the right hand side in (4.6) tends to −∞, a
contradiction for sufficiently small τ > 0. Similarly, we have on M−(τ)

0 > gε(x) = pτ (x) + wτ (x) −
ε

yb(x) − ya(x) − τ
+

ε

τ
≥ −(c1 + c2) −

2 ε

cad

+
ε

τ
.

Here, the right hand side tends to ∞ for τ → 0, leading to a contradiction too.
Therefore, the sets M+(τ) and M−(τ) have measure zero for all sufficiently small
τ > 0. Hence, if τ is sufficiently small, we have that gε(x) = 0 holds a.e. on Ω. This
implies

∫

Ω

gε(x) h(x) dx = F ′
ε(vτ )h = 0 ∀ h ∈ L2(Ω),

so that vτ satisfies the necessary optimality conditions for the unconstrained prob-
lem (Q). By convexity, these necessary conditions are also sufficient for optimality.
Uniqueness follows from strict convexity.

Remark 4.4. By Theorem 4.3, ūε
λ := B vε

λ and ȳε
λ := S ūε

λ represent the optimal
solution of (Pε

λ).

In preparation of the numerical computations, we transform the nessesary conditions
for (Q) given by

B∗S∗ (SBvε
λ − yd) + κB∗ (Bvε

λ − ud) −
ε

vε
λ − ya

+
ε

yb − vε
λ

= 0 (4.7)
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back to terms of the original problem (Pε
λ). We apply the operator (B∗)−1 = (λ I+S∗)

to (4.7) and obtain

S∗

(

SBvε
λ − yd −

ε

vε
λ − ya

+
ε

yb − vε
λ

)

+ κ(Bvε
λ − ud) −

λε

vε
λ − ya

+
λε

yb − vε
λ

= 0.

Now we substitute

νε
λ =

ε

yb − vε
λ

and µε
λ =

ε

yb − vε
λ

.

Notice that , νε
λ(x) > 0 and µε

λ > 0 hold true almost every where on Ω, because of
ya(x) < vε

λ(x) < yb(x). Next, we set

pε
λ = S∗

(

SBvε
λ − yd −

ε

vε
λ − ya

+
ε

yb − vε
λ

)

.

Then, together with ȳε
λ = S Bvε

λ and ūε
λBvε

λ, we obtain the optimality system to (Pε
λ)

that is given by

A ȳε
λ = ūε

λ in Ω

∂nȳε
λ = 0 on Γ

A∗ pε
λ = ȳε

λ − yd + µε
λ − νε

λ in Ω

∂npε
λ = 0 on Γ

pε
λ + κ(ūε

λ − ud)+λ(µε
λ(x) − νε

λ(x)) = 0 a.e. in Ω

νε
λ(x)

(

ȳε
λ(x)+λūε

λ(x) − ya(x)
)

= ε a.e. in Ω

µε
λ(x)

(

yb(x)−ȳε
λ(x) − λūε

λ(x)
)

= ε a.e. in Ω.







































(4.8)

4.1. Discretization. We start with the discretization of the state equation (1.2).
Let v ∈ V be an element of the space of test functions V ⊂ H1(Ω). Multiplication of
(1.2) with v and integration by parts yield

−

∫

Ω

n
∑

i,j=1

aij(x)Djy(x)Div(x)+c(x)y(x)v(x) dx

=

∫

Ω

u(x)v(x) dx for all v ∈ V.

(4.9)

For a given triangulation τh(Ω), we consider a finite dimensional subspace Vh of V . Let
N denote the dimension of Vh(τh) and {φk(x)}, k = 1, ..., N , a basis of Vh. Then (4.9)
implies that the variational equation is satisfied for all test functions φk(x) ∈ Vh(τh),
k = 1, 2, ..., N, i.e.

−

∫

Ω

n
∑

i,j=1

aij(x)Djy(x)Diφk(x)+c(x)y(x)φk(x) dx

=

∫

Ω

u(x)φk(x) dx , k = 1, ..., N.

