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1. Introduction. With this paper, we continue the discussion of error estimates
for the numerical approximation of optimal control problems we have started for
semilinear elliptic equations and distributed controls in [1]. The case of distributed
control is the easiest one with respect to the mathematical analysis. In [1] it was
shown that, roughly speaking, the distance between a locally optimal control @ and
its numerical approximation @ has the order of the mesh size k in the L?-norm and in
the L°°-norm. This estimate holds for a finite element approximation of the equation
by standard piecewise linear elements and piecewise constant control functions.

The analysis for boundary controls is more difficult, since the regularity of the
state function is lower than that for distributed controls. Moreover, the internal
approximation of the domain causes problems. In the general case, we have to ap-
proximate the boundary by a polygon. This requires the comparison of the original
control that is located at the boundary I' and the approximate control that is de-
fined on the polygonal boundary I'y,. Moreover, the regularity of elliptic equations in
domains with corners needs special care. To simplify the analysis, we assume here
that  is a polygonal domain of R?. Though this makes the things easier, the lower
regularity of states in polygonal domains complicates, together with the presence of
nonlinearities, the analysis.

Another novelty of our paper is the numerical confirmation of the predicted error
estimates. We present two examples, where we know the exact solutions. The first
one is of linear-quadratic type, while the second one is semilinear. We are able to
verify our error estimates quite precisely.

Let us mention some further papers related to this subject. The case of linear-
quadratic elliptic control problems by finite elements was discussed in early papers by
Falk [9], Geveci [10] and Malanowski [16], and Arnautu and Neittaanméki [2], who
already proved the optimal error estimate of order h in the L?-norm. In [16], also the
case of piecewise linear control functions is addressed.
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In the recent paper [8], the case of linear-quadratic elliptic problems was inves-
tigated again from a slightly different point of view: It was assumed that only the
control is approximated while considering the elliptic equation as exactly solvable.
Here, all main variants of elliptic problems have been studied — distributed control,
boundary control, distributed observation and boundary observation. Moreover, the
case of piecewise linear control functions was studied in domains of dimension 2. Fi-
nally, we refer to [7], where error estimates were derived for elliptic problems with
integral state constraints.

2. The Control Problem. Throughout the sequel, 2 denotes an open convex
bounded polygonal set of R? and I is the boundary of . In this domain we formulate
the following control problem

inf J(u) :/QL(;U,yu(x)) dx +/Pl(x,yu(x),u(x))do(x)

(P) subject to (yu,u) € H'() x L=(T),
ueU={uecL®T)|a<u(z)<pB ae zecT},
(yu,u) satisfying the state equation (2.1)

—Ayu(z) = ao(z,yu(r)) in Q
@1 { Oyu(z) = bo(z,yu(x)) +u(x) on T,

where —oo < a < 8 < +00. Here u is the control while y,, is said to be the associated
state. The following hypotheses are assumed about the functions involved in the
control problem (P):

(A1) The function L : 2 xR — R is measurable with respect to the first component,
of class C? with respect to the second, L(-,0) € L'(2) and for all M > 0 there exist
a function ¥ ar € LP(2) (p > 2) and a constant Cr, ar > 0 such that

2
E%a@<wmmm

0%L 0%L
‘ < Cr mly2 — vl

5—y2($7y2) - 5—y2($,y1)

for a.e. x,x; € Q and |y|, |yi| <M, i=1,2.

(A2) The function [ : T x R? — R is measurable with respect to the first component,
of class C? with respect to the second and third variables, I(x,0,0) € L*(T') and for
all M > 0 there exist a constant C; 5r > 0 and a function vy 3y € LP(T") (p > 1) such
that

ol

)| < (o), 1D, o] <
ol ol
‘%(3327%“) - %('xlvyau) < Oz,M|$2 —z1,

D, k(2 y2,u2) — DF, oyl (2, y1,un)ll < Cona(ly2 — ya| + Jug — ual),
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for a.e. z,x; € T and |y|, |y, [ul, |ui] < M, i=1,2, where D(Qy ! denotes the second

derivative of [ with respect to (y,u). Moreover we assume that there exists m; > 0
such that

P
ou?

Let us remark that this inequality implies the strict convexity of [ with respect to the
third variable.

(z,y,u) >my, ae. zel and (y,u) € R

(A3) The function ag :  x R — R is measurable with respect to the first variable
and of class C? with respect to the second,

aop(-,0) € LP(Q) (p > 2), %—‘;O(x,y)go ae. € QandyeR

and for all M > 0 there exists a constant C,, as > 0 such that

0 0
‘ 86;/0(%y)‘ ‘ 8;20 (%y)‘ < Cap,nr a6 € Qand Jy| < M,
0%a d%a
‘ 8y20‘($7y2) B ay20 (@,91)| < Cao,mly2 — 1| ae. z € Qand |y, [y2] < M.

(A4) The function by : ' x R — R is Lipschitz with respect to the first variable and
of class C? with respect to the second, by(-,0) € W=1/PP(T), with p > 2,

by
Jy

and for all M > 0 there exists a constant Cp, as > 0 such that

(z,9) <0

0%b
((E7y)‘ + ‘—O(xm’y)‘ S Cbo,Ma

o
oy?

dy

9?b 0?by

a—yg(m5y2) - 5—1,/2(3;’%) < Chg,mly2 — y1l-

for all z € T and |y|, [y1], |y2| < M.

(A5) At least one of the two conditions must hold: either (dag/dy)(z,y) < 0 in
Eo x R with Eq C Q of positive n-dimensional measure or (9by/dy)(x,y) < 0 on
Er x R with Er C T of positive (n — 1)-dimensional measure.

Before finishing this section let us study the state equation (2.1).

THEOREM 2.1. For every u € L?(T") the state equation (2.1) has a unique solu-
tion vy, € H3/2(Q), that depends continuously on w. Moreover, there exists py > 2
depending on the measure of the angles in T such that u € W'V/PP(T) with some
2 < p < po implies y, € W2P(Q).

