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Abstract Dynamic network flow problems model the temporal evolution of flows

over time and also consider changes of network parameters such as capacities, costs,

supplies, and demands over time. These problems have been extensively studied in the

past beacuse of their important role in real world applications such as transport, traffic,

and logistics. This has led to many results, but the more challenging continuous time

model still lacks some of the key features such as network related optimality conditions

and algorithms that are available in the static case.

The aim of this paper is to advance the state of the art for dynamic network flows by

developing the continuous time analogues of several well-known optimality conditions

for static network flows. Specifically, we establish a reduced cost optimality condition,

a negative cycle optimality condition, and a strong duality result for a very general

class of dynamic network flows. The underlying idea is to construct a dual feasible

solution that proves optimality when the residual network (with respect to a given

flow) contains no dynamic cycles with negative cost. We also discuss a generic negative

cycle-canceling algorithm resulting from the corresponding optimality criterion and

point out promising directions for future research.
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1 Introduction

Network flows have applications in a wide range of fields, including chemistry, physics,

most branches of engineering, manufacturing, scheduling and routing, telecommunica-
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tion, transportation and logistics (see for instance [1]). A crucial characteristic arising

in various applications such as road traffic control, production systems, communica-

tion networks (e. g., the Internet), financial flows, and pipeline systems for transporting

(e.g., crude oil) is flow variation over time. In other words, in such applications flow

values on arcs are not constant but may change over time due to seasonal altering

demands, supplies and arc capacities. Moreover, there is a second temporal dimension

in these applications. Usually, flow does not travel instantaneously through a network

but requires a certain amount of time to travel through each arc.

The above mentioned aspects of network flows are captured by dynamic network
flows (also called network flows over time) which were introduced by Ford and Fulker-

son [18,19]. They include a temporal dimension and therefore provide a more realistic

modeling tool for numerous real-world applications. In addition to the normal input

for classical network flows, each arc also has a transit time. The transit time is the

amount of time required to send flow from the tail to the head of that arc. In contrast

to the classical case of static flows, a dynamic flow in such a network specifies a flow

rate entering an arc for each point in time. In this setting, the capacity of an arc limits

the rate of flow into the arc at each point in time.

Dynamic network flows have been traditionally considered in a purely static envi-

ronment and the terminology “dynamic” has emphasized the fact that the movement of

flow through the network over time is considered. In many practical applications such

a static representation may be inadequate and it would be worthwhile if the model

considers not only the time-varying nature of flow, but also of network parameters.

However, the fact that network characteristics such as capacities, costs, demands, and

supplies etc. may vary over time has not been reflected to an adequate extent in the

literature so far. The main reason is that the resulting dynamic network flow problems

are much harder to solve or analyze in detail, specifically when time is modeled as a

continuum. In this paper we consider a general class of dynamic network flow problems

with time-varying parameters and develop several optimaity conditions and a strong

dualiy result for these problems.

1.1 Problem description

The class of dynamic network flows that we consider is as follows. We are given a

directed graph G with node set N = {1, 2, . . . , n} and arc set A ⊆ N × N and

a time horizon T > 0. To simplify notation, we assume (without loss of generality)

that every pair of nodes is connected by at most one arc. Each arc (i, j) is associated

with two functions defined on the time interval [0, T ]: transit cost ci,j and transit
capacity ai,j . The transit cost ci,j(t) gives the cost per flow unit for sending flow

into arc (i, j) at time t and the transit capacity ai,j(t) gives an upper bound on the

flow rate (i.e., amount of flow per time unit) that can enter arc (i, j) at time t. In

addition, the arc (i, j) has an associated transit time λi,j . Thus flow entering arc (i, j)
at time t needs λi,j time units to travel through the arc and thus arrives at node j at

time t + λi,j .

Each node i is associated with three functions defined on [0, T ]: supply/demand ri,

storage cost di and storage capacity bi. Here ri(t) denotes the available supply rate

or required demand rate of flow at node i at time t, depending on whether ri(t) > 0

or ri(t) < 0. Moreover, di(t) is the cost per time unit for storing one unit of flow at
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node i at time t and bi(t) is an upper bound on the amount of flow that can be stored

at node i at time t.
The aim of the Continuous-time Dynamic Network Flow Problem (CDNFP)

is to find a dynamic flow that satisfies all demands and obeys all transit and storage

capacity constraints over the time interval [0, T ], while minimizing the total transit and

storage costs. This problem is formulated as an infinite-dimensional linear program with

a network structure and arc time-delays as given below:

CDNFP: min

Z T

0
c(t)T x(t) dt +

Z T

0
d(t)T y(t) dt

s.t.