(4.10)

For the discretization of (4.10), we discretize y and u by the same basis of Vh, i.e.

y(x) =
N

∑

k=1

ykφk(x) and u(x) =
N

∑

k=1

ukφk(x). (4.11)
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Moreover, we define the matrices

Klk =

∫

Ω

n
∑

i,j=1

aij(Djφk(x))Diφl(x) dx

M c
lk =

∫

Ω

c(x)φk(x)φl(x) dx

Mlk =

∫

Ω

φk(x)φl(x) dx,



































(4.12)

where K is known as the stiffness matrix and M as the Mass matrix. Then, inserting
(4.11) in (4.10) yields together with (4.12)

(K + M c)yh = Muh, (4.13)

where yh resp. uh are the vectors of the coefficients of y and u with respect to the
basis φk, k = 1, ..., N., e.g. uh = (u1, u2, ..., uN)>. Note that for symmetric coefficients
aij(x) = aji(x), 1 ≤ ij ≤ n the matrix K is symmetric, too. The adjoint equation in
(4.8) is discretized analogously by

(K + M c)>ph = M(yh − yd,h + µh − νh), (4.14)

where νh and µh reprsent the coefficient vectors of µ and ν, and yd,h denotes the
vector of yd at the nodes of τh, i.e. yd,h = (yd(x1), ..., yd(xN ))>. For a pointwise
evaluation of the last two equations in (4.8), we define

Φa(νh) := diag(νh) and Ψa(uh, yh) := diag(yh + λuh − ya,h) (4.15)

with (diag(vh))ij = vi δij for an arbitrary vh ∈ R
N . Analogously, Φb and Ψb are

defined by

Φb(µh) := diag(µh) and Ψb(uh, yh) := diag(yb,h − yh − λuh). (4.16)

Here, ya,h and yb,h, denote the vector associated to ya and yb, respectively at the
nodes of τh. Now we are able to define the finite dimensional approximation of the
optimality system (4.8) to (Pε

λ): Let z̄h := (ȳh, ūh, p̄h, ν̄h, µ̄h)> ∈ R
5N denote the

approximation of (ȳε
λ, ūε

λ, pε
λ, νε

λ, µε
λ). Then z̄h satisfies the following nonlinear system

of equations

Fh(z̄h; ε) =

















−(K + M c)ȳh + Mūh

−(K + M c)>p̄h + M(ȳh − yd,h + µ̄h − ν̄h)

p̄h + κ(ūh − ud,h) + λ(µ̄h − ν̄h)

Φa(ν̄h)>Ψa(ūh, ȳh) − ε1

Φb(ν̄h)>Ψb(ūh, ȳh) − ε1

















= 0 (4.17)

where ud,h denotes the vector associated to ud at the nodes of τh and 1 is defined by
1 := (1)N

i=1. The function Fh is continuously differentiable from R
5N × R+ to R

5N .

4.2. Interior point algorithms. With (4.17) at hand, we are in the position
to formulate an interior point algorithm. By ∆hz we denote the solution of the finite
dimensional Newton equation associated to (4.17)

∂zFh(zh; ε)∆hz = −Fh(zh; ε),



ON TWO NUMERICAL METHODS 13

where ∂zFh denotes the JAcobian of Fh. With the definitions in (4.15) and (4.16),
the Jacobian of Fh is given by

∂zFh(zh; ε) =













M −(K + M c) 0 0 0
0 M −(K + M c)> −M M
κI 0 I −λI λI

λΦa Φa 0 Ψa 0
−λΦb −Φb 0 0 Ψb













, (4.18)

where I denotes the N × N -identity matrix. Notice that this Jacobian has a size of
5N × 5N , is sparse and not symmetric. Moreover, for λ and κ tending to zero, it
tends to be ill conditioned. With (4.18) at hand, the interior point algorithm reads
as follows:

Algorithm 1. [Classical continuation]

1. Initalization: choose 0 < σ < 1, δ > 0 , ε0 > 0 and choose z0
h feasible.

2. For k=1,2,...
ε(k+1) = σε(k)

solve

∂zFh(z
(k)
h ; ε(k+1))∆hz(k) = −Fh(z

(k)
h ; ε(k+1))

up to a relative accuracy of

‖∆hz(k)‖ ≤ δ

3. z
(k+1)
h = z

(k)
h + ∆hz(k)

Algorithm 1 represents the simplest form of an interior point method. In case of a
lower state constraint, the convergence of infinite dimensional counterpart of Algo-
rithm 1 was discussed in [9]. There exist several other interior point algorithms for
infinite dimensional problems like, for instance, short-step path following algorithms
or affine scaling interior point algorithms. For further details, we refer to [13], [12]
and [11].