Proof. Due to the Assumptions (A3)—(Ab), it is classical to show the existence
of a unique solution y,, € H'(2) N L>°(Q). From the Assumptions (A3)—(A4) we also
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deduce that ag(-, y,()) € L*(Q) and u—bo(+, yu(-)) € L*(T). In this situation Lemma
2.2 below proves that y, € H3/2(1Q).

Let us verify the W2P(Q) regularity. It is known that H3/2(Q) ¢ Wh4(Q); see
for instance Grisvard [11]. Therefore, the traces of § and @ belong to the space
W1_1/474(I‘) [11, Theorem 1.5.13]. From the Lipschitz property of by with respect
to  and y, we deduce that by(-,y.(-)) € W'/44T) too. Now Corollary 4.4.3.8
of Grisvard [11] yields the existence of some py € (2,4] depending on the measure
of the angles in ' such that ¢, € W2P(Q) for any 2 < p < po provided that
u € W'=1/PP(I'). We should remind at this point that we have assumed Q to be
convex. [

LEMMA 2.2. Let us assume that f € L*(Q2) and g € L*(T) satisfy that

/ f(x)dx + / g(x)do(z) = 0.
Q r
Then the problem

Ay = f in Q
(2.2) { dy = g on T

has a solution y € H3/?(Q) that is unique up to an additive constant.

Proof. Tt is a consequence of Lax-Milgram Theorem’s that (2.2) has a unique
solution in H(Q) up to an additive constant. Let us prove the H*/?(Q) regularity.
To show this we consider the problem

Ay = f in Q
Yy = 0 on TI.

Following Jerison and Kenig [13], this problem has a unique solution y; € H3/2(Q).
Moreover, from Ay, € L?(Q) and y; € H3?(Q) we deduce that 9,y; € L*(T'); see
Kenig [14].

From the equality

/(g—&,yl)daz—/fdx—/@,,yldoz—/fdx—/Aydsz
r Q r Q Q

we deduce the existence of a unique solution y» € H*(Q) of

—Ays = 0 in Q
Oy = g—0un on I
yodr = /(y_yl)dx'

Q Q

Once again following Jerison and Kenig [12] we know that y» € H3/2(Q). Now it is
easy to check that y = y; +y» € H3/2(Q). O

Let us note that H*2(Q) c C(Q) holds for Lipschitz domains in R*. As a
consequence of the theorem above, we know that the functional J is well defined in
L?(T"). Using the convexity of I with respect to u, we can prove, as in Casas and
Mateos [7], the existence of at least one global solution of (P). Let us discuss the
differentiability properties of J.
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THEOREM 2.3. Suppose that assumptions (A3)-(A4) are satisfied. Then the
mapping G : L=(T') — H3/%(Q) defined by G(u) = y, is of class C*. Moreover, for
all u,v € L>(T), 2z, = G'(u)v is the solution of

—Az, = %(x,yu)zv in Q

2.3 0y
23 Oy 2z —%(m )zu +v on T
vey  — By s Yu ) 2w .

Finally, for every vi,v2 € L=(Q), 2,0, = G (w)v1v2 is the solution of

8&0 52 ap

-A V1V = 3 L Yu)Rviv a9 L Yu)Rv fu i Q
(24) Zvyvz 8y(xy)212+8y2(xy)2122 m
‘ 0bg 0%bg
Opzviv, = Ty(%?h)zvlvz + 8—2/2(33,%)%1%2 on I,

where z,, = G'(uw)v;, i = 1,2.

This theorem is now standard and can be proved by using the implicit function
theorem; see Casas and Mateos [6].

THEOREM 2.4. Under the assumptions (A1)-(A4), the functional J : L*°(I') — R
is of class C*. Moreover, for every u,v, vy, vy € L(T)

(2.5) J (u)v = /F <%(x,yu,u) + gou) vdo

and
0%L 0%a
JN(U)Uﬂ}Q :A [Tyg(%yu)zmzvg +¢Uﬁ;(xayu)zv1zv2:| dx
2 2
l
(26) +/F |:8_yg(xa Yu, u)zvlzvg + m(xayua u)(zv1U2 + ngvl)

2 b
+%(CE, Yus U)U1U2 + Spu%—yzo (CE, yu)zvl Zv2:| do

where z,, = G'(u)v;, i = 1,2, y, = G(u), and the adjoint state p, € H3/%() is the
unique solution of the problem

8&0 oL .
“Ap =z, g, (2, Yu Q
=%, (w,y)<p+8y(ﬂry) in

~ Oby

(2.7) o
v — 5 y Yu a_ y Ju s F
v ay(xy)swray(wy u) on

This theorem follows from Theorem 2.3 and the chain rule.

3. First and Second Order Optimality Conditions. The first order opti-
mality conditions for Problem (P) follow readily from Theorem 2.4.

THEOREM 3.1. Assume that @ is a local solution of Problem (P). Then there
exist i, p € H3?(Q) such that

~Ag(e) = aole (=) in 0
31 e = e
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0 OL
A = e p)et A (rg) i QO
dy dy
(3.2)
Op = %(x ’)’—l—g(x’ﬁ) on T
VSD - 8y 9 QO 82/ 797 )
81 _ _ _ ad
(3.3) / —(z,9,0)+ @) (u—a)do >0 Yue U™
T 3u
If we define
d(@) = L (@, 5(a), 5(w)) + o)
x 0 r,ylxr), ulx P\T),

then we deduce from (3.3) that

0 fora.e. x € I' where a < u(z) < S,
(3.4) diz)=<¢ >0 fora.e. zel wherea(z) =q,
<0 fora.e. z €I where a(z) = .

In order to establish the second order optimality conditions we define the cone of
critical directions

Cy = {v € L*(I) satisfying (3.5) and v(x) = 0 if |d(z)| > 0},

> U =
(3.5) v(z) = { >0 for a.e. z € I' where u(z) = «,

<0 forae. z €I where a(x) = 0.

Now we formulate the second order necessary and sufficient optimality conditions.