Z t

0

X

j:(i,j)∈A

xi,j(s) ds−

Z t

0

X

j:(j,i)∈A

xj,i(s− λj,i) ds

+ yi(t) =

Z t

0
ri(s) ds, i ∈ N, t ∈ [0, T ], (1)

0 ≤ x(t) ≤ a(t), t ∈ [0, T ], (2)

0 ≤ y(t) ≤ b(t), t ∈ [0, T ]. (3)

In this formulation, xi,j(t) gives the rate of flow (i.e., amount of flow per time unit)

entering arc (i, j) at time t and yi(t) measures the amount of flow stored at node

i at time t. Notice that any choice of flow x(s), s ∈ [0, t], will uniquely determine

a storage function y(t) by the flow conservation constraints (1). We say that flow

x (with corresponding storage y) is feasible for CDNFP if x satisfies transit capacity
constraints (2) and generates storage y satisfying the storage capacity constraints (3).

For technical reasons, we require that the components of b are continuous on [0, T ].

Moreover, we require to work within the space L∞([0, T ]) of essentially bounded mea-

surable functions on [0, T ] in which functions that differ only on a set of measure zero

are identified. In particular, the components of a, b, c, d, r, and x are assumed to be

bounded measurable functions on [0, T ]. Hence, the feasible region of CDNFP, denoted

by F , is defined as

F :=
n

x ∈ L|A|∞ [0, T ] | x with corresponding storage y is feasible for CDNFP
o

.

where |A| denotes the number of arcs in the network G. Throughout the paper, it

is assumed that F is not empty. This guarantees the existence of an optimum so-

lution for CDNFP at an extreme point of F . This is because of the fact that F is

convex, bounded, and closed in the weak topology σ(L
|A|
∞ ([0, T ]), L

|A|
1 ([0, T ])). Then,

it follows from Alaoglua’s Theorem (see, e.g., [15]) that F is compact in the weak

topology on L
|A|
∞ ([0, T ]) and consequently is a convex hull of its extreme points by

Krein-Milman’s Theorem (see again [15]). Further, the objective function of CDNFP

is σ
`

L
|A|
∞ ([0, T ]), L

|A|
1 ([0, T ])

´

-continuous functional and hence will attain its minimum

over F at an extreme point.

1.2 Literature

Since the seminal work of Ford and Fulkerson in the 1950s, a large number of authors

have studied different features of dynamic network flow models (see [42] and the ref-

erences therein). The research in this area has taken two approaches. One approach
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models time in discrete time steps. The other approach models time continuously. Re-

search of the first type typically uses the time-expanded network, either explicitly in the

algorithms, or implicitly in the proof, to produce theoretically or practically efficient

algorithms. Research using the second approach usually considers networks with time-

varying capacities, costs, supplies, and demands, and focuses on proving the existence

of optimal solutions, investigating the structure of optimal solution and extending du-

ality theory. In the following, we briefly review results on the continuous-time model,

particularly those related to CDNFP.

A closely related problem to CDNFP is the continuous-time dynamic maximum

flow problem, whose goal is to send as much flow as possible from a source to a sink

within a given time interval in a network with transit times on the arcs and time-varying

transit and storage capacities. This problem was first introduced by Philpott [30] and

further studied by Anderson, Nash, and Philpott [6]. They introduce the concept of

continuous-time cuts and establish a MaxFlow-MinCut theorem (see also [4]) for the

case that transit times are zero and the transit capacities are bounded measurable. This

result was later extended to arbitrary transit times by Philpott [32] and to a general

model of dynamic network flows combining both discrete and continuous aspects in

only one model by Koch, Nasrabadi, and Skutella [23].