5. Primal-dual active set strategy. This section is concerned with the de-
scription of an active set algorithm to solve the optimality system (2.3).

For the derivation of the active set strategy, we need the pointwise form of the com-
plementary slackness condition in (2.3) that is given by

∫

Ω

νλ(x)
(

ya(x) − λ ūλ(x) − ȳλ(x)
)

dx =

∫

Ω

µλ(x)
(

λ ūλ(x) + ȳλ(x) − yb(x)
)

dx = 0.

Because of νλ(x) ≥ 0, µλ(x) ≥ 0 and ya(x) ≤ λ ūλ(x) + ȳλ(x) ≤ yb(x), this implies

νλ(x)
(

ya(x) − λ ūλ(x) − ȳλ(x)
)

= µλ(x)
(

λ ūλ(x) + ȳλ(x) − yb(x)
)

= 0 a.e. in Ω.
(5.1)

Given the optimal solution (ȳλ, ūλ) of (Pλ), we define the active and inactive sets up
to sets of measure zero by

Aa := {x ∈ Ω |λ ūλ(x) + ȳλ(x) − νλ(x) < ya(x)}

Ab := {x ∈ Ω |λ ūλ(x) + ȳλ(x) + µλ(x) > yb(x)}

I := Ω\{Aa ∪Ab}.

(5.2)
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We rely on the following assumption of strict complementarity:

(S) meas {x ∈ Ω | ya(x) − λ ūλ(x) − ȳλ(x) = νλ(x) = 0} = 0 and
meas {x ∈ Ω |λ ūλ(x) + ȳλ(x) − yb(x) = µλ(x) = 0} = 0.

Under (S), the inequalities in (2.3) can be replaced by equalities on Aa, Ab, and I,
which is stated by follwoing lemma.

Lemma 5.1. Assume that (S) is fulfilled. Then, it follows that

λ ūλ(x) + ȳλ(x) = ya(x) , µλ(x) = 0 a.e. on Aa

λ ūλ(x) + ȳλ(x) = yb(x) , νλ(x) = 0 a.e. on Ab

νλ(x) = 0 , µλ(x) = 0 a.e. on I.

Proof: For convenience of the reader, we sketch the proof of this well known lemma.
We distinct between the following cases:

x ∈ Aa: On Aa, we have λ ūλ(x) + ȳλ(x)− νλ(x) < ya(x) and hence, the feasibility of
ūλ for (Pλ) yields νλ(x) > 0. The complemantary slackness condition (5.1)
then gives

λ ūλ(x) + ȳλ(x) = ya(x) and µλ(x) = 0 a.e. in Aa.

x ∈ Ab: In this case, we have λ ūλ(x) + ȳλ(x) + µλ(x) > yb(x). Now the feasibility
of ūλ for (Pλ) implies µλ(x) > 0, and, due to the complemantary slackness
condition (5.1), we obtain

λ ūλ(x) + ȳλ(x) = yb(x) and νλ(x) = 0 a.e. in Ab.

x ∈ I: By the definition of I in (5.2), we have x /∈ Aa and hence

λ ūλ(x) + ȳλ(x) − ya(x) ≥ νλ(x) a.e. in I. (5.3)

Due to the complementary slackness condition (5.1), equality can only occur
in (5.3) if νλ(x) = λ ūλ(x) + ȳλ(x) − ya(x) = 0, which contradicts assump-
tion (S). Therefore, the inequality in (5.3) is strict. Thanks to νλ(x) ≥ 0,
this implies λ ūλ(x) + ȳλ(x) > ya(x) and hence νλ(x) = 0, because of the
complementary slackness condition. A similar discussion for x /∈ Ab finally
gives

νλ(x) = µλ(x) = 0 a.e. in I.

