
An FPTAS for Quickest Multicommodity Flows with

Inflow-Dependent Transit Times?

Alex Hall1, Katharina Langkau2 , and Martin Skutella3

1 Institut TIK, Gloriastrasse 35, ETH Zentrum, 8092 Zurich, Switzerland,

hall@tik.ee.ethz.ch
2 Institut für Mathematik, TU Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany,

langkau@math.tu-berlin.de
3 Max-Planck Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany,

skutella@mpi-sb.mpg.de

Abstract. Given a network with capacities and transit times on the arcs, the quickest flow problem asks for a

‘flow over time’ that satisfies given demands within minimal time. In the setting of flows over time, flow on arcs

may vary over time and the transit time of an arc is the time it takes for flow to travel through this arc. In most

real-world applications (such as, e.g., road traffic, communication networks, production systems, etc.), transit

times are not fixed but depend on the current flow situation in the network. We consider the model where the

transit time of an arc is given as a nondecreasing function of the rate of inflow into the arc. We prove that the

quickest s-t-flow problem is NP-hard in this setting and give various approximation results, including a fully

polynomial time approximation scheme (FPTAS) for the quickest multicommodity flow problem with bounded

cost.

1 Introduction

Flows over time have been introduced more than forty years ago by Ford and Fulkerson [6, 7]. Given a

directed graph with capacities and transit times on the arcs, a source node s, a sink node t, and a time

horizon T , they consider the problem of sending the maximum possible amount of flow from s to t
within T time units. A flow over time specifies a flow rate for each arc at each point in time. The capacity

of an arc is an upper bound on this flow rate, i.e., on the amount of flow that can be sent into the arc

during each unit of time. Flow on an arc progresses at a constant speed which is determined by its transit

time.

Known results for flows over time with constant transit times. Ford and Fulkerson show that the max-

imum s-t-flow over time problem can be solved by essentially one static min-cost flow computation in

the given network, where transit times are interpreted as costs. An arbitrary path decomposition of such

a static min-cost flow can be turned into a flow over time by sending flow at the given flow rate into each

path as long as there is enough time left for the flow on a path to arrive at the sink before time T . A flow

featuring this structure is called ‘temporally repeated’.

A problem closely related to the maximum s-t-flow over time problem is the quickest s-t-flow prob-

lem. Here, the flow value (or ‘demand’) is fixed and the task is to find a flow over time with minimal

time horizon T . Clearly, this problem can be solved in polynomial time by incorporating the algorithm

of Ford and Fulkerson into a binary search framework. Burkard, Dlaska, and Klinz [2] give a strongly

polynomial algorithm for the quickest s-t-flow problem which is based on the parametric search method

of Megiddo [18]. Hoppe and Tardos [12, 13] study the quickest transshipment problem which, given sup-

plies and demands at the nodes, asks for a flow over time that zeroes all supplies and demands within

minimal time. They give a polynomial time algorithm which is, however, based on a submodular function

minimization routine.

? An extended abstract appeared in [9]. This work was supported in part by the joint Berlin/Zurich graduate program Combina-

torics, Geometry, and Computation (CGC) financed by ETH Zurich and the German Science Foundation grant GRK 588/2.

It was also supported by the EU Thematic Network APPOL II, Approximation and Online Algorithms, IST-2001-30012,

and by the DFG research center “Mathematics for key technologies” (FZT 86) in Berlin.

2 Alex Hall, Katharina Langkau, and Martin Skutella

The latter fact already indicates that flow over time problems are, in general, considerably harder than

their static counterparts in classical network flow theory. The best evidence for this allegation is maybe

provided by a surprising result of Klinz and Woeginger [14]. They show that computing a quickest

s-t-flow of minimum cost in a network with cost coefficients on the arcs is already NP-hard in series-

parallel networks. Moreover, it is even strongly NP-hard to find a quickest temporally repeated s-t-
flow of minimum cost. Only recently, Hall, Hippler, and Skutella [8] showed that computing quickest

multicommodity flows is NP-hard, even on series-parallel networks.

On the other hand, Ford and Fulkerson [6, 7] introduce the concept of time-expanded networks which

allows to solve many flow over time problems in pseudopolynomial time. The node set of a time-

expanded network consists of several copies of the node set of the underlying graph building a ‘time

layer’. The number of time layers is equal to the integral time horizon T and thus pseudopolynomial in

the input size. Copies of an arc of the underlying graph join copies of its end-nodes in time layers whose

distances equal the transit time of that arc. Ford and Fulkerson observe that a flow over time in the given

graph corresponds to a static flow in the time-expanded network, and vice versa. Thus, many flow over

time problems can be solved by static flow computations in the time-expanded network.

Fleischer and Skutella [4] come up with so-called ‘condensed’ time-expanded networks which are of

polynomial size and can be used to compute provably good multicommodity flows over time with costs

in polynomial time. In particular, they present a fully polynomial time approximation scheme (FPTAS)

for the quickest multicommodity flow problem with bounded cost [4, 5]. Using completely different

techniques, they also show that 2-approximate temporally repeated flows can be obtained from a static,

length-bounded flow computation in the given graph [4]. The advantage of the latter solutions is that they

have a very simple structure and also do not use storage of flow at intermediate nodes.

Flow-dependent transit times. So far we have considered the setting of flows over time where transit

times of arcs are fixed. In many practical applications, however, the latter assumption is not realistic

since transit times vary with the flow situation on an arc. We refer to [1, 19, 20] for an overview and

further references. Usually, the correlation of the transit time and the flow situation on an arc is highly

complex. It is a major challenge to come up with a mathematical model that, on the one hand, captures

the real behavior as realistically as possible and, on the other hand, can be solved efficiently even on

large networks.

Köhler and Skutella [16] consider a model where, at any moment in time, the actual speed of flow

on an arc depends on the current amount of flow on the arc. Under this assumption, they give a 2-

approximation algorithm for the quickest s-t-flow problem and show that no polynomial time approxi-

mation scheme (PTAS) exists, unless P=NP. A simpler model is studied by Carey and Subrahmanian [3].

They assume that the transit time on an arc only depends on the current rate of inflow into the arc

and propose a time-expanded network whose arcs somehow reflect this behavior. Köhler, Langkau, and

Skutella [15] give a 2-approximation algorithm for the quickest s-t-flow problem in the setting of inflow-

dependent transit times. The algorithm uses the algorithm of Ford and Fulkerson [6, 7] on a so-called

‘bow graph’ with fixed transit times on the arcs. In the bow graph, every arc of the original graph is

replaced by a bunch of parallel arcs corresponding to different transit times. The quickest flow problem

in the bow graph is a relaxation of the quickest flow problem with inflow-dependent transit times.

Contribution of this paper. While, for the special case of constant transit times, quickest s-t-flows can

be computed in polynomial time [2, 6, 7], we show in Section 6 that the problem becomes NP-hard if

we allow inflow-dependent transit times. In Section 4, we generalize the 2-approximation result given

in [15] to the setting with costs and multiple commodities. Our approach is based on a new and stronger

relaxation of the quickest flow problem, which we introduce in Section 3. This relaxation is defined

in a bow graph similar to the one introduced in [15], but it uses additional ‘coupling constraints’ be-

tween flow values on different copies of one arc in the original graph. In particular, this relaxation can

An FPTAS for Quickest Multicommodity Flows with Inflow-Dependent Transit Times 3

no longer be solved by standard network flow algorithms but requires general linear programming tech-

niques. Nevertheless, as shown in Section 4, the approximation technique based on length-bounded static

flows presented in [4] can be generalized to yield provably good solutions to our bow graph relaxation.

Moreover, we prove that such a solution to the relaxation can be turned into a feasible multicommodity

flow over time with inflow-dependent transit times and bounded cost.

The main contribution of this paper is a fully polynomial time approximation scheme for the quickest

multicommodity flow problem with bounded cost and inflow-dependent transit times (see Section 5). It

again uses the new bow graph relaxation introduced in Section 3 and generalizes the approach based

on condensed time-expanded networks from [5]. Interestingly, the time-expanded version of our bow

graph relaxation essentially coincides with the modified time-expanded graph considered by Carey and

Subrahmanian [3].