The CDNFP problem was first introduced by Anderson [3], who characterizes

extreme point solutions for the problem given rational transit times. Anderson and

Philpott [8] survey results relating to dynamic network flows in the continuous-time

model. They also introduce a dual problem for CDNFP with a corresponding definition

of complementary slackness and prove a weak duality result.

In the absence of transit times, storage costs and storage capacities, CDNFP be-

comes a special type of Separated Continuous Linear Programs (SCLP). The SCLP

problem has been first introduced by Anderson [2] in order to model job-shop schedul-

ing problems and has attracted most of the attention in the class of continuous-time

linear programs1 (CLP) due to its applications. Actually, problems of this kind arise

in a number of engineering applications (see, e.g., [26,37,43]). Anderson, Nash, and

Perold [5] characterize the extreme point solutions to SCLP and show the existence of

optimum solutions with a finite number of breakpoints in certain cases. Since then a

number of authors (including Pullan [34–36,39,40], Philpott and Craddock [33], Luo

and Bertsimas [25], Fleischer and Sethuraman [17] and Weiss [43]) have studied SCLP

from different points of view.

Pullan [38] examines a larger class of SCLP to include time-delays, so-called Sepa-
rated Continuous Linear Programs with Time-Delays (SCLPTD). CDNFP becomes

a special case of SCLPTD when storage capacities are infinite. For the case that transit

times are rational, Pullan [38] transforms SCLPTD into a larger problem which is very

close to a special class of SCLP and extends some results of SCLP to SCLPTD.

The common approach to solving CLP as well as SCLP is to convert the orig-

inal problem to a finite-dimensional approximation linear program by discretization

of time. This approach, which is called discretization, was first taken by Buie and

Abrham [13] for solving CLP and later used by Pullan [34], Philpott and Craddock [33],

Luo and Bertsimas [25] for SCLP, who assumed that the problem data are piecewise

constant/linear. This approach has attracted most of the attention for solving practical

problems for the following reasons:

1 Continuous-time linear programs were introduced by Bellman [11,12], who called them
bottleneck problems.
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1. Discretization of time leads to problems that typically can be solved by using

traditional methods and are in general much easier to handle computationally.

In fact, the techniques required to implement such algorithms are no more than

finite-dimensional linear programming.

2. The solutions for discrete approximations converge to the solution for the original

problem as the discretizations become finer.

Motivated by these advantages, Hashemi, Nasrabadi, and Skutella [21] have devel-

oped two discretization-based algorithms, so-called Descent Algorithm and Adaptive

Discretization Algorithm, for CDNFP under some assumptions on the form of the

problem data. Although both algorithms converge to the optimal value of CDNFP as

the discretizations become finer, these algorithms, particularly the Descent Algorithm,

may not be satisfactory in practice. More specifically, computations for small example

instances in [21,27] show that the solutions obtained by the Descent Algorithm have a

huge number of breakpoints2, many more than necessary. Furthermore, when this al-

gorithm proceeds, the number of breakpoints increases further with little improvement

in the objective function value. Apart from the slow convergence and long computation

times, this can also obscure the structure of the optimal solution. The same serious

problems have been already reported in [34,40] for solving SCLP.

In general, discretization-based algorithms for solving continuous-time linear pro-

grams have the following major disadvantages:

1. The size of resulting discrete approximations is enormous, which leads to long

computation times.

2. The solution is only approximate, and to obtain a good approximation it is neces-

sary to divide the time interval into a large number of subintervals. On the other

hand, a very fine level of discretization is likely to generate solutions with huge

numbers of breakpoints, many more than necessary. The redundant breakpoints

not only increase the size of the subproblems, leading to long computation times,

but also cause serious numerical problems (see [27,33]).

3. Sensitivity analysis plays an important role in optimization and it is most worth-

while to develop algorithms which allow to perform sensitivity analysis. Unfortu-

nately, the discretization-based approaches are not suitable for performing sensi-

tivity analysis,

4. The input functions must be piecewise constant/linear. For example, Descent Algo-

rithm and Adaptive Discretization Algorithm presented in [27] for solving CDNFP

rely on the assumption of piecewise linear c and b and piecewise constant d, r
and a.