THEOREM 3.2. If 4 is a local solution of (P), then J"(u)v? > 0 holds for all
v € Cy. Conversely, if u € U satisfies the first order optimality conditions (3.1)—
(3.3) and the coercivity condition J"(iw)v? > 0 holds for all v € Cy \ {0}, then there
exist § > 0 and € > 0 such that

(3.6) J(u) > J(@) + 0llu — al| 2

is satisfied for every u € U such that |lu — || p=(q) < &.

The necessary condition provided in the theorem is quite easy to get. The suffi-
cient conditions are proved by Casas and Mateos [6, Theorem 4.3] for distributed con-
trol problems with integral state constraints. The proof can be translated in a straight-
forward way to the case of boundary controls. The hypothesis (9%1/0u?) > m; > 0
introduced in Assumption (A2) as well as the linearity of u in the state equation is
essential to apply the mentioned Theorem 4.3. The same result can be proved by
following the approach of Bonnans and Zidani [5].

REMARK 3.3. By using the assumption (0%1/0u®)(x,y,u) > my > 0, we de-
duce from Casas and Mateos [6, Theorem 4.4] that the following two conditions are
equivalent:

(1) J"(a)v? > 0 for every v € Cg \ {0}.



NUMERICAL APPROXIMATION OF BOUNDARY CONTROL PROBLEMS 7

, (2) There exist 6 > 0 and T > 0 such that J" (u)v? > 5||v||2L2(F) for every v € CI,
where

CT = {v € L*(T") satisfying (3.5) and v(x) =0 if |d(z)| > 7}.

It is clear that that CT contains strictly Cy, so the condition (2) seems to be stronger
than (1), but in fact they are equivalent.

We finish this section by providing a characterization of the optimal control u
and deducing from it the Lipschitz regularity of @ as well as some extra regularity of
g and @.

THEOREM 3.4. Suppose that @ is a local solution of (P), then for all x € T the
equation

ol

(3.7) Pa) + o (2,5(2),1) = 0

has a unique solution t = 5(x). The mapping 5 : T — R is Lipschitz and it is related
with @ through the formula

(3.8) u(r) = Projja,p/(5(z)) = max{a, min{3,5(z)}}.

Moreover u € C*H(T') and g, € W*P(Q) C C%1(Q) for some p > 2.
Proof. Let us remind that ¢, € H3/?(Q) C C(Q) because n = 2. We fix x € T
and consider the real function g : R — R defined by

From assumption (A2) we have that g is C! with ¢’(t) > m; > 0 for every t € R.
Therefore, there exists a unique real number ¢ satisfying g(¢) = 0. Consequently 3 is
well defined and relation (3.8) is an immediate consequence of (3.4). Let us prove the
regularity results. Invoking once again assumption (A2) along with (3.7) and (3.8),
we get for every 1,z € T

) a(o1)| < [5(o2) 50| < - |2 o2, 5a2) 5(0)) — (o, 902), a0 <

ou
} <
(3.9) C{lze — 21| + |p(z2) — @(x1)| + |g(22) — y(z1)|} -

The embedding H3/2(Q) C W4(£2) ensures that the traces of § and @ belong to
the space W1’1/4’4(I‘). Exploiting that n = 2 and taking in this space the norm

/4
|2(22) = 2(z0)[* !
Ielhwssrsaiey = { Bl + [ [ doten)io(e) |

|332 e

= {leten) — ol + | et ), o) — e, e, s(an)

the regularity @, 5 € W'=V/44T) c Wi=1/»P(T) (1 < p < 4) follows from (3.9). Now
Theorem 2.1 leads to the regularity i € W2?(Q). The same is also true for ¢. Indeed,
it is enough to use Corollary 4.4.3.8 of Grisvard [11] as in the proof of Theorem 2.1.
Using the embedding W2?(Q2) C C%1(Q) and (3.9) we get the Lipschitz regularity of
#and 5. 0
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4. Approximation of (P) by Finite Elements and Piecewise Constant
Controls. Here, we define a finite-element based approximation of the optimal con-
trol problem (P). To this aim, we consider a family of triangulations {7, }5~0 of
Q) = Urer, T. This triangulation is supposed to be regular in the usual sense that we
state exactly here. With each element T' € Tj, we associate two parameters p(7") and
o(T), where p(T') denotes the diameter of the set T and o(T') is the diameter of the
largest ball contained in T'. Let us define the size of the mesh by h = maxyrer, p(T).
The following regularity assumption is assumed.

(H) - There exist two positive constants p and o such that

p(T) h

o) =7 om) =7

hold for all T € 73, and all h > 0.
For fixed h > 0, we denote by {7} }jvz(f ) the family of triangles of 7, with a side

on the boundary of T'. Tf the edges of T; T are . and #" " then [z, 21| := T;NT,

1 <j < N(h), with xfﬂv(h)ﬂ = z}. Associated with this triangulation we set

Up, = {u € L*°(T") | u is constant on every side (xJF, xJ;rl) for 1<j<N(h)},
Vi = {yn € C(Q) | ynp € P, for all T € Tp.},

where P; is the space of polynomials of degree less than or equal to 1. For each
u € L*®(T), we denote by yp,(u) the unique element of Y}, that satisfies

ao(z, yn(u))zp dz + /[bo(x,yh(u)) +ulzp dx Yz, € Y,
r

(41)  alyn(u),zn) = /

Q

where a : Yy, X Y, — R is the bilinear form defined by

a(Yn, zn) = /QVyh(x)Vzh(x) dx.
The finite dimensional control problem is defined by
Py { min Jy(un) = [o L(z,yn(un)(@)) de + [ 1z, yn(un) (@), un(2)) do(x),
subject to (yn(upn),un) € Y x U,
where
Uﬁd:UhﬂUadz{uhEUh|a§uh(x)§ﬂforallm€F}.