With Lemma 5.1 at hand, the optimality system (2.3) can be transformed into

A ȳλ = ūλ in Ω

∂nȳλ = 0 on Γ

A∗ pλ = ȳλ − yd + µλ − νλ in Ω

∂npλ = 0 on Γ

pλ(x) + κ(ūλ(x) − ud(x))+λ(µλ(x) − νλ(x)) = 0 a.e. in Ω

λ ūλ(x) + ȳλ(x) =ya(x) , µλ(x) = 0 a.e. on Aa

λ ūλ(x) + ȳλ(x) =yb(x) , νλ(x) = 0 a.e. on Ab

νλ(x) = µλ(x) = 0 a.e. on I.















































(5.4)
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Discretization of (5.4). As before, the numerical solution is indicated by the
subscript h. We use the same basis functions for the discretization of u, y, p, ν and µ
in (4.11). Then the partial differential equations in (5.4) are discretized in the same
way as in Section 4.1. Thus, we obtain (4.13) for the discrete version of the state
equation and (4.14) for the discrete adjoint equation. A pointwise evaluation of the
third equation in (5.4) at the nodes of τh yields

κ ui + pi + λ (µi − νi) = κ ud(xi) i = 1, ..., N. (5.5)

For the discretization of the remaining equations in (5.4), we introduce the following
index sets that represent the discrete counter parts of the active sets defined in (5.2),

Aa,h := {i ∈ {1, ..., N} |λ ui + yi − νi < ya(xi)}

Ab,h := {i ∈ {1, ..., N} |λ ui + yi + µi > yb(xi)}

Ih := {1, ..., N}\{Aa,h ∪Ab,h}.

(5.6)

These definitions allow a pointwise evaluation of the equations on Aa, Ab and I in
(5.4). To that end, we define the matrix Ea ∈ R

N×N by

Ea,ij =

{

1 , if i = j and i ∈ Aa,h

0 , otherwise
,

and introduce Eb analogously. Thus, the pointwise discrete version of the equation
λ ūλ(x) + ȳλ(x) = ya(x) a.e. on Aa is given by

Ea (λ uh + yh) = Ea ya,h. (5.7)

Similarly, the equation νλ(x) = 0 a.e. on Ab ∪ I is discretized by

(I − Ea) νh = 0. (5.8)

An addition of (5.7) and (5.8) yields

Ea (λ uh + yh) + (I − Ea) νh = Ea ya,h. (5.9)

Together with an analogous equation for Ab,h, the discrete versions of the PDEs, and
(5.5), we obtain the following 5N × 5N -linear system of equations













M −(K + M c) 0 0 0
0 M −(K + M c)> −M M

κ I 0 I −λ I λ I
λ Ea Ea 0 I − Ea 0
λ Eb Eb 0 0 I − Eb

























uh

yh

ph

νh

µh













=













0
M yd,h

κ ud,h

Ea ya,h

Eb yb,h













(5.10)

that represents the discrete version of (5.4). Notice that the coefficient matrix in
(5.10) has a same structure as the Jacobian in (4.18) arising from the interior point
method. Similar to the matrix in (4.18), it tends to be ill-conditioned for λ, κ ↓ 0.

Active set algorithm. The primal dual active set algorithm proceeds as follows.
We denote by wh the solution vector of (5.10), i.e. wh = (uh, yh, ph, νh, µh).

Algorithm 2.
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1. Define initial sets A
(0)
a,h ⊂ {1, ..., N} and A

(0)
b,h ⊂ {1, ..., N} with A

(0)
a,h ∩A

(0)
b,h =

∅. Set I
(0)
h = {1, ..., N}\{A

(0)
b,h ∪ A

(0)
a,h} and k = 0.

2. Find w
(k)
h by solving (5.10).

3. Set

A
(k+1)
a,h = {i ∈ {1, ..., N} |λ u

(k)
i + y

(k)
i − ν

(k)
i < ya(xi)}

A
(k+1)
b,h = {i ∈ {1, ..., N} |λ u

(k)
i + y

(k)
i + µ

(k)
i > yb(xi)}

I
(k+1)
h := {1, ..., N}\{A

(k+1)
a,h ∪A

(k+1)
b,h }.

4. If A
(k+1)
a,h = A

(k)
a,h and A

(k+1)
b,h = A

(k)
b,h then STOP, else:

Update k = k + 1 and goto 2.