While approximation results and, in particular, approximation schemes are often considered to be of

purely theoretical interest, the situation is quite different here. Flow-dependent transit times represent a

crucial phenomenon inherent in many real-world applications of network flows. Nevertheless, there are

hardly any models and algorithmic techniques known which are capable of providing reasonable solu-

tions even for networks of rather modest size. The FPTAS for inflow-dependent transit times presented

in this paper is based on rather simple and efficient flow computations in condensed time-expanded net-

works. It therefore reveals a promising direction and raises hope for the development of efficient and

flexible tools that can deal with reasonably sized real-world networks.

2 Preliminaries

We are considering network flow problems in a directed graph G = (V,E) with n := |V | nodes

and m := |E| arcs. Each arc e ∈ E has associated with it a positive capacity ue and a nonnegative,

nondecreasing transit time function τe : [0, ue] → R
+. There is a set of commodities K = {1, . . . , k};

every commodity i ∈ K is defined by a source-sink pair4 (si, ti) ∈ V × V . The objective is to send a

prespecified amount of flow di > 0, called the demand, from si to ti. Finally, each arc e has associated

cost coefficients ce,i, for i ∈ K , where ce,i is interpreted as the cost (per flow unit) for sending flow

of commodity i through the arc. For an arc e = (v, w) ∈ E, we use the notation head(e) := w and

tail(e) := v.

2.1 Static flows

A static (multicommodity) flow x in G assigns every arc e and commodity i a nonnegative flow value xe,i

such that flow conservation holds:

∑

e∈δ−(v)

xe,i −
∑

e∈δ+(v)

xe,i = 0 for all v ∈ V \ {si, ti} and i ∈ K .

Here, δ+(v) and δ−(v) denote the set of arcs leaving and entering node v, respectively. The static flow x
satisfies all demands if

∑

e∈δ−(ti)

xe,i −
∑

e∈δ+(ti)

xe,i = di for all i ∈ K .

It is called feasible if it obeys the capacity constraints xe :=
∑

i∈K xe,i ≤ ue, for all e ∈ E. The cost of

a static flow is defined as c(x) :=
∑

e∈E

∑

i∈K ce,i xe,i.

4 To simplify notation, we restrict to the case of only one source and one sink for each commodity. However, our results can

be directly generalized to the case of several sources and sinks with given supplies and demands for each commodity.

4 Alex Hall, Katharina Langkau, and Martin Skutella

2.2 Flows over time with constant transit times.

A (multicommodity) flow over time f in G with time horizon T is given by Lebesgue-measurable func-

tions fe,i : [0, T) → R
+, where fe,i(θ) is the rate of flow (per time unit) of commodity i entering arc

e at time θ. In order to simplify notation, we sometimes use fe,i(θ) for θ 6∈ [0, T), implicitly assuming

that fe,i(θ) = 0 in this case. The capacity ue is an upper bound on the rate of flow entering arc e at any

moment of time, i.e., fe(θ) ≤ ue for all θ ∈ [0, T) and e ∈ E. Here, fe(θ) :=
∑

i∈K fe,i(θ) is the total

rate at which flow is entering arc e at time θ.

In the original setting of flows over time, the transit time function τe of arc e is assumed to be

constant. Then, the flow fe,i(θ) of commodity i entering arc e at time θ arrives at head(e) at time θ + τe.

All arcs must be empty from time T on, i.e., fe,i(θ) = 0 for θ ≥ T − τe. To generalize the notion of flow

conservation, we define

D−
v,i(ξ) :=

∑

e∈δ−(v)

∫ ξ

τe

fe,i(θ − τe) dθ

to be the total inflow of commodity i ∈ K into node v until time ξ ∈ [0, T]. Similarly,

D+
v,i(ξ) :=

∑

e∈δ+(v)

∫ ξ

0
fe,i(θ) dθ (1)

is the corresponding outflow. We consider the model with storage of flow at intermediate nodes. That is,

flow entering a node can be held back for some time before it is sent onward. To rule out deficit at any

node, we require that the total inflow must upper bound the total outflow for any point in time and any

node other than the source:

D−
v,i(ξ) − D+

v,i(ξ) ≥ 0 for all ξ ∈ [0, T), i ∈ K, and v ∈ V \{si}. (2)

Moreover, flow must not remain in any node other than the sinks at time T . Therefore, we require that

equality holds in (2) for every i ∈ K , v ∈ V \{si, ti}, at time ξ = T . The flow over time f satisfies the

multicommodity demands if

D−
ti,i

(T) − D+
ti,i

(T) = di for any commodity i ∈ K . (3)

The cost of a flow over time f is defined as c(f) :=
∑

e∈E

∑

i∈K ce,i

∫ T

0 fe,i(θ)dθ.

2.3 Time-expanded graphs.

Many flow over time problems can be solved by static flow algorithms in time-expanded graphs [6, 7].

Given a graph G = (V,E) with integral transit times on the arcs and an integral time horizon T , the

T -time-expanded graph of G, denoted GT , is obtained by creating T copies of V , labeled V0 through

VT−1, with the θth copy of node v denoted v(θ), θ = 0, . . . , T − 1. For every arc e = (v, w) ∈ E and

θ = 0, . . . , T − 1 − τe, there is an arc e(θ) from v(θ) to w(θ + τe) with the same capacity and costs

as arc e. In addition, there is an infinite capacity holdover arc from v(θ) to v(θ + 1), for all v ∈ V and

θ = 0, . . . , T − 2, which models the possibility to hold flow at node v during the time interval [θ, θ +1).
Any static flow in this time-expanded network corresponds to a flow over time of equal cost: interpret

the flow on arc e(θ) as the flow through arc e = (v, w) that starts at node v in the time interval [θ, θ +1).
Similarly, any flow over time completing by time T corresponds to a static flow in GT of the same value

and cost obtained by mapping the total flow starting on e in time interval [θ, θ + 1) to flow on arc e(θ).
Thus, we may solve a flow over time problem by solving the corresponding static flow problem in the

time-expanded network.

An FPTAS for Quickest Multicommodity Flows with Inflow-Dependent Transit Times 5

One drawback of this approach is that the size of GT depends linearly on T , so that if T is not

bounded by a polynomial in the input size, this is not a polynomial-time method. However, the following

useful observation can be found in [4]: If all transit times are multiples of some large number ∆ > 0, then

instead of using the T -time-expanded graph, we may rescale time and use a ∆-condensed time-expanded

graph that contains only dT/∆e copies of V . Since in this setting every arc corresponds to a time interval

of length ∆, capacities are multiplied by ∆. For more details we refer to [4].

2.4 Flows over time with inflow-dependent transit times.

In the original setting of flows over time discussed above, it is assumed that transit times are fixed

throughout, so that flow on arc e progresses at a uniform speed. In the following, we will consider the

more general model of inflow-dependent transit times. Here, the transit time of an arc may vary with the

current amount of flow using this arc. Each arc e has an associated non-negative transit time function

τe which determines the time it takes for flow to traverse arc e. In order to define a (multicommodity)

flow with inflow-dependent transit times (τe)e∈E and time horizon T , we generalize the requirements for

flows over time as defined above: Flow of commodity i entering arc e at time θ at rate fe,i(θ) arrives

at head(e) at time θ + τe(fe(θ)). In order to obey the time horizon T , we require for all e ∈ E and

θ ∈ [0, T) that fe(θ) > 0 must imply θ + τe(fe(θ)) < T . The total inflow of commodity i ∈ K into

node v until time ξ ∈ [0, T] is now given by

D−
v,i(ξ) :=

∑

e∈δ−(v)

∫

θ≥0:
θ+τe(fe(θ))≤ξ

fe,i(θ) dθ .

The definition of the total outflow (1) remains unchanged. With these slight adjustments, the flow con-

servation constraints (2) and the demand constraints (3) can be directly adopted.

We will later need the following simple observation which follows from the fact that flow can be

stored at intermediate nodes.

Observation 1. For every arc e ∈ E, let τe : [0, ue] → R
+ and τ ′

e : [0, ue] → R
+ be transit time

functions on arc e such that τ ′
e(x) ≤ τe(x) for all x ∈ [0, ue]. Then, a flow over time with inflow-

dependent transit times (τe)e∈E and time horizon T also yields a flow over time with inflow-dependent

transit times (τ ′
e)e∈E and time horizon T .