Since Jj, is a continuous function and U2? is compact, we get that (Pj) has at
least one global solution. The first order optimality conditions can be written as
follows:

THEOREM 4.1. Assume that up, is a local optimal solution of (Py). Then there
exist gn and @y in Yy satisfying

(4.2) a(Gn, zn) = / ao(z, gn)zn dx + /(bo(x,ﬂh) + ap)zpdx  Vzp € Y,
Q r
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_ - 8&0 . 6L _
a(@n, zn) —/Q < ay (7, Yn)Pn + dy (xayh)) zp da+

ob ol
an [ (Fewment S ma) i) e
_ ol _ _ ad
(4.4) / on + %(x,yh,uh) (up, — ap)do(x) >0 Yu, € Uge.
r

The following result is the counterpart of Theorem 3.4.
THEOREM 4.2. Let us assume that uy is a local solution of problem (Py). Then
for every 1 < j < N(h), the equation
wthr o,
(4.5) o (en@) + (2, 9n(2), 1) ) do(z) =0

J
r

ha;s a unique solution ;. The mapping s, € Uy, defined by 5,(x) = 5; on every side
(zh, 21T, is related to ay by the formula

(4.6) un(z) = Projia,p (5n(x)) = min{a, max{3, 5, (x)}}.

4.1. Convergence Results. Our main aim is to prove the convergence of the
local solutions of (Pj) to local solutions of (P) as well as to derive error estimates.
Before doing this we need to establish the order of convergence of the solutions of the
discrete equation (4.1) to the solution of the state equation (2.1). An analogous result
is needed for the adjoint state equation.

THEOREM 4.3. For any u € L*(T") there exists a constant C = C(||ul|2r)) > 0
independent of h such that

(4.7) yu — yn (W)l L2@) + lou — on(u)l|L2) < Ch,

where y, denotes the solution of (2.1) and @, is the solution of (3.2) with (g, ) being
replaced by (y,u). Moreover, if u € W1/P2(T) holds for some p > 2 and u, € Uy,
then

(4.8)  MNyu — yn(un)llar (@) + lpu — enlun)llmi) < C{h+ |lu — unl|L2r)}-

Finally, if up, — u weakly in L*(T), then yn(un) — yu and op(up) — @ strongly in
c(Q).

Proof. Let us prove the theorem for the state y. The corresponding proof for
the adjoint state ¢ follows the same steps. Inequality (4.7) is proved by Casas and
Mateos [7]. Let us prove (4.8). The regularity of u implies that y, € H2({), then

19 = yn(Wll @) < Chllyullgz(@) = RC([ull m1r2r));

see Casas and Mateos [7].
On the other hand, from the monotonicity of ay and by and the assumption (A5)
it is easy to get by classical arguments

lyn(w) — yn(un)ll (@) < Cllu — un || p2(r).-
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Combining both inequalities we achieve the desired result for the states. For the proof
of the uniform convergence of the states and adjoint states the reader is also referred
to [7]. O

Now we can prove the convergence of the discretizations.

THEOREM 4.4. For every h > 0 let @y, be a global solution of problem (Py). Then
there exist weakly*-converging subsequences of {up}n>o in L=(T") (still indexed by h).
If the subsequence {un}n>o s converging weakly* to @, then @ is a solution of (P) ,

4. I i) = J(i) = inf(P lim [|@ — ]| o (r) = O
(49)  Jm Ja(an) = J(@) = nf(P) and Jim |la - anll< ) = 0

Proof. Since U C U holds for every h > 0 and U is bounded in L>(T),
{@n}n>0 is also bounded in L>°(T"). Therefore, there exist weakly*-converging subse-
quences as claimed in the statement of the theorem. Let @ be the of one of these
subsequences. By the definition of U it is obvious that @, € U%. Let us prove that
the weak* limit @ is a solution of (P). Let @ € U be a solution of (P) and consider
the operator I, : LY(T") — U}, defined by

J+1

1 Tr
II,u jj+1:%/ u(z)do(x).
|(zr‘11r ) |3){—x+1—3)%| w% ( ) ( )

According to Theorem 4.3 we have that @ € C%!(T") and then
[ = Wt oo (ry < Chl[al[cor(r)-

Remark that IIyu € U gd for every h. Now using the convexity of | with respect to
u and the uniform convergence g, = yp(an) — ¥ = yz and y,(I1;,4) — yz (Theorem
4.3) along with the assumptions on L and | we get

J(u) < liin iglf Jn(up) < limsup Jp, (ap) < limsup Jy(IIpa) = J(@) = inf (P).
- h—0 h—0

This proves that @ is a solution of (P) as well as the convergence of the optimal costs.
Let us verify the uniform convergence of {@y,} to 4. From (3.8) and (4.6) we obtain

1% — | Lo 0y < 15 = Snll L),

therefore it is enough to prove the uniform convergence of {3 }5>0 to 5. On the other
hand, from (4.5) and the continuity of the integrand with respect to « we deduce the

existence of a point ff; € (xf, x{fl) such that

ol

(4.10) () + 5 (& 7). sn(€l) = 0.

Given x € T, let us take 1 < j < N(h) such that = € (z},,25""). By the fact that 5,
is constant on each of these intervals we get

|5() — 5n(@)] < |8(2) — 5(&0)] + |5(&F) — sn(Eh)] <

Agle — &)+ [5(&L) — 5n(&l)] < Ash+ |5(&) — 5n(&D)],

where A, is the Lipschitz constant of 5. So it remains to prove the convergence
51(&.) — 5(&L) for every j. For it we use the strict positivity of the second derivative
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of | with respect to u (Assumption (A2)) along with the equations (3.7) satisfied by
5(z) and (4.10) to deduce

mils(eh) - s (P < '%@%,yh(&@,s(g@) - %(g,yh(@sh(@)‘ <
(6 (e, ()~ (6. s(eh) | +

\%@f,y@%), s(&4)) ~ %(sﬁ,gh@%x sn(€D)

‘%( b, on(€h), 5(60) — %( %,y@%),s(f%))‘ +1p(Eh) — en(Eh) — 0

because of the uniform convergence of g, — 4 and @, — @; see Theorem 4.3. O

The next theorem is a kind of reciprocal result of the previous one. At this point
we are wondering if every local minimum % of (P) can be approximate by a local
minimum of (Pp). The following theorem answers positively this question under the
assumption that u satisfies the second order sufficient optimality conditions given in
Theorem 3.2. In the sequel, B,(u) will denote the open ball of L>°(I") centered at u
with radius p. By Bp(u) we denote the corresponding closed ball.