The termination condition in step 4 is justified by the following theorem. We introduce
the discrete version of the optimality system (2.3) with the complementary slackness
condition in the pointwise form (5.1) that is given by

(K + M c) ȳh = M ūh (K + M c)> p̄h = M (ȳh − yd,h + µ̄h − ν̄h)

κ ūh + p̄h + λ (µ̄h − ν̄h) = 0

ν̄i

(

ȳa(xi) − λ ūi − ȳi

)

= µ̄i

(

λ ūi + ȳi − yb(xi)
)

= 0 , i = 1, ..., N

ya(xi) ≤ λ ūi + ȳi ≤ yb(xi) , ν̄i ≥ 0 , µ̄i ≥ 0 , i = 1, ..., N,































(5.11)

where ūh, ȳh, p̄h, ν̄h and µ̄h again denote the discret optimal solution.

Theorem 5.2. If A
(k+1)
a,h = A

(k)
a,h and A

(k+1)
b,h = A

(k)
b,h for some k ∈ N then the

associated solution of (5.10), denoted by w
(k)
h , satisfies the discrete optimality system

(5.11).

For the proof of this theorem, we refer to results of Kunisch and Rösch [6], that can
easily be adapted to our case.

6. Numerical tests. We tested the two algorithms by two examples. Generally,
we consider the following optimal control problem

(PT)































minimize J(y, u) :=
1

2
‖y − yd‖

2 +
κ

2
‖u− ud‖

2

subject to −∆ y(x) + y(x) = u(x) in Ω

∂ny(x) = 0 on Γ

and h(y) ≥ 0 a.e. in Ω,

with h(y) = (y−ya, yb −y)> in the first example and h(y) = yb −y in the second one.
This problem fits into our problem setting with Ay = −∆y + y. In both examples, we
take the unit circle B(0, 1) ⊂ R

2 for the domain Ω. The associated exact solutions
are given in polar coordinates and only depend on the radius that is given by r =
‖x‖2 =

√

x2
1 + x2

2.
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6.1. Example with regular Lagrange multipliers in L2(Ω). In the first
example, h is given by h(y) = (y− ya, yb − y)> and thus hence we consider (PT) with
lower and upper state constraints, i.e.

ya(x) ≤ y(x) ≤ yb(x) a.e. in Ω.

The Lagrange multipliers associated to such constraints are in general Borel measures,
with a singular part concentrated on the boundaries of the active sets, see Bergouniuox
and Kunisch [2]. Since, in our examples, the boundaries of the active sets do not
coincide with Γ, the optimality system is given by

−∆ ȳ + ȳ = ū in Ω

∂nȳ = 0 on Γ

−∆ p + p = ȳ − yd + µ − ν in Ω

∂np = 0 on Γ

p(x) + κ(ū(x) − ud(x)) = 0 a.e. in Ω

∫

Ω

(ya − ȳ)dν =

∫

Ω

(ȳ − yb)dµ = 0

ν ≥ 0 , µ ≥ 0 , ya(x) ≤ ȳ(x) ≤ yb(x) a.e. in Ω.



















































(6.1)

In this example, we construct µ and ν such that dν = ν(x) dx and dµ = µ(x) dx with
nonnegative functions µ, ν ∈ L∞(Ω).

Choosing ȳ(r) = −r6 + 3r4 − 3r2 + 1 for the optimal state, the state equation in (6.1)
implies

ū(r) = −∆ȳ(r) + ȳ(r) = −r6 + 39r4 − 51r2 + 13.

To fulfill the state constraints, we define

ya(r) =

{

ȳ(r) , ȳ(r) ≤ ca

ca , ȳ(r) > ca
and yb(r) =

{

ȳ(r) , ȳ(r) ≥ cb

cb , ȳ(r) < cb
,

with ca = 0.3 and cb = 0.7. Furthermore, with

ν(r) =

{

ca − ȳ(r) + 1 , ȳ(r) ≤ ca

0 , ȳ(r) > ca
and µ(r) =

{

ȳ(r) − cb + 1 , ȳ(r) ≥ cb

0 , ȳ(r) < cb
,

the complementary slackness condition in (6.1) are satisfied. For these Lagrange mul-
tipliers, we have µa, µb ∈ L∞(Ω) ⊂ L2(Ω). Therefore, the complementary slackness
conditions in (6.1) can be replaced by (ν , ȳ − yb) = (µ , ya − y) = 0. Moreover, we
define the adjoint state by

p(r) = r4 − 2r + 1.