Consequently, a number of authors have attempted to generalize the simplex method

to solve instances of CLP without discretization. This approach was initiated by

Lehman [24] and continued later by Drews [16], Hartberger [20] and Segers [41]. Per-

old [28,29] makes major progress in this direction with the specification of a simplex-like

algorithm for CLP. Anstreicher [9] continues Perold’s work in his thesis. However, the

described algorithm is complicated and incomplete, reflecting the difficult nature of

the problem. Recently, Weiss [43] examines SCLP under the assumption of piecewise

linear problem data and develops a simplex algorithm that gives an exact solution after

a finite number of iterations. Moreover, he characterizes the form of optimal solutions

and establishes a strong duality result.

2 The term breakpoints is used to refer to the points in time at which the solution changes.
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The first attempt for developing a simplex algorithm for dynamic network flow

problems in the continuous-time model is due to Anderson and Philpott [7]. They

consider CDNFP with zero transit times on the arcs and piecewise constant/linear

input functions. In particular, they assume that the transit times λ are zero and the

transit cost functions c and the storage capacity functions b are piecewise linear. All

remaining input functions are assumed to be piecewise constant, that is, supply and

demand rates r, storage costs d, and transit capacities a. Then they discuss how the

simplex method can be developed for CDNFP to directly produce an exact solution,

rather than doing a discretization to get an approximation to the optimal solution.

Unfortunately, there are no guarantees for the convergence of this algorithm and it

often produces a sequence of solutions which converge to a suboptimal solution.

1.3 Our contribution

Despite many attempts on dynamic network flows, the continuous-time theory still

lacks some of the key features (such as network related algorithms) that are available

in static network flow theory. Most algorithms for static network flows are based on

the duality theory and optimality conditions. Hence, an essential and crucial step is to

develop these fundamental elements for CDNFP.

In this paper we are concerned with the development of continuous-time analogues

to those concepts and techniques which are the cornerstones of static network flows.

Specifically, several network based optimality conditions analogous to that found in

static network flows are developed for CDNFP with piecewise analytic input functions

and rational transit times. A strong duality result is then derived from these optimality

conditions. Previously, strong duality was developed by Pullan [36,38] for SCLP given

piecewise analytic problem data and for SCLPTD with rational transit times and

piecewise constant/linear input functions. However, we do not follow the approach

taken by Pullan but we make use of ideas from the area of static network flows for

proving a strong duality result.

The remainder of this paper is organized as follows. Section 2 presents preliminaries

and some earlier results that are required for the purpose of the paper. In particular,

a dual problem for CDNFP is introduced and a notation of complementary slackness

is derived from a weak duality result. In Section 3 we introduce the concept of aug-

menting paths and cycles and prove the existence of shortest augmenting paths. This

result is used in Section 4 to establish some optimality conditions for CDNFP. More

precisely, it is shown that the shortest path labels define a dual solution which satis-

fies complementary slackness conditions together with a given flow when the network

has no augmenting cycles with negative cost. This leads to the development of a re-

duced cost optimality condition, a negative cycle optimality condition, and a strong

duality result for CDNFP. The optimality conditions allow us to develop algorithms

for CDNFP analogous to that known for the static minimum cost flow problem. We

present a generic version of such an algorithm and discuss several promising directions

for future research in Section 5.
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2 Dual formulation

The concept of duality plays a central role in the theory of linear programming and is

at the heart of the simplex algorithm for static network flows. Thus to generalize this

algorithm to CDNFP, it would be necessary to establish a similar duality theory. In

this section we present some results on the duality theory of CDNFP that will be useful

for our main results. Let us first rewrite CDNFP in the following equivalent form:

CDNFP: min

Z T

0
c(t)T x(t) dt +

Z T

0
d(t)T y(t) dt

s.t.

Z t

0

X

j:(i,j)∈A

xi,j(s) ds−

Z t

0

X

j:(j,i)∈A

xj,i(s− λj,i) ds

+ yi(t) = r̄i(t), i ∈ N, t ∈ [0, T ], (4)

−

Z t

0

X

j:(i,j)∈A

xi,j(s) ds +

Z t

0

X

j:(j,i)∈A

xj,i(s− λj,i) ds

≤ bi(t)− r̄i(t), i ∈ N, t ∈ [0, T ], (5)

x(t) ≤ a(t), t ∈ [0, T ], (6)

x(t) ≥ 0, y(t) ≥ 0, t ∈ [0, T ].