THEOREM 4.5. Let @ be a local minimum of (P) satisfying the second order
sufficient optimality condition given in Theorem 3.2. Then there exist € > 0 and hy >
0 such that (Py) has a local minimum ap, € B.(u) for every h < hg. Furthermore,
the convergences (4.9) hold.

Proof. Let € > 0 be given by Theorem 3.2 and consider the problems

min J(u)
(Pe) { subject to (yu,u) € HY(Q) x (U N B.(w))

and

min Jp, (up)
(Phe) { subject to (yn(un),un) € Yn x (U N B(a)).

According to Theorem 3.2, @ is the unique solution of (P.). Moreover I, is a feasible
control for (Py.) for every h small enough. Therefore Uf¢ N B.(u) is a non empty
compact set and consequently (Pj.) has at least one solution uj,. Now we can argue
as in the proof of Theorem 4.4 to deduce that @, — @ uniformly, hence uy, is a local
solution of (Pp) in the open ball B.(@) as required. O

4.2. Error Estimates. In this section we denote by u a fixed local reference
solution of (P) satisfying the second order sufficient optimality conditions and by @y,
the associated local solution of (P},) converging uniformly to @. As usual g, g, and @,
@y, are the state and adjoint states correponsding to 4 and @y. The goal is to estimate
| — @n| 2(ry. Let us start by proving a first estimate for this term.

LEMMA 4.6. Let 6 > 0 given as in Remark 3.3,(2). Then there exists hg > 0
such that

)
(4.11) 5||71 — |2y < (J'(un) — J' (@) (@n — @) Vh < ho.
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Proof. Let us set

. ol
dh (ZE) = %

and take § > 0 and 7 > 0 as introduced in Remark 3.3-(2). We know that dj, — d
uniformly in I, therefore there exists h, > 0 such that

(@, gn (), an(x)) + on(x)

(4.12) ld — dn| oo (ry < 2 Vh < ho.

For every 1 < 7 < N(h) we define

From Theorem (4.1) we deduce by the classical argumentation that

_ | o o o if Ij>0
Yl ™™ U B if I <0,

Let us take 0 < hy < h, such that

\d(x2) — d(z1)| < % if |y — 21| < by
This inequality along with (4.12) implies that
it (€€ (x{;,x{fl) and d(&) > 7 = dp(z) > % Vo € (x{;,x{fl), Vh < hq,

which implies that I; > 0, hence p |, ,s+1)= @, in particular @x(§) = a . From
¥ _

(3.4) we also deduce that u(x) = a. Therefore (ap —u)(§) = 0 whenever d(£) > 7 and
h < hy. Analogously we can prove that the same is true when d(¢) < —7. Moreover
since a < up(z) < B, it is obvious that (ap —u)(x) > 0if a(z) = a and (@, —a)(x) <0
if a(x) = B. Thus we have proved that (4, —@) € CF and according to Remark 3.3-(2)
we have

(4.13) J" (@) (un, — w)? > 0llan — l|72ry Vh < hi.

On the other hand, by applying the mean value theorem we get for some 0 <
0, <1

(J'(an) = J'(@))(an — ) = J" (@ + O (@ — @) (an — )* =
(J" (@ + On(an — @) — J" (@) (@n — @)* + J"(@)(an — @)* >

(6 = [ @+ On(an — @) — J" @) lan — @z )

Finally it is enough to choose 0 < hg < hy such that

1)
7" (@ + O (an — @) — J" (@) < 5 Vh<ho
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to prove (4.11). The last inequality can be obtained easily from the relation (2.6)
thanks to the uniform convergence of (@n,Jn,4n) — (@,7,4) and the assumptions
(A1)-(A4). O

The next step consists of estimating the convergence of J; to J'.

LEMMA 4.7. For every p > 0 there exists C, > 0 independent of h such that

(4.14) |(Jh (@) — T (@)l < (Coh+ pllan — allzm) ol oy Vo € ZA(D).

Proof. From the hypotheses on [ it is readily deduced

ol ol
Ghn) = 7 @)ol < [ (I ol +| 5o on) = Gty 1)

>vd0@)<

(4.15) C (len — anllL2@y + 19n — vanllL2ay) vl 2y,

where yg, and ¢y, are the solutions of (2.1) and (2.7) corresponding to @y,
We use the following well known property. For every € > 0 there exists C. > 0
such that

2l 2ry < ellzllmro) + Cellzll2(o)-

Thus we get with the aid of (4.7)

190 — yanllL2r) = lyn(@n) — ya, 2@y <
ellyn(tn) — ya, 1) + Cellyn(@n) — ya, L2y <

ellyn(n) — ya, |1 (@) + C-Ch = €l|gn — ya, || 11 (o) + CCh.

Thanks to the monotonicity of ag and by and the assumption (A5) we obtain
from the state equation in the standard way

19 = va, |51 < Clla — nl|L2r)-

On the other hand, (4.8) leads to
19— onllar@) < C (h+ o —anllL2ry) -
Combining the last three inequalities we deduce
19 = yanllL2ry < C (e (h+ @ —anl L2r)) + Ceh).

The same arguments can be applied to the adjoint states, so (4.14) follows from
(4.15). Inequality (4.14) is obtained by choosing Ce = p and C, = C. 4+ Ce. O

One key point in the proof of error estimates is to get a discrete control u, € U ,‘jd
that approximates @ conveniently and satisfies J' (@)@ = J'(@)up. Let us find such a
control. Let d be defined as in §3 and set I; for every 1 < j < N(h) as in the proof
of Lemma 4.6

J+1

Qfgra@ww.

T



14 E. CASAS, M. MATEOS AND F. TROLTZSCH

Now we define uy, € Uy, with up(z) = ufl on the intervals (z1,25"") by the expression

7 et it 40
(4.16) u

.

- j+1|/ w)do(z) if I; =0.