Notice that both p and ȳ fulfill the homogeneous Neumann boundary conditions. To
satisfy the adjoint equation, yd must be defined by

yd(r) = ȳ(r) + ∆p(r) − p(r) + µ(r) − ν(r)

=







−2 r6 + 5 r4 + 10 r2 + 2 r − 7 − ca , ȳ(r) ≤ ca

−r6 + 2 r4 + 13 r2 + 2 r − 8 , ca < ȳ(r) < cb

−2 r6 + 5 r4 + 10 r2 + 2 r − 7 − cb , ȳ(r) ≥ cb.
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Finally, the optimality condition gives

ud(r) = ū(r) +
1

κ
p(r)

= −r6 +

(

39 +
1

κ

)

r4 − 51 r2 −
2

κ
r + 13 +

1

κ
.

The functions yd, ud, ya, and yb are shown in Figures 6.1–6.3.
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Fig. 6.3. Bounds ya and yb.

6.2. Example with Lagrange multiplier in C∗(Ω̄). In this example, only the
upper state constraint is imposed on y, i.e.

y(x) ≤ yb(x) a.e. in Ω.

In this case, the optimality system reads as follows

−∆ ȳ + ȳ = ū in Ω

∂nȳ = 0 on Γ

−∆ p + p = ȳ − yd + µ in Ω

∂np = 0 on Γ

p(x) + κ(ū(x) − ud(x)) = 0 a.e. in Ω

∫

Ω

(ȳ−yb)dµ = 0

µ ≥ 0 , ȳ(x) ≤ yb(x) a.e. in Ω.



















































(6.2)

To construct an example with µ ∈ C∗(Ω̄), we consider the fundamential solution Φ of
Poisson’s equation in R

2,

Φ(r) := −
1

2π
log(r)

for r > 0. It is known that in R
2

−∆Φ = δ0,

where δ0 denotes the Dirac measure on R
2 concentrated in r = 0. Notice that δ0 ∈

C∗(Ω̄) but δ0 /∈ H1(Ω)∗. With the fundamental solution, the optimal adjoint state is
given by

p(r) =
1

4π
r2 + Φ(r) =

1

4π
r2 −

1

2π
log(r).
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One can easily verify that p satisfies the homogeneous Neumann boundary conditions
on Γ = ∂B(0, 1). Moreover, we set

ȳ ≡ 4 and ū = −∆ ȳ + ȳ ≡ 4.

The upper bound in the state constraint is defined by

yb(r) = r + 4.

Therefore, the optimal state touches the bound only in the point r = 0, see also Figure
6.6. Hence, a possible Lagrange multiplier, satisfying the complementary slackness
conditions, is given by

µ = δ0,

and thus µ represents a regular Borel measure. From the adjoint equation, we get

yd(r) = ȳ(r) + ∆ p(r) − p(r) + µ = 4 +
1

π
−

1

4π
r2 +

1

2π
log(r).

Finally, the optimality condition implies

ud(r) = ū(r) +
1

κ
p(r) = 4 +

1

4πκ
r2 −

1

2πκ
log(r).

Figures 6.4 and 6.5 show the desired state yd and the control shift ud for this example.
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6.3. Numerical results. Each algorithm was tested by both examples with nine
different values of λ each. For the numerical investigations, we used unstructured grids
that were refined at the boundaries of the active sets. In the first example, the mesh
was additionally refined at ∂B and, in the second test case, at r = 0. All computations
were performed using Matlab on a PC with a 2.8 GHz processor.
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Example 1. In the first example, de-
scribed in Section 6.1, the Tikhonov
regularization parameter was fixed at
κ = 10−4. Figures 6.7–6.11 show the
numerical solution computed by the
active set algorithm on a grid with
N=29272 nodes and λ = 10−4. Here
and in the following, the superscript
“as” marks results that were computed
with Algorithm 2, whereas resuts of
the Algorithms 1 are denoted by the
superscript “ip”.
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h

The figures show that, the numerical errors in uas
h , νas

h , and µas
h are quite large com-

pared with the errors in yas
h and pas

h . This is also visible in the Tables 6.1 and 6.2. A
possible explanation is that yh and ph are smooth as the discrete solutions of linear
PDEs.

To describe the accuracy of the algorithms for λ ↓ 0, the relative errors of u, y, p,
and the Lagrange multipliers are displayed in the Tables 6.1–6.4. For the control, the
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relative error used here is defined by

eu :=
‖ū − ūh‖

‖ū‖
≈

√

(ū − ūh)>M(ū − ūh)

ū>M ū
.