Here r̄i(t) denotes the total supply or demand at node i up to time t, i.e., r̄i(t) :=
R t
0 ri(s) ds. Moreover for the ease of notation, in what follows we assume that the

storage costs d are zero. This assumption imposes no loss of generality because we can

transform a general instance of CDNFP to an instance where the storage costs are zero.

Now by introducing the dual variables u, v, and w associated to the constraints (4), (5)

and (6), respectively, a dual problem CDNFP∗
′

for CDNFP can be given as follows:

CDNFP
∗′

: max

Z T

0
r̄(t)T u(t) dt +

Z T

0
{b(t)− r̄(t)}T v(t) dt +

Z T

0
a(t)T w(t) dt

s.t.

Z T

t

(ui(s)− uj(s + λi,j)) ds−

Z T

t

(vi(s)− vj(s + λi,j)) ds

+ wi,j(t) ≤ ci,j(t), (i, j) ∈ A, t ∈ [0, T ],

u(t) ≤ 0, v(t) ≤ 0, w(t) ≤ 0, t ∈ [0, T ].

The form of this dual problem is based on the dual formulation of CLP proposed by

Bellman [11,12]. Simple examples can be constructed such that CDNFP has an optimal

solution, but there is no optimal solution for CDNFP∗
′

, even for the case of zero transit

times (see, e.g., Example 4.2 in Pullan [37]). For this reason it would be necessary to

consider a more general dual problem. In particular, we consider the following dual
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problem CDNFP∗:

CDNFP∗ : max −

Z T

0
r̄(t)T dη(t)−

Z T

0
{b(t)− r̄(t)}T dµ(t) +

Z T

0
a(t)T ρ(t) dt

s.t. ηi(t)− ηj(t + λi,j) + µi(t)− µj(t + λi,j)

+ ρi,j(t) ≤ ci,j(t), (i, j) ∈ A, t ∈ [0, T ],

η and µ monotonic increasing and right continuous

on [0, T ] with η(T ) = µ(T ) = 0,

ρ(t) ≤ 0, t ∈ [0, T ].

This problem was introduced by Anderson and Philpott [8] and is based on that

given by Pullan [34] for the dual of SCLP. Here the notation
R v

u
g(t) df(t) denotes

the Lebesgue-Stieltjes integral of function g with respect to function f from u to v
when the integral exists. Thus by integration by parts (see Theorem 7.6 in [10]) and

the fact that r̄(0) = η(T ) = µ(T ) = 0, the objective function of CDNFP∗ can be

written in the following equivalent form:

Z T

0
r(t){η(t)− µ(t)} dt−

Z T

0
b(t) dµ(t) +

Z T

0
a(t)ρ(t)dt.

It is easy to see that CDNFP∗ is a generalization of CDNFP∗
′

because any feasible

solution u, v, w for CDNFP∗
′

generates one for CDNFP∗ with the same objective

function value by defining

η(t) =

Z T

t

u(s)ds, µ(t) =

Z T

t

v(s) ds, ρ(t) = w(t).

Conversely if η, µ, ρ is feasible for CDNFP∗ in which η and µ are absolutely continuous

on [0, T ], then

u(t) = −η̇(t), v(t) = −µ̇(t), w(t) = ρ(t),

is feasible for CDNFP∗
′

and again the two solutions have the same objective function

value.

Anderson and Philpott [8] show that CDNFP∗ has an alternative equivalent for-

mulation in an analogous manner to that described for static network flows. They also

introduce the concept of complementary slackness for CDNFP deriving from a weak

duality result. We present these results in the rest of the section.

Given a feasible solution η, µ, ρ for CDNFP∗, we define the potential function π
on the time interval [0, T ] by

π(t) = η(t)− µ(t), t ∈ [0, T ]. (7)

It is clear that π is of bounded variation because it is the difference between two

monotonic increasing functions. Then there exist functions π(+) and π(−), known as

the Jordan decomposition of π, that are monotonic increasing on [0, T ] with π(+)(T ) =

π(−)(T ) = 0 and π(t) = π(+)(t) − π(−)(t) for t ∈ [0, T ]. These functions are defined

by

π(+)
(t) = V (t)− V (T ), π(−)

(t) = V (t)− π(t)− V (T ), t ∈ [0, T ], (8)
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where V (t) = V (π; [0, t]) measures the total variation of π within the time interval

[0, t] (see, e.g., Chapter 6 in [10]). The functions π(+) and π(−) are called the positive

and negative part of π, respectively.