This uj, satisfies our requirements.
LEMMA 4.8. There exists hg > 0 such that for every 0 < h < hg the following
properties hold:
1. up € U;lld.
2. J(u)u = J (a)uy.
3. There exists C > 0 independent of h such that

(417) ||ﬂ—Uh||Loo(p) S Ch

Proof. Let L, > 0 be the Lipschitz constant of @ and take hg = (8 — «)/(2Ly),
then

[U(&2) — u(é1)| < Lul§2 — &| < Lyh < Ve & € [ah, ol

B—a
2
which implies that @ can not admit the values a and 3 on one segment [z}, 21 "]
for all b < hg. Hence the sign of d on [x%,x%“] must be constant due to (3.4).
Therefore, I; = 0 if and only if J( ) =0 for all z € [xr,x];r ]. Moreover if I; # 0,
then J( )/1; > 0 for every x € [xp, JFH] As a first consequence of this we get that

a < wj, < 3, which means that u, € Ug*. On the other hand

W = Z/I 2) do(z)ul = Z/I do(z) = J' ().

Finally let us prove (4.17). Since the sign of d(z)/I; is always non negative and d is a
continuous function, we get for any of the two possible definitions of ), the existence

e [z}, x{fl] such that u] = @(¢;). Therefore, for any = € [z}, 2]

of a point &/ €
|a(x) — un()| = [a(x) — uj)| = |a(z) — a(¢)] < Ly|z — €] < Lyh,

which leads to (4.17) O
Finally, we derive the main error estimate.
THEOREM 4.9. There exists a constant C' > 0 independent of h such that

(4.18) ||’ﬁ—ﬁh||L2(p) < Ch.

Proof. Setting u = @y, in (3.3) we get

(4.19) T (@) (i — ) = /F (%(m,y, a) + <p> (iip — @) do > 0.
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From (4.4) with u, defined by (4.16) it follows

Jp(an)(up — ap) = /r <<Ph + %(x, yha“h)) (up —ap)do(z) >0
and then
(4.20) J;L(ﬂh)(ﬂ —up) + J,’l(ﬂh)(uh —a)>0.

By adding (4.19) and (4.20) and using Lemma 4.8-2, we derive
(J'(@) = Jp(un)) (@ = wn) < Jp(tn)(un — 1) = (J4(an) = J'(@)) (un — @),

For h small enough, this inequality and (4.11) lead to

2 ey < (8) — () (1~ ) <

(4.21) (Jh(an) = J'(@n)) (@ — wn) + (J;, (@n) — J'(@)) (un — w).
Arguing as in (4.15) and using (4.8) and (4.17) we get

(5 (@n) = J'(@) (un — @) < C (1&n = @lleay + 190 = Glla@)) lun = ll 2@y <

(4.22) C (h + |la— ﬂhHLQ(F)) |wn — 17/||L2(1") <C (h2 + hlja — ﬂh||L2(F)) .
On the other hand, using (4.14)
|(Jh(@n) = J'(an)) (@ —tn)| < (Cph + pll@ — anllL2(ry) 1@ — @n| L2(ry-

By taking p = §/4, we deduce from this inequality along with (4.21) and (4.22)
O 2 2 -
ZHU = tn|[z2ry < Ch™ + (C + Cp)hl|u — tn|[2(r),

which proves (4.18) for a convenient constant C' independent of h. O

5. Numerical confirmation. In this section we shall verify our error estimates
by numerical test examples for which we know the exact solution. We report both on
a linear-quadratic problem and on a semilinear problem.

5.1. A linear-quadratic problem and primal-dual active set strategy.
Let us consider the problem

1

min J(u) = 3 /Q(yu(x) —ya(z))?dx + %/Fu(x)%la(x)—i—

+ / ew(T)u(x)do(x) + / ey(@)yu(x)do(x)
(El) r r

subject to (y.,u) € HY(Q) x L*°(T),

uw€ Upg={ueL®)|0<u(z)<1lae zel},
(yu,u) satistying the linear state equation (5.1)
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— Ayu(z) + c(z)y ()
(5.1) { Byyu(x) + ()

We fix the following data: Q = (0,1)2, p =1, c(z1,72) = 1 + 27 — 23, e, (21, 22) = 1,

e1(x) in Q
e2(x) +u(xr) on T.

ya(r1,m2) = 22 + 2129, e1(11,22) = =2+ (1 + 22 — 23)(1 + 222 + 2120 — 23),
—1— a3 on I'y
.| 8(ze —0.5)240.5,
eu(wr, o) =4 17 mm{ 1 — 1625 (z — 0.25)(z2 — 0.75) (22 — 1) on Iz
—1—a? on I's
—1+$2(1 —.232) on F4
and
11—z + 223 — 23 on I'y
ea(z1, 22) = 7+ 222 — 23 — min{8(z2 — .5)> +.5,1} on Ty
2\, 22) = —2+2x1—|—x% on I's
1— 29 — 22 on I'y,

where I'; to I'y are the four sides of the square, starting at the bottom side and turning
counterclockwise. This problem has the following solution (g, @) with adjoint state @:
g(z) =1+ 227 + x122 — 23, (71, 22) = 1 and

a::{’ on I'y
_ min{8(zy — .5)% +.5,1 onTI
u(xhxg) = m% { ( 2 ) } on Fz

0 on I'y.

It is not difficult to check that the state equation (5.1) is satisfied by (g, @). The same
refers to the adjoint equation

{ ~Ap(x) + c(z)@(x)
¥

y(z) —yo(zr) n  Q

() +p(x) = ey on TI.
In example (E1), the function
0 on Fl
i in{0, 1622 (25 — 0.25)(x2 — 0.75)(z2 — 1 r
d(z) = p(z)+ey(z)+a(z) = Bnm{ , 1629 (2o )(o N a2 — 1)} ZE Fz
3
zo(1 — x2) on I'y

satisfies the relations (3.4) (see figure 5.1), hence the first order necessary condition
(3.3) is fulfilled. Since (E1) is a convex problem, this condition is also sufficient for
(g, 1) to be global minimum.