The quickest (multicommodity) flow problem with costs is to find a (multicommodity) flow over time with

inflow-dependent transit times in G that satisfies the demands within minimal time T at a cost which is

bounded from above by a given budget C .

3 The Bow Graph

In [15] a so-called bow graph is introduced in order to attack inflow-dependent transit times. The bow

graph is an expansion of the original graph according to the given transit time functions. Every arc with

inflow-dependent transit time is replaced by a bunch of arcs with fixed transit times. On the one hand,

it is shown in [15] that a flow over time with inflow-dependent transit times in the original graph can

be regarded as a flow over time (with constant transit times) in the bow graph. Hence, the bow graph

serves as a relaxation of inflow-dependent transit times. On the other hand, it is shown that a quickest

s-t-flow (with constant transit times) in the bow graph can be turned into an s-t-flow over time with

inflow-dependent transit times in the original graph while losing only a factor of two on the optimal time

horizon of a quickest s-t-flow in G.

In this section, we will define a bow graph that is very similar to the one defined in [15]. However,

it turns out that, in order to approximate the quickest (inflow-dependent) multicommodity flow in G, one

6 Alex Hall, Katharina Langkau, and Martin Skutella

must not allow arbitrary flows over time in the bow graph as a relaxation to inflow-dependent transit

times. Instead, we will restrict to a certain subclass of flows over time in the bow graph in order to get a

stronger relaxation of the problem under consideration.

Let us for the moment assume that all transit time functions are piecewise constant, non-decreasing,

and left-continuous. This transit time function of arc e is denoted by τ s
e . It is given by breakpoints 0 =

x0 < x1 < · · · < x` and corresponding transit times τ1 < · · · < τ`. Flow entering arc e at rate x ∈
(xi−1, xi] needs τi time to traverse arc e. Later we will use the fact that general transit time functions can

be approximated by such step functions within arbitrary precision.

The bow graph, denoted GB = (V B , EB), is defined on the same node set as G, i.e., V B := V ,

and is obtained by creating several copies of an arc, one for every possible transit time on this arc. Thus,

arc e is replaced by ` parallel bow arcs a1, . . . , a`. The transit time of bow arc ai is τi and its capacity

is xi, i = 1, . . . , `. We will denote the set of bow arcs corresponding to arc e ∈ E by EB
e , and refer

to EB
e as the expansion of arc e. The cost coefficients of every arc a ∈ EB

e are identical to those of e,

i.e., ca,i := ce,i, for i ∈ K . For every arc a ∈ EB
e , let e(a) denote the corresponding original arc e.

3.1 A Relaxation of Inflow-Dependent Transit Times

We will now discuss the relationship between flows over time with inflow-dependent transit times in G
and flows over time in the bow graph GB . Any flow over time f in G with inflow-dependent transit times

(τ s
e)e∈E and time horizon T can be interpreted as a flow over time f B in GB (with constant transit times)

with the same time horizon T : If flow is entering arc e ∈ E at time θ with flow rate fe(θ), then, in the

bow graph, this flow is sent onto the bow arc a ∈ EB
e representing the transit time τ s

e (fe(θ)).
Unfortunately, an arbitrary flow over time f B in GB does not correspond to a flow over time f with

inflow-dependent transit times (τ s
e)e∈E in G. In addition, we have to require the following property: For

every original arc e ∈ E and at every point in time θ, the flow f B sends flow into at most one bow

arc a ∈ EB
e . This property ensures that flow units entering arc e at the same time θ travel through e at

the same pace. A flow over time in GB fulfilling this property is called inflow-preserving.

Observation 2. Every inflow-preserving flow over time f B in GB with time horizon T corresponds to a

flow over time f in G with inflow-dependent transit times (τ s
e)e∈E and time horizon T , and vice versa.

Notice that the set of inflow-preserving flows over time is not convex. In particular, it is difficult to

compute inflow-preserving flows directly. Therefore, we also consider a relaxed notion which can be

interpreted as a convexification of inflow-preserving flows: For any arc a ∈ EB , let λa(θ) := fB
a (θ)/ua

denote the per capacity inflow rate into arc a at time θ. Then, a flow over time f B in GB with time

horizon T is called weakly inflow-preserving if
∑

a∈EB
e

λa(θ) ≤ 1 for all e ∈ E and θ ∈ [0, T). Since

every inflow-preserving flow over time is also weakly inflow-preserving, it follows from Observations 1

and 2 that weakly inflow-preserving flows over time in GB constitute a relaxation of flows over time with

inflow-dependent transit times in G:

Observation 3. For every arc e ∈ E, let τ s
e : [0, ue] → R

+ and τe : [0, ue] → R
+ be transit time

functions on arc e such that τ s
e is a step function with τ s

e (x) ≤ τe(x) for all x ∈ [0, ue]. Then, every

flow over time with inflow-dependent transit times (τe)e∈E and time horizon T in G yields a (weakly)

inflow-preserving flow over time with time horizon T in GB .

The basic idea of the approximation algorithms presented in this paper is to compute weakly inflow-

preserving flows over time in an appropriate bow graph and turn these into flows over time in G with

inflow-dependent transit times. The following lemma and its corollary make this approach work. Con-

sider the expansion of a single arc e ∈ E to bow arcs EB
e = {a1, . . . , a`}.

Lemma 1. Let fB be a weakly inflow-preserving flow over time with time horizon T in EB
e and δ > 0.

Then, fB can be turned into an inflow-preserving flow over time f̂B in EB
e such that every (infinitesimal)

unit of flow in f̂B reaches head(e) at most δ time units later than it does in f B .

An FPTAS for Quickest Multicommodity Flows with Inflow-Dependent Transit Times 7

PSfrag replacements

θθ δδ 2δ 2δ 3δ3δ

(a)
(b)

uaua

00

Fig. 1. Original flow rate on bow arc a (on the right) and modified flow rate produced by buffering in tail(a) (on the left).

Proof. For every bow arc ai, i = 1, . . . , `, we set up a buffer bi in tail(e) for temporary storage of flow.

The buffer bi is collecting all flow in fB which is about to be shipped through bow arc ai. It can output

this flow in a first-in-first-out manner, i.e., flow units must enter and leave the buffer in the same order.

Buffer bi has only two output modes. Either it is closed and no flow is leaving the buffer, or it is open and

flow is leaving the buffer at constant rate uai
, immediately entering arc ai. In our modified solution f̂B,

at every point in time at most one of the buffers bi, i = 1, . . . , `, will be open. This guarantees that f̂B

is inflow-preserving.

As above, let λa(θ) := fB
a (θ)/ua be the per capacity inflow rate of fB on arc a ∈ EB

e at time θ. We

partition the time horizon into intervals of length δ̃, where δ̃ := δ/2. Let λa,j be the average per capacity

inflow rate on arc a ∈ EB
e during time interval [(j − 1) δ̃, j δ̃), i.e.,

λa,j :=
1

δ̃

∫ j δ̃

(j−1)δ̃
λa(θ) dθ , for j = 1, . . . , dT/δ̃e.

We define the modified flow f̂B as follows: During the first δ̃-round, all buffers are closed. During each

following δ̃-round, we open the buffers in a ‘round robin’ fashion. More precisely, during time interval

[j δ̃, (j + 1) δ̃), we first open buffer b1 for λa1,j δ̃ time, then buffer b2 for λa2,j δ̃ time, and so on. Since

fB is weakly inflow-preserving,
∑`

i=1 λai,j ≤ 1 holds and the last buffer is closed again before the end

of this δ̃-round. Figure 1 illustrates how the buffer changes the original inflow rate of a single bow arc a.

We show that the buffers are never empty while they are open. Consider bow arc ai. During the

interval [(j − 1) δ̃, j δ̃), the flow fB sends δ̃λai,juai
units of flow into bow arc ai. This is exactly the

amount of flow that the corresponding buffer bi is sending out during the succeeding interval [j δ̃, (j +
1) δ̃). Hence buffer bi is never emptied and, in particular, every unit of flow is delayed for at most 2δ̃ = δ
time. Note that throughout these modifications no flow is rerouted. We only make use of storage in nodes.