Let us give some properties of the Jordan decomposition π(+) and π(+) of π that

will be useful for our discussion. We first need to give the concept of a function strictly

increasing at a point.

We say that a monotonic increasing function f : [u, v] → R is strictly increasing
at t ∈ (u, v) if f(t1) < f(t2) for any t1, t2 ∈ [u, v] with t ∈ (t1, t2), f is strictly
increasing at u if f(u) < f(t) for every t ∈ (u, v], and f is strictly increasing at v
if f(t) < f(v) for every t ∈ [u, v). A function f of bounded variation on [u, v] is said

to be strictly increasing at t ∈ [u, v] if f (+) is strictly increasing at t, similarly f is

strictly decreasing at t if f (−) is strictly increasing at t.
The following lemma follows from some basic results in measure theory.

Lemma 1 Let η, µ, ρ be a feasible solution for CDNFP∗ and π be given by (7).

1. If π is strictly increasing (decreasing) at some t, then η (µ) is also strictly
increasing at t.

2. The functions η − π(+) and µ− π(−) are monotonic increasing on [0, T ].

We can now establish the following result.

Lemma 2 Suppose that η, µ, ρ is an optimal solution for CDNFP∗ and π is given
by (7). Let π(+) and π(−) be the Jordan decomposition of π, given by (8). Then

η∗ = π(+), µ∗ = π(−), ρ∗ = ρ,

is also an optimal solution for CDNFP∗.

Proof It is clear that η∗, µ∗, ρ∗ is feasible for CDNFP∗. So it is sufficient to show that3

V [CDNFP
∗, η∗, µ∗, ρ∗] ≥ V [CDNFP

∗, η, µ, ρ],

or equivalently

Z T

0
b(t)T d(µ(t)− π(−)

(t)) ≥ 0.

The above inequality easily follows from that fact that b is nonnegative and µ− π(−)

is monotonic increasing on [0, T ]. ⊓⊔

Having Lemma 2, we can replace µ with π(−) in the dual problem CDNFP∗ and

rewrite CDNFP∗ in the following equivalent form:

CDNFP∗ : max

Z T

0
r(t)T π(t) dt−

Z T

0
b(t)T dπ(−)(t) +

Z T

0
a(t)T ρ(t)dt

s.t. πi(t)− πj(t + λi,j) + ρi,j(t) ≤ ci,j(t), (i, j) ∈ A, t ∈ [0, T ],

π of bounded variation and right continuous

on [0, T ] with π(T ) = 0,

ρ(t) ≤ 0, t ∈ [0, T ].

3 Throughout the paper, we use the notation V [OP,x] to denote the objective function value
of an optimization problem OP for a given feasible solution x and use the notation V [OP] to
denote the optimal value of OP.
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The dual variable ρ can be eliminated from the CDNFP∗ problem since it appears

in the objective function integrated with the transit capacity function a which is non-

negative on [0, T ], and hence at an optimum solution each component of ρ should be

made as large as possible. This observation implies that if we know optimal values for

the dual variables πi, i ∈ N , we can compute the optimal values for ρi,j by

ρij(t) = min {0, cij(t)− πi(t) + πj(t + λi,j)} , (i, j) ∈ A, t ∈ [0, T ]. (9)

Summarizing the above discussion, the dual problem CDNFP∗ can be simplified as

CDNFP
∗

: max

Z T

0
r(t)T π(t) dt−

Z T

0
b(t)T dπ(−)

(t)

+

Z T

0

X

(i,j)∈A

ai,j(t) min {0, cij(t)− πi(t) + πj(t + λi,j)} dt

s.t. π of bounded variation and right continuous

on [0, T ] with π(T ) = 0.

The following result is now easily established.

Theorem 1 (Anderson and Philpott [8]) Weak duality holds between CDNFP
and CDNFP∗.