Here, ū denotes the exact optimal control, ūh the discrete optimal control, and ū

and ūh, respectively, the vector of values at the nodes of τh, i.e. for instance ū =
(ū(x1), ..., ū(xN ))>. The errors ey, ep, eν , and eµ are defined analogously.

As an indicator for the performance of the algorithms, we used the parameter #es
that denotes the number of linear systems of equations that have to be solved during
the respective iterations. Since the coefficient matrices that are defined in (4.18)
and (5.10), respectively, possess the same size and a quite similar structure and the
solution of the associated linear systems of equations represent the main effort of both
algorithms, #es represents a suitable value to compare the different algorithms.

Table 6.1

Example 1: Interior point algorithm with N=29272

λ #es eip
u eip

y eip
p eip

ν eip
µ

1e-2 9 7.0644e-01 1.0898e-01 2.2005e-01 1.4511e-01 2.9594e-01
1e-3 13 3.3134e-01 1.4279e-02 2.3352e-02 4.8361e-02 7.7850e-02
1e-4 18 4.5059e-02 1.5656e-03 2.3878e-04 4.1617e-02 5.2152e-02
1e-5 20 3.8185e-02 5.1407e-04 4.5432e-05 9.1956e-02 1.5128e-01
1e-6 20 3.8571e-02 4.4392e-04 4.0144e-05 1.0915e-01 1.8786e-01
1e-7 20 3.8609e-02 4.3790e-04 4.0231e-05 1.1103e-01 1.9190e-01
1e-8 20 3.8613e-02 4.3731e-04 4.0247e-05 1.1122e-01 1.9230e-01
1e-9 20 3.8613e-02 4.3725e-04 4.0248e-05 1.1124e-01 1.9234e-01
0.0 20 3.8613e-02 4.3724e-04 4.0249e-05 1.1124e-01 1.9235e-01

Table 6.2

Example 1: Active set algorithm with N=29272

λ #es eas
u eas

y eas
p eas

ν eas
µ

1e-2 4 7.1296e-01 1.0893e-01 2.2004e-02 1.4513e-01 2.9596e-01
1e-3 7 3.3598e-01 1.4291e-02 2.3351e-03 4.8289e-02 7.7192e-02
1e-4 11 4.5674e-02 1.5158e-03 2.3883e-04 4.7154e-02 5.8081e-02
1e-5 23 4.6090e-02 4.7228e-04 4.9732e-05 3.1060e-01 4.2250e-01
1e-6 33 4.8178e-02 4.0856e-04 4.9575e-05 4.9601e-01 6.3486e-01
1e-7 33 4.8302e-02 4.0350e-04 5.0274e-05 5.2879e-01 6.6125e-01
1e-8 33 4.8314e-02 4.0301e-04 5.0353e-05 5.3240e-01 6.6408e-01
1e-9 33 4.8316e-02 4.0296e-04 5.0361e-05 5.3277e-01 6.6436e-01
0.0 33 4.8316e-02 4.0296e-04 5.0361e-05 5.3281e-01 6.6439e-01

The Tables 6.1 and 6.2 show that both algorithms achieve a similar accuracy even
though the interior point method averages slighty smaller errors. In both methods,
the errors of all quantities are significantly reduced from λ = 10−2 to λ = 10−4,
but stagnate or are even increased for smaller values of λ. Especially eas

ν and eas
µ

increase up to errors of 53% and 66%, respectively. However, considering the results
for λ = 10−4, both algorithms provide errors lower than 6% also for ν and µ. In this
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sense, a choice of λ = 10−4 seems to be optimal for both algorithms if a sufficiently
accurate approximation of all quantities including the Lagrange multipliers is desired.
A further decrease of λ only improves ey and ep significantly, but s the errors of the
discrete Lagrange mutlipliers.

We observe that the iteration numbers and thus number #es of solved linear systems
of equations increase with a reduction of λ. However, similar to the development of
the errors, #es remains static for λ ≤ 10−5 in case of the interior point method and
for λ ≤ 10−6 in case of the active set algorithm. The range between the minimal
and maximal number of solved linear systems varies between 9 and 20 for Algorithm
1 and between 4 and 33 for Algorithm 2. Thus the interior point method seems to
be less sensitive with respect to the regularization parameter λ than the active set
algorithm. On the other hand, for the optimal value λ = 10−4, the active set algorithm
is slightly more efficient since #es amounts 11 in this case, whereas 18 linear systems
of equations have to be solved in the interior point interation.