Therefore, the cost of fB remains unchanged. ut

For δ > 0, a flow over time fB in GB is called δ-resting if, for every node v ∈ V \{s1, . . . , sk}, all

flow arriving at v is stored there for at least δ time units before it moves on. A weakly inflow-preserving

flow over time fB in GB which is δ-resting can easily be interpreted as an inflow-preserving flow over

time f̂B: Consider a single arc e ∈ E and its expansion EB
e . Applying Lemma 1, the flow over time fB

restricted to EB
e can be modified to an inflow-preserving flow over time such that every unit of flow is

delayed by at most δ. The resting property of f B makes up for this delay and ensures that every such

flow unit can continue its way on time. Applying Observation 2, the flow f̂B can then be interpreted as

a flow over time f in G with inflow-dependent transit times (τ s
e)e∈E .

Corollary 1. Let fB be a weakly inflow-preserving flow over time in GB with time horizon T which is δ-

resting. Then, fB can be turned into a flow over time f in G with inflow-dependent transit times (τ s
e)e∈E

and with the same time horizon and the same cost as f B . Moreover, the flow over time f is given by piece-

wise constant functions (fe)e∈E such that the number of breakpoints of fe is bounded by 2 |EB
e | dT/δe.

8 Alex Hall, Katharina Langkau, and Martin Skutella

4 A (2 + ε)-Approximation Algorithm for Quickest Flows

In this section we present a fairly simple (2 + ε)-approximation algorithm for the quickest multicom-

modity flow problem with inflow-dependent transit times. The algorithm consists of the following three

main steps. First, the original transit times (τe)e∈E are replaced by lower step functions (τ s
e)e∈E and the

corresponding bow graph GB is constructed. Then, an appropriately modified version of the (2 + ε)-
approximation algorithm presented in [4] is applied yielding a weakly inflow-preserving flow over time

in GB . Finally, the output is turned into a feasible solution to the original problem.

The bow graph GB is defined in the first step according to step functions fulfilling the requirements

stated in the following observation. We will later specify the parameters δ, η > 0 such that the size of the

resulting bow graph is polynomial in the input size and 1/ε.

Observation 4. Let δ, η > 0. For every non-negative, non-decreasing, and left-continuous function τ :
[0, u] → R

+, there exists a step function τ s : [0, u] → R
+, with

(i) τ s(x) ≤ τ(x) ≤ (1 + η) τ s(x) + δ for every x ∈ [0, u],
(ii) the number of breakpoints of τ s is bounded by dlog1+η(τ(u)/δ)e + 1.

4.1 (2 + ε)-Approximate Quickest Weakly Inflow-Preserving Flows

Fleischer and Skutella [4] propose a (2 + ε)-approximation algorithm for the quickest multicommodity

flow problem with bounded cost and constant transit times. The method is based on an approximate

length-bounded static flow computation. The same approach can be applied to the problem of finding a

quickest weakly inflow-preserving multicommodity flow over time with bounded cost in the bow graph.

Let fB be an optimal solution to this problem with minimal time horizon T . As suggested in [4], we

consider the static multicommodity flow xB in GB which results from averaging the flow fB over the

time interval [0, T), i.e.,

xB
a,i :=

1

T

∫ T

0
fB

a,i(θ) dθ for all a ∈ EB and i ∈ K .

As proven in [4], this static flow

(i) satisfies a fraction of 1/T of the demands covered by the flow over time f B ,

(ii) has cost c(xB) = c(fB)/T , and

(iii) is T -length-bounded.

The latter property means that the flow of every commodity i ∈ K can be decomposed into a sum of

flows on si-ti-paths such that the length τ(P) :=
∑

a∈P τa of any such path P is at most T . Since fB is

weakly inflow-preserving, so is xB , i.e., its per capacity flow values λa := xB
a /ua, a ∈ EB , satisfy

(iv)
∑

a∈EB
e

λa ≤ 1 for every arc e ∈ E.

Any static flow x in GB meeting requirements (i) – (iv) can be turned into a weakly inflow-preserving

flow over time g in GB meeting the same demands at the same cost as f B within time 2T : Send flow

into every si-ti-path P given by the length-bounded path decomposition of x at the corresponding flow

rate xP,i for exactly T time units; wait for at most another T time units until all flow has arrived at its

destination. Since ga(θ)/ua is always upper-bounded by xa/ua, it follows from property (iv) that g is

weakly-inflow preserving. Thus, g is a 2-approximate solution to the problem under consideration.

Unfortunately, computing the T -length-bounded flow x is NP-hard, even for the special case of a

single commodity [10]. Yet, as discussed in [4], the T -length-bounded multicommodity flow problem can

be approximated within arbitrary precision in polynomial time by slightly relaxing the length bound T .

We generalize this observation to length-bounded, weakly inflow-preserving flows.

An FPTAS for Quickest Multicommodity Flows with Inflow-Dependent Transit Times 9

The primal LP:

min
X

i∈K

X

P∈PT

i

ci(P)xP,i

s.t.
X

P∈PT

i

xP,i ≥ di/T for all i ∈ K,

X

a∈EB
e

1

ua

X

i∈K

X

P∈PT

i
:

a∈P

xP,i

!

≤ 1 for all e ∈ E,

xP,i ≥ 0 for all i ∈ K, P ∈ P
T
i .

The dual LP:

max
X

i∈K

(di/T) zi −
X

e∈E

pe

s.t.
X

a∈P

(pe(a)/ua + ca,i) ≥ zi for all i ∈ K, P ∈ P
T
i ,

zi, pe ≥ 0 for all i ∈ K, e ∈ E.

Fig. 2. An LP formulation for the problem of finding a weakly inflow-preserving, T -length-bounded static flow.

Let PT
i be the set of all si-ti-paths in GB whose transit times are bounded from above by T . Finding

a static flow satisfying (i) – (iv) is equivalent to solving the linear program shown in Figure 2.

Notice that the separation problem for the dual can be formulated as a length-bounded shortest path

problem: find a shortest si-ti-path P with respect to the arc weights pe(a)/ua + ca,i whose length τ(P)

is at most T , i.e., P ∈ PT
i . Using exactly the same argument as in [4] the next lemma follows from the

fact that the length-bounded shortest path problem can be approximated with arbitrary precision; see,

e.g., [11, 17].

Lemma 2. Assume that there exists a weakly inflow-preserving multicommodity flow over time with time

horizon T and cost at most C . Then, for every ε > 0, a weakly inflow-preserving multicommodity flow

over time with time horizon at most (2 + ε)T and cost at most C can be computed in time polynomial in

the input size and 1/ε.

Lower bounds. If all transit time functions τe are constant, the (2 + ε)-approximation algorithm in

Lemma 2 and the one presented in [4] basically coincide. In [4], an example is given which shows that

the performance guarantee of both algorithms is not better than 2. More precisely, for every k ∈ N, a

k-commodity problem is defined for which the algorithm has performance ratio (2k − 1)/k.

The following instance shows that even in the single source, single sink case, the approximation ratio

of the discussed algorithm cannot be better than 4/3. The example consists of a single arc e = (s, t). The

transit time of e is 0 if flow is entering at rate xe ≤ 1, and it is 1 if flow is entering at rate xe ∈ (1, 2]. We

want to send 2 units of flow from s to t as quickly as possible. A quickest weakly inflow-preserving flow

finishes within T = 3/2 simply by sending flow at rate 2 during the time interval [0, 1/2), and at rate 1
during the time interval [1/2, 3/2). Note that this flow is even inflow-preserving.

A weakly inflow-preserving flow over time f B which is generated from a path decomposition of a

static flow as described above needs at least 2 time units. To see this, consider the corresponding bow

graph GB consisting of two parallel arcs a1 and a2, where a1 has transit time 0 and capacity 1, and a2

has transit time 1 and capacity 2. Let λi be the per capacity flow rate of fB on ai. Then, for T ≥ 1, the

flow fB manages to send λ1T + 2λ2(T − 1) flow units from s to t within time T . It is easily checked

that fB needs at least time T = 2 to satisfy the demand.

10 Alex Hall, Katharina Langkau, and Martin Skutella

4.2 (2 + ε)-Approximate Quickest Flows with Inflow-Dependent Transit Times

So far, we have presented an algorithm to compute a (2 + ε)-approximate solution to the quickest mul-

ticommodity flow problem in the relaxed model of weakly inflow-preserving flows over time. Such a

solution has a simple structure, namely it is generated from a path decomposition of a static flow in

the bow graph. We will use this property to turn such a flow into a solution to the original problem.