Proof Assume that x is feasible for CDNFP with corresponding storage y derived

from (1) and π is feasible for CDNFP∗ with corresponding ρ given by (9). By integrating

by parts, we have

Z T

0
r(t)T π(t) dt = −

Z T

0
r̄(t)T dπ(t)

= −

Z T

0

X

i∈N

0

@

Z t

0

X

j:(i,j)∈A

xi,j(s) ds−

Z t

0

X

j:(j,i)∈A

xj,i(s− λj,i)ds + yi(t)

1

A dπi(t)

=

Z T

0

X

(i,j)∈A

xi,j(t)πi(t) dt−

Z T

0

X

j:(j,i)∈A

xj,i(s− λj,i)πi(t) dt−

Z T

0
y(t)T dπ(t)

=

Z T

0

X

(i,j)∈A

xi,j(t) (πi(t)− πj(t− λi,j)) dt−

Z T

0
y(t)T dπ(t).

Then by comparing the objective function values of CDNFP and CDNFP∗ for x and π,

respectively, we obtain

V [CDNFP, x]−V [CDNFP
∗, π]

=

Z T

0

X

(i,j)∈A

xi,j(t) (ci,j(t)− ρi,j(t)− πi(t) + πj(t− λi,j)) dt

−

Z T

0
ρ(t)T

(a(t)− x(t)) dt +

Z T

0
y(t)T dπ(+)

(t)

+

Z T

0
(b(t)− y(t))T dπ(−)

(t).

The result now follows by the fact that each of the above integrals is nonnegative due

to feasibility of x, y for CDNFP and feasibility of π, ρ for CDNFP∗. ⊓⊔
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The weak duality result motivates the notion of complementary slackness for CDNFP

as the following result.

Corollary 1 Suppose that x, y is feasible for CDNFP and π, ρ is feasible for
CDNFP∗. If

Z T

0

X

(i,j)∈A

xi,j(t) (ci,j(t) − ρi,j(t)− πi(t) + πj(t− λi,j)) dt = 0, (10)

Z T

0
ρ(t)T

(a(t)− x(t)) dt = 0, (11)

Z T

0
y(t)T dπ(+)

(t) = 0, (12)

Z T

0
(b(t)− y(t))T dπ(−)

(t) = 0, (13)

then x and π are optimal for CDNFP and CDNFP∗, respectively. Moreover, strong
duality holds between CDNFP and CDNFP∗.

By feasibility of x, y for CDNFP and π, ρ for CDNFP∗, and also by using some

basic results from real analysis, the integral equations (10)-(13) can be simplified to

derive the notion of complementary slackness for CDNFP in an analogous manner to

that described for static network flows.

Suppose that x with corresponding storage y is feasible for CDNFP and that π is a

function of bounded variation on [0, T ]. We say that the function π is complementary
slack with x if the following conditions are met:

(CS1) if ci,j(t)− πi(t) + πj(t + λi,j) > 0, then xi,j(t) = 0;

(CS2) if ci,j(t)− πi(t) + πj(t + λi,j) < 0, then xi,j(t) = ai,j(t);
(CS3) if πi is strictly increasing at t, then yi(t) = 0;

(CS4) if πi is strictly decreasing at t, then yi(t) = bi(t).

We refer to the above conditions as complementary slackness conditions.

Lemma 3 (Complementary Slackness Optimality Conditions) Let x be
feasible for CDNFP and π be complementary slack with x. If π is feasible for
CDNFP∗, then x and π are optimal for CDNFP and CDNFP∗, respectively.

Proof Let ρ be given by (9) with respect to π. Then conditions (CS1) and (CS2) imply

that

xi,j(t) (ci,j(t)− ρi,j(t)− πi(t) + πj(t− λi,j)) =0,

ρi,j(t)(ai,j(t)− xi,j(t)) =0,

for every arc (i, j) ∈ A and all t ∈ [0, T ], and obviously the integral equations (10) and

(11) are satisfied. Moreover, by Lemma 3.3 in [36], we can show that the conditions

(CS3) and (CS4) imply that the integral equations (12) and (13) hold. The result now

follows from Corollary 1. ⊓⊔

So far we have seen that weak duality holds between CDNFP and CDNFP∗ and that

conditions (CS1)-(CS4) are sufficient for optimality. It is of great interest to conjecture

whether a strong duality result can be established whereby V [CDNFP] = V [CDNFP∗]
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and these values are attained in each program. As noted previously, the feasible re-

gion F of CDNFP is compact in the weak topology on Ln
∞([0, T ]) and this is suffi-

cient to guarantee the existence of an optimal solution x, say, for CDNFP. Thus we

are left with the task to prove the existence of a dual feasible solution π for which

V [CDNFP, x] = V [CDNFP∗, π]. In general, strong duality may not hold, even for the

special case that all transit times are zero (see [37] for some examples). However, we

shall show that strong duality can be derived for CDNFP under the following assump-

tions.