Let us briefly describe how we have performed the optimization. We define the
following operators: S : L?(I') — L?(2), and 7 : L?*(T') — L*('). For u € L*(T),
Su =y, and Tu = y|p, where

{—Ay(m)—i—c(m)y(m’) = 0 in Q
Oy(x)+ylx) = wu(x) on T.

If we define yo as the state associated to u(x) = 0 for all x € T and set yq(z) =
ya(x) — yo(x) then minimizing J(u) is equivalent to minimize

T 1 * * *
J(u) = 5(5 Su +u,u) g2y + (€u + 75"y — S ya, u) L2y,
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L L L L L
0 0.5 1 1.5 2 25 3 35 4

Fic. 5.1. solid: u(x1,x2), dashed: d(z1,z2)

subject to u € U,q where (+,-)x denotes the inner scalar product in the space X.

We perform the discretization in two steps. First we discretize the control and
thereafter the state. Let us take {ej};-\f:(f) as a basis of Up,. If up(x) = Zjv:(f) uje;(x)
for z € I', we must perform the optimization over Uy, of

N(h) N(h)
J(uh) = 5 Z UZU,J(S*SQ + €, ej)L2(F) + Z uj(ej, €y + TS*ey — S*yd)L2(F)
i,j=1 7j=1

subject to 0 <wu; <1for j=1,...,N(h).
If we set Ai)j = (5*561 + ei,ej)La(p), b, = (ei,eu + TS*ey — S*yd)L2(F) and
4= (ug,... .uN(h))T, then we must minimize

1
f(id) = it Aii+ b

subject to 0 < u; < 1 for j = 1,...,N(h). Calculating the matrix A explicitely
would require solving 2N (h) partial differential equations, and this is numerically too
expensive. Therefore usual routines to perform quadratic constrained minimization
should not be used. General optimization programs that require only an external
routine providing the function and its gradient do not take advantage of the fact
that we indeed have a quadratic functional. Therefore, we have implemented our own
routine for a primal-dual active set strategy according to Bergounioux and Kunisch [4];
see also Kunisch and Rosch [15]. Let us briefly describe the main steps of this iterative
method. At each step n, we solve an unconstrained problem to get (@n+1, Yn+1, Prt1)-
To get the next iterate, we fix the current active sets by

Ap =1 e{1,...,N(h)}|ul — By, f(@n) > 1}
and
P_o={e{l,...,N(h)}|ul — 8y, f(i,) < 0}.

Notice that dy, f (i) = J'(un,n)ej. We define a vector @29, that has zeros in all its
components, except those belonging to AZ, +» which are set to 1 and those belonging
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to Ay _ which are set to the lower bound (which is also zero in this problem). Set
m = N(h) —|A} .| —[A} _|. We define a matrix K with n rows and m columns such
that row j is the zero vector if j € A} | U A} and the submatrix formed by the
rest of the rows is the identity m X m matrix. At each iteration we must minimize
J(KT+a?,), where v € R™. This is equivalent to minimizing
1 -

qv) = iﬁTKTAKU—F (KT(b+ Aﬁfﬁfl))Tﬁ
for ¥ € R™. Since it is not possible to compute the whole matrix A, we solve this
problem by the conjugate gradient method. At each iteration of this method we must
evaluate A for some @ € RYN ™. If we define w = Z;V(il) wje;, the component ¢ of
the vector A is given by (e;, ¢ +w)r2(r), where ¢ is obtained solving the two partial
differential equations

and {

{ —Ay(z) + c(x)y(z) =

Ay(z) +y(x) =
These equations are solved by the finite element method. We have used the MATLAB
PDE Toolbox just to get the mesh for 2, but we have performed the assembling
of the mass and stiffness matrices and of the right hand side vector with our own
routines to determine all the integrals in an exact way. We had two reasons to do this.
First, we have not included the effect of integration errors in our previous research,
and secondly, when making a non-exact integration, the approximate adjoint state
is possibly not the adjoint state of the approximate state. This fact may negatively
affect the convergence. In practice, a low order integration method slows down the
convergence.

The solution is achieved if A} A”Jrl and Ay = A"+1. It is shown in
Kunisch and Rosch [15] that the algorlthm termlnates in ﬁmtely many iterations for
the discretized problem.

Observe that the discretization of the state can be done independently of the
discretization of the controls. We have performed two tests to show that the bottleneck
of the error in the control is the discretization of the controls. In the first test we have
chosen the same mesh sizes both for the state and the control. In the second test we
have chosen a fixed small mesh size for the state and we have varied the mesh size for
the control. These are the results:

0in Q
w(z) on T’

—Ap(x) + c(z)p(x) =
Opp(a) + p(x) =

y(x) in
OonT.

Test 1.

il 17— onll2 19— Onlmv | 1@ —anllez@) | |8 = @nllLe)
2741 5.617876e — 04 | 7.259364e — 02 | 4.330776e — 02 | 1.146090e — 01
275 11.423977¢ — 04 | 3.635482¢ — 02 | 2.170775¢ — 02 | 5.990258¢ — 02
2761 3.500447¢ — 05 | 1.800239¢ — 02 | 1.086060e — 02 | 3.060061e — 02
2-718.971788¢ — 06 | 8.950547¢ — 03 | 5.431141e — 03 | 1.546116e — 02

The orders of convergence obtained are h? for || — || r2() and h for the seminorm in
H1(Q) the L*(T) and L*°(I") norms. We can see this comparing a double logarithmic
plot of h and one of the error estimate with the plot of plog(h), where p is the order
of convergence obtained.

The estimates |—n| g1 () < Ch and for [[u—up| p2(ry < Ch are the ones expected
from inequalities (4.8) and (4.18). The estimate ||J — ¥ | r2(0) < Ch? is indeed better
than the one we can expect from inequality (4.7). This cannot only be explained
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by the information that § € H?(Q) ensures order h? for the FEM. Neverheless, the
observed order h? can be theoretically justified. A forthcoming paper by A. Rosch
studies this case.

= 45 35 25 e 45 35 3 25

Test 1: Hg — ﬂh||L2(Q) < Ch? Test 1: ||lu — up 21 < Ch

Fic. 5.2. Solid line: plogh. Dotted line: Data from Test 1.