Throughout this modification we will make sure that the time horizon only increases by a small factor.

Let fB be a weakly inflow-preserving multicommodity flow over time with time horizon T B in GB ,

which is generated from a static flow xB as described in the last section. In particular, xB is weakly

inflow-preserving and has a length-bounded path decomposition. Let Pi denote the set of si-ti-paths

from the length-bounded path decomposition of xB and P := ∪k
i=1Pi.

Lemma 3. The flow over time fB can be turned into a flow over time f in G with inflow-dependent

transit times (τe)e∈E and time horizon T , where T is bounded from above by (1 + η)T B + 2nδ.

Proof. We increase transit times in GB in order to emulate the original transit times (τe)e∈E . For every

arc a ∈ EB , let τ̃a := (1 + η)τa + δ be the new transit time along a. Note that this corresponds to

constructing the bow graph according to step functions (τ̃ s
e)e∈E , where τ̃ s

e (x) := (1 + η)τ s
e (x) + δ for

every x ∈ [0, ue]. Consider a path P ∈ P . The flow fB sends flow at constant rate xP into P for a certain

time period. Before increasing transit times, flow traveling along P needed τ(P) :=
∑

a∈P τa time to

reach its destination. After the increase, this time goes up to τ̃(P) :=
∑

a∈P τ̃a ≤ (1 + η)τ(P) + nδ.

Since τ(P) is bounded from above by T B , the transit time of every unit of flow increases by at most

ηT B + nδ.

We repeat this procedure, but this time we increase the transit time of every arc a ∈ EB by another

additive factor of δ. This way, we obtain a weakly inflow-preserving flow over time f̂B in the bow graph

constructed with respect to transit times (τ̃ s
e)e∈E which is δ-resting and whose time horizon is bounded

by (1 + η)T B + 2nδ. Notice that throughout these modifications no flow is rerouted. We only make use

of storage in nodes. Therefore, the cost of f B remains unchanged. Applying Corollary 1, this yields a

flow over time f with inflow-dependent transit times (τ̃ s
e)e∈E in G. Observation 1 implies that f can be

interpreted as a flow over time with inflow-dependent transit times (τe)e∈E in G which concludes the

proof. ut

We are now ready to state the main result of this section.

Theorem 1. For the quickest multicommodity flow problem with inflow-dependent transit times and

bounded cost, there exists a polynomial time algorithm that, for any ε > 0, finds a solution of the

same cost as optimal with time horizon at most 2 + ε times the optimal time horizon T ∗.

Proof. We can compute in polynomial time a lower bound L on T ∗ such that L ≤ T ∗ ≤ p(n)kL, for

some polynomial p. Namely, it is proven in [15] that for every commodity i, a lower bound Li on the

optimal time horizon Ti for sending commodity i such that Li ≤ Ti ≤ p(n)Li can be computed in

polynomial time. Setting L := maxi Li yields the desired bound.

We fix η to ε/8 and δ to εL/(12n). For every arc e ∈ E, we pick lower step functions accord-

ing to Observation 4 (i). As already observed in [15], the number of breakpoints of τ s
e is then in

O(log(n/ε)/ε) and thus polynomially bounded. The latter is a direct consequence of Observation 4 (ii)

and the fact that without loss of generality we can set the capacity of every arc e ∈ E to u ′
e := max{x ∈

[0, ue]|τe(x) ≤ p(n)kL}. We then construct the bow graph GB with respect to these step functions.

Because of the relaxation property of GB (see Observation 3), the time horizon T B of a quickest weakly

inflow-preserving flow in GB is a lower bound on T ∗. If T B ≤ L, then using Lemma 2 with T = L
we can compute a weakly inflow-preserving multicommodity flow over time with time horizon at most

(2 + ε/4)L ≤ (2 + ε/4)T ∗. Otherwise L ≤ T B ≤ p(n)kL holds. Using geometric mean binary search

An FPTAS for Quickest Multicommodity Flows with Inflow-Dependent Transit Times 11

together with Lemma 2, we can compute a weakly inflow-preserving multicommodity flow over time

with time horizon T such that T ≤ (2 + ε/4)T B ≤ (2 + ε/4)T ∗.

Applying Lemma 3, this flow over time can be turned into a flow over time f with inflow-dependent

transit times in G. Its time horizon is bounded by (1 + η)(2 + ε/4)T ∗ +2nδ = (1 + ε/8)(2 + ε/4)T ∗ +
ε/6L ≤ (2 + ε)T ∗. Recall that f is given by piecewise constant functions (fe)e∈E . Corollary 1 implies

that the number of breakpoints of each such function is indeed polynomial in the input size and 1/ε. ut

We have shown in this section that a (2+ε)-algorithm for the quickest multicommodity flow problem

can be derived using length-bounded static flows in a suitable bow graph. The examples at the end

of Section 4.1 show that the performance ratio of the described algorithm is not better than 2 in the

multicommodity case, and not better than 4/3 in the single commodity case.

5 An FPTAS for Quickest Flows

In this section we present an FPTAS for the quickest multicommodity flow problem with inflow-depen-

dent transit times and bounded cost. We use ideas similar to the ones employed in [5] for the problem

with fixed transit times. The FPTAS is based on a static weakly inflow-preserving flow computation in a

condensed time-expanded bow graph.

5.1 Preliminary Definitions

To state our algorithm and prove its correctness, we define the following three bow graphs, which are

derived from G = (V,E) with transit time functions (τe)e∈E , given a time horizon T and a small

constant ε > 0.

– G↓: the lower bow graph is constructed from the lower step functions τ ↓
e (x) := bτe(x)/∆c∆, for e ∈

E, x ∈ [0, ue], where ∆ := ε2T/n (we always assume that n/ε2 is integral such that T is a multiple

of ∆). That is, τe(x) is rounded down to the nearest multiple of ∆. By choice of ∆, the size of G↓ is

polynomially bounded since we can delete all arcs with transit times greater than T .

– G↑: the upper bow graph is constructed from G↓ by lengthening the transit time of each arc by ∆. The

corresponding transit time step functions are given by τ ↑
e (x) := τ ↓

e (x) + ∆, for e ∈ E, x ∈ [0, ue].
– G↑↑: the 2∆-lengthened bow graph is constructed analogously to G↑ except that the transit times are

lengthened by 2∆, i.e., τ ↑↑
e (x) := τ ↓

e (x) + 2∆, for e ∈ E, x ∈ [0, ue].

Let the fan graph GF = (V F , EF) be the ∆-condensed time-expansion of G↑↑ for time horizon T (see

Section 2.3). Each arc e = (v, w) ∈ E is represented in the bow graph G↑↑ by its expansion E↑↑
e . Thus,

the fan graph contains, for each time θ ∈ S := {0,∆, . . . , T − ∆}, a ‘fan’ of arcs

EF
e (θ) := {a(θ) | a ∈ E↑↑

e , θ + τ↑↑
a ∈ S} ,

where a(θ) =
(

v(θ), w(θ + τ ↑↑
a)

)

. Furthermore, there are holdover arcs
(

v(θ), v(θ + ∆)
)

of infinite

capacity to simulate intermediate storage at nodes, for all v ∈ V .

For a static flow x in GF and θ ∈ S, we define λa(θ) := xa(θ)/ua(θ) to be the per capacity inflow

value on arc a(θ) ∈ EF . With these definitions, the concept of weakly inflow-preserving flows directly

carries over to static flows x in GF , i.e., x is weakly inflow-preserving if
∑

a∈E
↑↑
e

λa(θ) ≤ 1 for all e ∈ E and θ ∈ S. (4)

Moreover, the problem of computing a weakly inflow-preserving static flow in GF can easily be formu-

lated as a linear program. Take a standard network flow formulation and add extra constraints (4). In par-

ticular, such a flow can be computed in polynomial time. Note that any weakly inflow-preserving static

flow in GF corresponds to a weakly inflow-preserving flow over time in G↑↑, and vice versa (cf. Sec-

tion 2.3).