Examle 2. As described in Section 6.2, the Lagrange multiplier in the second example
is the Dirac measure. For the computations, we fixed κ = 1.0 and used a mesh with
21993 nodes that was refined at r = 0 to deal with the singularity of p and µ at this
point. Figures 6.12–6.15 show the numerical solution for λ = 10−4.
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We observe that the Lagrange multiplier approximates the Dirac measure. As in the
first example, the two algorithms were compared by the relative errors and the number
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#es of solved linear systems of equations. Since the exact Lagrange multiplier does
not belong to L2(Ω), Tables 6.3 and 6.4 only contain eu, ey, and ep.

Table 6.3

Example 1: Interior point algorithm with N=21993

λ #es eip
u eip

y eip
p

1e-02 30 1.9825e-02 1.8589e-03 1.0539e-01
1e-03 28 8.9583e-03 1.4051e-03 7.5260e-02
1e-04 26 7.2597e-04 4.4813e-05 5.6160e-02
1e-05 24 1.6252e-03 3.3719e-05 5.6161e-02
1e-06 25 1.8601e-03 1.8320e-05 5.6162e-02
1e-07 25 1.8836e-03 1.6640e-05 5.6163e-02
1e-08 25 1.8859e-03 1.6471e-05 5.6163e-02
1e-09 25 1.8862e-03 1.6454e-05 5.6163e-02
0.0 25 1.8862e-03 1.6452e-05 5.6163e-02

Table 6.4

Example 2: Active set algorithm with N=21993

λ #es eas
u eas

y eas
p

1e-2 8 1.9826e-02 1.8593e-03 1.0539e-01
1e-3 12 8.9583e-03 1.4053e-03 7.5259e-02
1e-4 21 7.2613e-04 4.4649e-05 5.6158e-02
1e-5 17 1.6252e-03 3.3565e-05 5.6162e-02
1e-6 28 1.8600e-03 1.8167e-05 5.6162e-02
1e-7 75 1.8834e-03 1.6487e-05 5.6162e-02
1e-8 83 1.8858e-03 1.6318e-05 5.6162e-02
1e-9 75 1.8861e-03 1.6301e-05 5.6162e-02
0.0 78 1.8861e-03 1.6300e-05 5.6162e-02

As a solution of a PDE, p is smooth. Nevertheless, the error ep is significantly larger
than eu and ey in both algorithms. A possible explanation for this fact could be that
the exact solutions ȳ = ū ≡ 4 are identically constant. Hence, the state equation is
exactly satisfied by ȳ, ū. also in the finite dimensional setting.

In this example, the two algorithms behave similarly to the first test case. The
difference in the accuracy of both algorithms is marginal, since the relative errors are
nearly identical. As above, we observe that the errors stagnate or even increase if
λ ≤ 10−5 in case of uh and ph and λ ≤ 10−7 in case of yh. Concerning the control
uh, the best approximation is achieved for λ = 10−4 in both algorithms.

The performance of the algorithms is similar to the first example. Again the active
set algorithm is more sensitive with respect to λ than the interior point method. For
λ ↓ 0, #es increase significantly in the active set algorithm, while the effort of the
interior point algorithm remains nearly constant. In contrast to this, the active set
algorithm requires less iterations than the interior point method for larger values of
λ. This is also true for λ = 10−4, where the best approximation of uh is achieved
with both methods.
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Comparing the accuracy of the two methods, the difference between both methods is
negligible. However, they slightly differ in the peformance: the interior point method
is less sensitive to λ, whereas the number of iterations of the active set algorithm
increases as λ ↓ 0. The active set algorithm is less expensive than the interior point
algorithm for larger values of λ, i.e. λ ≥ 10−4 in the first and λ ≥ 10−5 in the
second example. Larger values of λ lead to a better approximation of the Lagrange
multipliers in the first example and to the control in the second example. This shows
the benefit of the regularization of pointwise state constraints.

Acknowledgement. The authors are grateful to Prof. B. Hofmann (TU Chemnitz)
for pointing out the idea of proving Lemma 3.1.
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