Test 2. We fix now the mesh size for the state to h, = 277. This ensures a fairly
accurate solution of the partial differential equations.

19 — nll 2

1Y — Unle @)

la — anllL2(r)

[u — unl Lo )

9.837630e — 03

4.330774e — 02

1.145890e — 01

4.648617e — 05

9.026588e — 03

2.170775e — 02

5.989731e — 02

1.424508¢ — 05

8.952289%¢ — 03

1.086060e — 02

3.059955¢e — 02

h
411.831053¢ — 04
5
5
7

8.971788e — 06 | 8.950547e¢ — 03 | 5.431141e — 03 | 1.546116e — 02

The error for the state is very small from the beginning. The order is again h for the
last two columns. We observe that refining the mesh for the state does not improve
the approximation of the control.

5.2. A semilinear example. Let us next consider the problem

minJ() = 5 [ (@)~ vol@)Pdo + 5 [ u(w)dote)+
2] /F eu(@)u(z)do() + /F ey () () ()

subject to (y.,u) € H(Q) x L*°(T),
uw€Upg={ueL®)|0<u(z)<1lae zel},
(yu, ) satisfying the semilinear state equation (5.2)

e1(x) in 0
e2(v) +u(z) —y()|y(x)] on T.

{ —Ayu() + c(@)yu(r) =
(5.2) S -
L Yu () + yulz) =
The term y|y| stands for y? that does not satisfy the assumptions on monotonicity
required for our current work. However, in our computations negative values of y
never occured so that in fact y? was used. This also assures that locally assumption
(A4) is satisfied.
We fix: Q= (0,1)%, u =1, c(x1,22) = 23 + 2122, €y(w1,22) = —3 — 207 — 22129,
ya(rr,m2) = 1+ (21 +22)?, e1(w1,22) = =2+ (1 + 22 + 2122) (23 + 2172),
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1— a3 on I'y
1_ min{ 8(x2 — 0.5)% + 0.5, } on T
eu(r1,2) = 1 — 1622 (2 — 0.25)(xy — 0.75)(z2 — 1) 2
1—a? on I's
1+ x2(1 — x9) onI'y
and
2 —z1 + 322 — 2} +af on I'y
ex(a1,33) = 8 + 6w + 23 — min{8(wy — .5)2 +.5,1} on I'y
22 2 + 41 + 323 + 223 + 2} on I's
2 — xZo on F4.

This problem has the following solution (y,u) with adjoint state @: g(z) = 1+
227 + 2172, @(x1,22) = —1 and @ is the same as in example (E1). Again, it holds
d(z) = ¢(z) + ey(z) + u(x), which is also the same as in example (E1) and satisfies
relation (3.4) so that the first order necessary condition (3.3) is fulfilled. The second
derivative of J(u) is, according to (2.6),

J" (u)? = / 2 ()% dx + / v(x)?do(z) + /(—2)sign(g(x))@(x)zv(x)zdo(x),
Q r r
where z, is given by equation (2.3). Since ¢(z) < 0 and g(x) > 0, clearly J”(a)v? >
||U||2L2(F) holds. Therefore the second order sufficient conditions are fulfilled.
For the optimization, a standard SQP method was implemented. Given wy =
(yk, ug, pr), at step k + 1 we have to solve the following linear-quadratic problem to
find (yx+1, urs1):

1

min Ji (1) = 5 /Q (911 (2) — ya(e) e + / i ()2 do () +

+ / ew(@ )i (2)do(z) + / ey ()i () do ()~

— [ sign(un@)en @) (0) () o)
r
subject to (Y41, urt1) € HY(Q) x L°(T),
uk+1 € Uad,
(Yk+1,ug+1) satisfying the linear state equation (5.3)

(QP)itq

—Aypi1(z) + c@)yp1(z) = e(x) in O
(5.3) O yr+1(2) + yr1(2) e2(@) + w1 (2) — yi(@)|yr(@)|—
=2y ()| (Yrt1 () — yi(z)) on I

The new iterate g1 is the solution of the associated adjoint equation. It is known
that the sequence {wy} converges quadratically to @ = {(§,@, @)} in the L norm
provided that the initial guess is taken close to w, where (7, @) is a local solution of
(E2) and ¢ is the associated adjoint state:

w1 = Dl c@)xremxe@ < Cllwk — 013 gyx o ryxc(@)-

To solve each of the linear-quadratic problems (QP); we have applied the primal-dual
active set strategy explained for (E1). For the semilinear example the same tests were
made as for (E1). First we considered the same mesh both for control and state. Next
a very fine mesh was taken for the state while refining the meshes for the control.
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Test 1.
bl Ny =9nllee) | 19— Unlmre) | 1@ — @nllz2a@y | 1@ — @nllzoe )
241 3.178397e — 04 | 3.547400e — 02 | 4.330792e — 02 | 1.145619¢ — 01
275 | 8.094299¢ — 05 | 1.769994e — 02 | 2.170777e — 02 | 5.988813¢ — 02
276 11.983313e — 05 | 8.783231e — 03 | 1.086060e — 02 | 3.059566e — 02
277 | 4.938929¢ — 06 | 4.365300e — 03 | 5.431140e — 03 | 1.546130e — 02

21

The observed orders of convergence are again h? for ||ij — ¥l 20y and h for the

other columns.

Test 2. We fix now the mesh size for the state to h, = 277. This ensures a fairly

accurate solution of the partial differential equations. The order of convergence for
the error in the control is again h.

(11]
(12]
13]
[14]
[15]

[16]

19 — nll2

1Y — Unle @)

la — anllL2r)

[u — unl Lo ()

1.093204e — 04

5.695770e — 03

4.330780e — 02

1.145649e — 01

2.782787e — 05

4.498224e — 03

2.170776e — 02

5.988683¢ — 02

h
=
=5
=5
—7

8.585435¢ — 06

4.367794e — 03

1.086060e — 02

3.059585e — 02

NN DN DN

4.938929¢ — 06

4.365300e — 03

5.431140e — 03

1.546130e — 02
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