12 Alex Hall, Katharina Langkau, and Martin Skutella

5.2 The Algorithm and its Running Time

Let T ∗ denote the time horizon of a quickest flow with inflow-dependent transit times in G. We can now

give an overview of our algorithm which yields a flow over time with time horizon at most (1+O(ε))T ∗,

for any given ε > 0. In the following, let T̄ := (1 + 6ε)T ∗.

FPTAS

1. Guess T such that T̄ ≤ T ≤ (1 + ε)T̄ holds (binary search).

2. Construct the fan graph GF with respect to T . Compute a weakly inflow-preserving static multicom-

modity flow in GF satisfying all demands at cost bounded by the budget C .

3. Interpret this static flow as a weakly inflow-preserving flow over time in G↑↑. Modify this flow to

make it inflow-preserving in G↑and, from this, derive a flow over time in G with inflow-dependent

transit times and time horizon at most T .

We proceed as follows: First we discuss issues related to the running time of the algorithm and detail

how step 3 is implemented. Then, in Section 5.3, we prove that a static flow in GF with the properties

claimed in step 2 actually exists.

Using the (2 + ε)-approximation from Section 4, one can obtain upper and lower bounds on T̄ =
(1+6ε)T ∗ within a constant factor of each other. Thus, the estimate T can be found within O(log(1/ε))
geometric mean binary search steps. The fan graph GF constructed in step 2 contains n/ε2 time layers

and thus n2/ε2 nodes and O(mn2/ε4) arcs5. Therefore, the static flow in GF can be computed in time

polynomial in n, m, and 1/ε. We now go into the details of step 3. As mentioned before, interpreting the

static flow in GF as a weakly inflow-preserving flow over time in G↑↑ is done in the canonical way, as

described in Section 2.3. If we now shorten all arcs of G↑↑ by ∆ (which gives bow graph G↑), we obtain

a weakly inflow-preserving flow over time in G↑which is ∆-resting. Applying Corollary 1, we derive an

inflow-preserving flow over time in G↑. Finally, by Observation 1, we get a flow over time in G with

inflow-dependent transit times (τe)e∈E with time horizon at most T = (1 + O(ε))T ∗. Clearly, step 3

can also be done in time polynomial in n, m, and 1/ε. This concludes the discussion of the algorithm’s

running time.

5.3 Analysis of the Algorithm

In this section we prove that our algorithm actually is an FPTAS by showing that a feasible flow as

claimed in step 2 exists. Without loss of generality, we can assume in the remainder of this section that

T = T̄ = (1 + 6ε)T ∗; notice that the topology of the fan graph GF does not depend on the exact

choice of T and that its arc capacities only increase with increasing T . Moreover, for technical reasons

we assume that ε ≤ 1/6 in the following.

We transform a quickest flow in G with inflow-dependent transit times into a weakly inflow-preser-

ving static flow in GF without increasing cost. This transformation is done in several steps which are

illustrated in the following diagram. The cost of the flow remains unchanged in all three steps.

infl.-dep. flow

over time in

G, time

horizon T ∗

¶
→

infl.-pres. flow

over time

in G↓, time

horizon T ∗

·
→

weakly infl.-pres.

flow over time

in G↑↑, time

horizon ≤ T

¸
→

weakly infl.-pres.

static flow in

GF , time

horizon ≤ T

With Observation 3, step ¶ is easy to see. For step ¸, the flow over time in G↑↑ is interpreted as a static

flow in GF as described in Section 2.3. As discussed above, since the flow over time in G↑↑ is weakly

inflow-preserving, the static flow in GF is weakly inflow-preserving, too.

5 Note that each fan contains at most n/ε2 arcs, potentially one for each layer of GF , and each of the m arcs in E induces n/ε2

fans.

An FPTAS for Quickest Multicommodity Flows with Inflow-Dependent Transit Times 13

Step · is the most interesting but also the most intricate one. By lengthening the arcs, the flow might

not remain feasible. This problem is overcome similarly to [5] by carefully averaging flow to derive an

‘almost feasible’ flow, then subsequently sending less to obtain a feasible flow and finally increasing

the time horizon to meet the demands. However, in contrast to [5], our flows must have the additional

property of being weakly inflow-preserving. The proof of Lemma 5 provides a more detailed discussion

of transformation ·, in which we stress why this property is preserved.

We first state a slight generalization of a lemma in [5]. It permits to modify a feasible inflow-

preserving flow such that the total amount of flow sent through the network is increased by a factor

of 1 + δ. Hereby, the time horizon and cost are increased by the same factor.

Lemma 4. Let δ > 0. Given a (weakly) inflow-preserving flow over time f in a bow graph GB with

time horizon T satisfying demands di with a budget C , there exists a (weakly) inflow-preserving flow

over time f ′ in GB which satisfies demands d′i := (1 + δ)di within time T ′ := (1 + δ)T , and at cost

C ′ := (1 + δ)C .

Proof. Simply scale time by a factor 1 + δ, i.e., define a flow f ′(θ) := f(θ/(1 + δ)). It is easy to see

that f ′ has the desired properties. ut

Lemma 5 resumes what happens in step ·.

Lemma 5. A weakly inflow-preserving flow over time f in G↓ with time horizon T ∗ can be transformed

into a weakly inflow-preserving flow over time in G↑↑ with time horizon at most T = (1 + 6ε)T ∗ and

the same cost as f .

Proof. In f , every infinitesimal unit of flow describes a simple6 path P in G↓ and a ’delay configuration’

at the nodes of P . That is, if P is given by nodes (v0, v1, . . . , vq), then a vector of non-negative delays δ =
(δ1, . . . , δq−1) specifies the amount of time δj for which the infinitesimal unit of flow is stored at node vj

before it continues towards node vj+1. Let P δ denote the path P with delay vector δ. Then, the flow over

time f can be decomposed into flows over time fP δ on paths P δ. As suggested in [5], we average the

flow along each path P δ and thereby define a new flow over time f̂ :

f̂P δ(θ) :=
1

εT

∫ θ

θ−εT

fP δ(ξ) dξ for θ ∈ [0, T ∗ + ε T). (5)

The new flow f̂ has time horizon at most T ∗ + εT ≤ (1 + 2ε)T ∗. It is easy to check that f̂ satisfies all

demands, has the same cost as f , and obeys capacity and flow conservation constraints in G↓. We now

interpret the flow f̂ as a flow over time in the 2∆-lengthened bow graphG↑↑ . Since it is defined in (5) by

flows into paths P δ , flow conservation still holds. However, with the new transit times τ ↑↑
a = τ↓

a + 2∆
for a ∈ E↓ (= E↑↑), the flow f̂ is not necessarily weakly inflow-preserving anymore. In fact, it might

even violate capacity constraints. The reason is that flow on different paths using the same arc will, in

general, experience different delays such that congestion might occur on that arc. Nevertheless, we will

show that a simple rescaling of f̂ results in a feasible weakly inflow-preserving flow over time in G↑↑

that satisfies all demands at the same cost as f .

Note that every path P δ is simple, and therefore contains at most n − 1 arcs. By definition of ∆,

every path P δ is lengthened by at most n 2∆ ≤ 2ε2 T in G↑↑ compared to G↓. Thus the time horizon

of f̂ in G↑↑ is bounded by (1 + 2ε)T ∗ + 2ε2 T ≤ (1 + 3ε)T ∗.

Consider a path P δ of the path decomposition of f , i.e., P δ is given by a path P = (v0, v1, . . . , vq)
in G↓ and a delay vector δ. For a := (v`, v`+1) ∈ P , we define

τ↓(P δ , a) :=
∑̀

j=1

(τ↓

(vj−1 ,vj)
+ δj)

6 Notice that cycles can be avoided by storing flow at intermediate nodes.

14 Alex Hall, Katharina Langkau, and Martin Skutella

to be the transit time with delay δ of the subpath (v0, v1, . . . , v`) in G↓. Similarly, τ ↑↑(P δ, a) denotes

the transit time with delay δ of this subpath in G↑↑. The flow in f̂ entering arc a in G↑↑ at time θ can be

computed as follows:

f̂a(θ) =
∑

P δ:a∈P

f̂P δ

(

θ − τ↑↑(P δ, a)
)

for all a ∈ E↑↑. (6)

With this expression for the inflow rates, we now aim at bounding the extent by which the weakly

inflow preserving property is violated, i.e., how large the sum of the per capacity inflow values λ̂a(θ) for

a ∈ E↑↑
e actually is. Applying τ ↓(P δ, a) ≤ τ↑↑(P δ , a) ≤ τ↓(P δ , a) + 2ε2 T (every path is lengthened

by at most n 2∆ ≤ 2ε2 T), we obtain the following bound:

∑

a∈E
↑↑
e

λ̂a(θ) =
∑

a∈E
↑↑
e

f̂a(θ)/ua

(6)
=

∑

a∈E
↑↑
e

∑

P δ:a∈P

f̂P δ

(

θ − τ↑↑(P δ , a)
)

/ua

(5)
=

1

εT

∑

a∈E
↑↑
e

∑

P δ :a∈P

∫ θ−τ↑↑(P δ ,a)

θ−τ↑↑(P δ ,a)−εT

fP δ

(

ξ
)

/ua dξ

≤
1

εT

∑

a∈E
↑↑
e

∑

P δ :a∈P

∫ θ−τ↓(P δ ,a)

θ−τ↓(P δ ,a)−2ε2T−εT

fP δ

(

ξ
)

/ua dξ

=
1

εT

∫ θ

θ−2ε2T−εT

∑

a∈E
↑↑
e

∑

P δ :a∈P

fP δ

(

ξ − τ↓(P δ , a)
)

/ua dξ

as in (6)
=

1

εT

∫ θ

θ−2ε2T−εT

∑

a∈E
↑↑
e

fa

(

ξ
)

/ua dξ

≤
1

εT

∫ θ

θ−2ε2T−εT

1 dξ = 1 + 2ε .

Dividing f̂ by (1+2ε) thus yields a feasible weakly inflow-preserving flow over time in G↑↑ that satisfies

a fraction of 1/(1 + 2ε) of all demands at cost at most C/(1 + 2ε). By Lemma 4, a weakly inflow-

preserving flow over time satisfying all demands can be obtained by increasing the time horizon by a

factor of (1 + 2ε), yielding a time horizon of at most (1 + 2ε) · (1 + 3ε)T ∗ ≤ (1 + 6ε)T ∗. The cost of

this flow is equal to the cost of f . ut

The following theorem comprises the main result of this section.

Theorem 2. There is an FPTAS for the quickest multicommodity flow problem with inflow-dependent

transit times and bounded cost.

6 Complexity

In this section we prove the following result on the complexity of the quickest s-t-flow problem with

inflow-dependent transit times.

Theorem 3. The quickest s-t-flow problem with inflow-dependent transit times, with or without storage

of flow at intermediate nodes, is NP-hard in the strong sense.

The proof uses a reduction from the well-known NP-complete problem 3-PARTITION.

An FPTAS for Quickest Multicommodity Flows with Inflow-Dependent Transit Times 15

PSfrag replacements

s

t

v1 v3n

w1 wn

vi

wj

Fig. 3. Reduction of the problem 3-PARTITION to an s-t-flow over time problem with inflow-dependent transit times.

3-PARTITION

Given: A set of 3n items with associated sizes b1, . . . , b3n ∈ N, a bound B ∈ N, such that each

bi satisfies B/4 < bi < B/2 and such that
∑3n

i=1 bi = nB.

Question: Can {1, . . . , 3n} be partitioned into n disjoint sets I1, . . . , In such that, for j ∈
{1, . . . , n},

∑

i∈Ij
bi = B.

Given an instance of 3-PARTITION, we construct a network with inflow-dependent transit times as

shown in Figure 3.

Each item bi is represented by a node vi, each index set Ij is represented by a node wj . The capacities

are defined as follows.

u((s, vi)) := nbi + 1, u((vi, wj)) := bi + 1, u((wj , t)) := (n + 1)B + 3,

We define inflow-dependent transit times on (vi, wj) as

τ(vi,wj)(x) :=

{

0 if x ≤ bi,

1 else.

All other arcs in the network have transit time zero. The task is to send D := 2n2B + 3n units of flow

from s to t.

Lemma 6. If the underlying instance of 3-PARTITION is a ’yes’-instance, then there exists an s-t-flow

over time with inflow-dependent transit times which sends 2n2B+3n units of flow from s to t in time T :=
2 without using storage of flow at intermediate nodes.

Proof. Given a partition I1, . . . , In of {1, . . . , 3n} such that, for j ∈ {1, . . . , n},
∑

i∈Ij
bi = B, we

define a flow over time with inflow-dependent transit times as follows. During the time interval [0, 1)
we send flow at constant rate nbi + 1 into arc (s, vi), for every i ∈ {1, . . . , 3n}. This flow is sent on

to the nodes w1, . . . , wn according to the following rule. We set the flow rate of arc (vi, wj) to bi + 1,

if i ∈ Ij , and to bi, otherwise. During the time interval [1, 2) we send flow at constant rate nbi into arc

(s, vi), for every i ∈ {1, . . . , 3n}, and define the flow rate into arc (vi, wj), j = 1, . . . , n, to be bi. With

these definitions, it is easy to see that at every point in time flow is entering a node wj , j = 1, . . . , n, at

rate bounded by (n + 1)B + 3. Thus it can be sent immediately on to t using the arc (wj , t). Obviously,

flow conservation holds at every point in time and no storage in intermediate nodes is used. Moreover,

all 2n2B + 3n units of flow arrive in t before time 2. ut

16 Alex Hall, Katharina Langkau, and Martin Skutella

It remains to show that the existence of a flow over time f with inflow-dependent transit times

of value D with time horizon at most 2 yields a feasible solution to the underlying instance of 3-

PARTITION. To do this, we need to make the following reasonable assumption on f : all flow rate func-

tions are essentially continuous, i.e., on every arc a of the given network we require that the flow rate

function fa has at most finitely many discontinuities.

In f , we color every (infinitesimal) unit of flow either red or green. If it enters the network before

time 1, it is colored red, else it is colored green. We denote the corresponding flows by f r and f g.

Claim. for every θ ∈ [0, 1), the following properties hold:

∫ θ

0
f r
(s,vi)

(τ) dτ = θ (nbi + 1) for all i ∈ {1, . . . , 3n}, (7)

∫ 1+θ

1
fg
(vi,wj)

(τ) dτ = θ bi for all i ∈ {1, . . . , 3n}, j ∈ {1, . . . , n}. (8)

Proof. After time 1 flow can enter an arc (vi, wj) at rate at most bi since, otherwise, it cannot reach t
before time 2. Thus, in total, at most n2B units of green flow can be sent to t. Then, in order to satisfy

the demand 2n2B +3n, at least n2B +3n units of red flow must leave s. Since the capacity of arc (s, vi)
is bounded by nbi + 1, for i ∈ {1, . . . 3n}, at most

∑3n
i=1(nbi + 1) = n2B + 3n units of red flow can be

sent in total. Hence, exactly n2B + 3n units of red flow and exactly n2B units of green flow must travel

from s to t. As a consequence, (7) and (8) must hold. ut

Consider a node vi, i ∈ {1, . . . , 3n}. If flow is entering an arc (vi, wj), j ∈ {1, . . . , n}, at rate at

most bi, this flow arrives in wj instantaneously. Otherwise, this flow needs one unit of time to reach wj

and is therefore delayed. We now investigate how much red flow is delayed for each node vi.

Claim. For all i ∈ {1, . . . , 3n}, the following properties hold:

1. At least bi + 1 units of red flow passing through vi are delayed.

2. If exactly bi+1 units of red flow passing through vi are delayed, then at almost every7 point θ ∈ [0, 1)

f r
(vi,wj)

(θ) ∈ {bi, bi + 1}, for all j ∈ {1, . . . , n}.

Proof. Fix i ∈ {1, . . . , 3n}. At most nbi units of red flow can be sent out of vi instantaneously during

[0, 1) by setting the flow rate of every arc (vi, wj), j = 1, . . . , n, to the threshold value bi during time

interval [0, 1). By (7), at least one additional unit of red “excess” flow has to be sent out of vi by exceeding

this threshold value on some of the arcs (vi, wj), j = 1, . . . , n. For every arc (vi, wj), j = 1, . . . , n, let

δj(θ) :=

{

f r
(vi,wj)

(θ) − bi if f r
(vi,wj)

(θ) > bi,

0 otherwise,

denote the excess rate of arc (vi, wj), then
∑n

j=1

∫ 1
0 δj(θ)dθ ≥ 1 must hold. Since 0 ≤ δj(θ) ≤ 1 at

every point in time θ ∈ [0, 1),
bi + δj(θ) ≥ (bi + 1)δj(θ) . (9)

Whenever the excess rate δj(θ) is strictly greater than zero, not only the excess flow is delayed, but

all flow entering the arc (vi, wj) at time θ. We conclude that the total amount of delayed flow can be

lower-bounded as follows:

n
∑

j=1

∫

θ:δj(θ)>0
(bi + δj(θ)) dθ

(9)

≥ (bi + 1)

n
∑

j=1

∫ 1

0
δj(θ) dθ ≥ bi + 1 . (10)

7 the subset of [0, 1) where the property fails has Lebesgue-measure zero.

An FPTAS for Quickest Multicommodity Flows with Inflow-Dependent Transit Times 17

This proves the first statement of the claim.

To prove the second statement, assume that exactly bi +1 units of red flow are delayed. In a first step,

we prove that at almost every point θ ∈ [0, 1), the excess rate δj(θ) is either 0 or 1. By contradiction,

assume that there exists j ∈ {1 . . . n} for which the property fails; let Θ := {θ ∈ [0, 1) : 0 < δj(θ) <
1}. For all θ ∈ Θ, the inequality in (9) is strict. Since f(vi,wj) has only a finite number of discontinuities,

so does δj . Hence Θ contains a small interval where δj is continuous and so the first inequality in (10)

must be strict, too. Thus, more than bi + 1 units of flow are delayed leading to a contradiction. We

conclude that at almost every point in time, for all j ∈ {1, . . . , n}, either f r
(vi,wj)

(θ) ≤ bi (if δj(θ) = 0)

or f r
(vi,wj)

(θ) = bi + 1 (if δj(θ) = 1). Next assume that there exists j ∈ {1 . . . n} for which there is a

set with Lebesgue-measure greater than zero where f r
(vi,wj)

is strictly less than bi. Then, the excess flow
∑n

j=1

∫ 1
0 δj(θ)dθ has to be strictly greater than 1, implying that the second inequality in (10) is strict.

Again, more than bi + 1 units of flow are delayed leading to a contradiction. This proves the second

statement. ut

Claim. For all i ∈ {1, . . . , 3n}, exactly bi+1 units of red flow passing through vi are delayed. Moreover,

all arcs (wj , t), j = 1, . . . , n, are completely filled with green flow and delayed red flow during [1, 2).

Proof. It follows from (8) that nB units of green flow must travel via the arcs (wj , t), j ∈ {1, . . . , n}.

Thus, due to capacity constraints, during the interval [1, 2) at most another nB + 3n units of delayed

red flow can pass through all of the arcs (wj , t), j = 1, . . . , n. It then follows from the first statement

in Claim 6 that, for all i ∈ {1, . . . , 3n}, exactly bi + 1 units of red flow passing through vi are delayed

and all arcs (wj , t), j = 1, . . . , n, are completely filled with green flow and delayed red flow during

[1, 2). ut

Lemma 7. If an s-t-flow over time f with inflow-dependent transit times exists which sends D = 2n2B+
3n units of flow from s to t in time T := 2, then the underlying instance of 3-PARTITION is a ’yes’-

instance.

Proof. Pick a non-empty interval (0, µ) during which all flow rate functions f(vi,wj) are continuous. By

Claim 6 and the second part of Claim 6, each of these flow rates must be constant, either bi or bi + 1.

Claim (7) together with flow conservation implies that, for each i ∈ {1, . . . , 3n}, at most one arc leaving

vi has a flow rate of bi + 1 during (0, µ). We define partition sets as follows: for all j ∈ {1, . . . , n} let

Ij be the set of items bi for which f(vi,wj)(θ) = bi + 1 during (0, µ). Notice that no item is contained in

more than one partition set. We claim that each partition set Ij satisfies
∑

i∈Ij
bi = B. If not, there exists

j ∈ {1, . . . , n} such that
∑

i∈Ij
bi < B. Then, less than µ(B + 3) units of delayed red flow arrive in wj

during (1, 1 + µ). Again, by (8), at most another µnB units of green flow arrive in wj during (1, 1 + µ)
contradicting Claim 6. This concludes the proof of Lemma 7 and Theorem 3. ut

References

1. J. E. Aronson. A survey of dynamic network flows. Annals of Operations Research, 20:1–66, 1989.

2. R. E. Burkard, K. Dlaska, and B. Klinz. The quickest flow problem. ZOR — Methods and Models of Operations Research,

37:31–58, 1993.

3. M. Carey and E. Subrahmanian. An approach to modelling time-varying flows on congested networks. Transportation

Research B, 34:157–183, 2000.

4. L. Fleischer and M. Skutella. The quickest multicommodity flow problem. In W. J. Cook and A. S. Schulz, editors,

Integer Programming and Combinatorial Optimization, volume 2337 of Lecture Notes in Computer Science, pages 36–53.

Springer, Berlin, 2002.

5. L. Fleischer and M. Skutella. Minimum cost flows over time without intermediate storage. In Proceedings of the 14th

Annual ACM–SIAM Symposium on Discrete Algorithms, pages 66–75, Baltimore, MD, 2003.

6. L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic flows from static flows. Operations Research, 6:419–433,

1958.

18 Alex Hall, Katharina Langkau, and Martin Skutella

7. L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, NJ, 1962.

8. A. Hall, S. Hippler, and M. Skutella. Multicommodity flows over time: Efficient algorithms and complexity. In J. C. M.

Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Automata, Languages and Programming, volume 2719 of

Lecture Notes in Computer Science, pages 397–409. Springer, Berlin, 2003.

9. A. Hall, K. Langkau, and M. Skutella. An FPTAS for quickest multicommodity flows with inflow-dependent transit

times. In S. Arora, K. Jansen, J. D. P. Rolim, and A. Sahai, editors, Approximation, Randomization, and Combinatorial

Optimization, volume 2764 of Lecture Notes in Computer Science, pages 71–82. Springer, Berlin, 2003.

10. G. Handler and I. Zang. A dual algorithm for the constrained shortest path problem. Networks, 10:293–310, 1980.

11. R. Hassin. Approximation schemes for the restricted shortest path problem. Mathematics of Operations Research, 17:36–

42, 1992.

12. B. Hoppe. Efficient dynamic network flow algorithms. PhD thesis, Cornell University, 1995.

13. B. Hoppe and É. Tardos. The quickest transshipment problem. Mathematics of Operations Research, 25:36–62, 2000.

14. B. Klinz and G. J. Woeginger. Minimum cost dynamic flows: The series-parallel case. In E. Balas and J. Clausen, editors,

Integer Programming and Combinatorial Optimization, volume 920 of Lecture Notes in Computer Science, pages 329–343.

Springer, Berlin, 1995.

15. E. Köhler, K. Langkau, and M. Skutella. Time-expanded graphs for flow-dependent transit times. In Proceedings of

the 10th Annual European Symposium on Algorithms (ESA), volume 2461 of Lecture Notes in Computer Science, pages

599–611. Springer, Berlin, 2002.

16. E. Köhler and M. Skutella. Flows over time with load-dependent transit times. In Proceedings of the 13th Annual ACM–

SIAM Symposium on Discrete Algorithms, pages 174–183, San Francisco, CA, 2002.

17. D. H. Lorenz and D. Raz. A simple efficient approximation scheme for the restricted shortest path problem. Operations

Research Letters, 28:213–219, 2001.

18. N. Megiddo. Combinatorial optimization with rational objective functions. Mathematics of Operations Research, 4:414–

424, 1979.

19. W. B. Powell, P. Jaillet, and A. Odoni. Stochastic and dynamic networks and routing. In M. O. Ball, T. L. Magnanti,

C. L. Monma, and G. L. Nemhauser, editors, Network Routing, volume 8 of Handbooks in Operations Research and

Management Science, chapter 3, pages 141–295. North–Holland, Amsterdam, The Netherlands, 1995.

20. B. Ran and D. E. Boyce. Modelling Dynamic Transportation Networks. Springer, Berlin, 1996.