Assumption 1 The transit times λ are all rational, as is the time horizon T .

Assumption 2 The input functions a, b, c, and r are all piecewise analytic4 on
[0, T ].

Assumptions 1 and 2 are supposed to hold throughout the rest of the paper, which

guarantee the existence of a piecewise analytic optimal solution for CDNFP.

Theorem 2 (Pullan [38]) If F is nonempty, then CDNFP has an optimal solu-
tion which is also piecewise analytic on [0, T ].

3 Shortest Augmenting Paths

The basic approach to derive strong duality for CDNFP is to go along the same lines

as in the static network flows. A key step of establishing strong duality for the static

minimum cost flow problem is the fact that starting from some feasible flow we can

construct a dual solution if the network contains no augmenting cycles with negative

cost. More precisely, the shortest distance labels from one specified node to the other

nodes in the residual network define a dual feasible solution which is complementary

slackness with the given feasible flow. Here the concept of residual network as well

as the notation of augmenting paths and cycles play a central role. We recall that

the residual network has a backward arc for each original arc. The residual capacity

of an original arc is defined as the difference between between the capacity and the

flow on the arc and the residual capacity of a backward arc is defined as the flow on

the original arc. The residual network contains only those arcs with positive residual

capacities. The residual capacity of a path (it may contain backward arcs) is defined

as the minimum of all residual capacity of the arcs in the path and a path is called an

augmenting path if its residual capacity is positive. So we first need to find a similar

characterization of augmenting paths for CDNFP.

For each arc (i, j) ∈ A we create a backward arc (j, i). Notice that (i, j) ∈ A
implies (j, i) /∈ A due to the assumption that there is at most one arc between any

pair of nodes in G. For each backward arc (j, i) with (i, j) ∈ A we associate a transit

time λj,i := −λi,j and a cost function cj,i(t) := −ci,j(t− λi,j), t ∈ [0, T ]. We denote

the set of all backward arcs by
←−
A and let

←→
A := A ∪

←−
A .

Following Philpott [31], we use the term node-time pair (NTP) to refer to a par-

ticular node at a particular time instance, i.e., a member of N × [0, T ]. We say that

4 A function f : [0, T ] → R is said to piecewise analytic if there exists a partition
{t0, t1, . . . , tm} of [0, T ], ǫ > 0, and gk analytic on (tk1

− ǫ, tk + ǫ) with gk(t) = f(t) for
t ∈ [tk1

, tk), k = 1, . . . , m. It follows from this definition that a piecewise analytic function is
right-continuous but not necessarily left-continuous, and in particular may be discontinuous
at a finite number of points.
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NTP (i, α) is arc-linked to NTP (j, β) if (i, j) ∈
←→
A and β = α + τi,j . We also say

that NTP (i, α) is node-linked to NTP (j, β) if i = j. In this case, it is assumed

that α 6= β. A continuous-time dynamic walk from NTP (i, α) to NTP (j, β) is

defined as a sequence of NTPs as

P : (i, α) = (i1, t1), (i2, t2), . . . , (iq, tq) = (j, β),

with consecutive members either arc- or node-linked. Here it is supposed that ik 6= ik+1

if ik−1 = ik for k = 2, . . . , q−1. The sequence P is called a continuous-time dynamic
path if all NTPs are distinct and is called a continuous-time dynamic cycle if q ≥ 3,

(i, α) = (j, β), and all other NTPs are distinct. For reasons of brevity, hereafter,

the term “continuous-time dynamic” is omitted when referring to a continuous-time

dynamic walk, path, or cycle.

Let P : (i1, t1), . . . , (iq, tq) be a path (or cycle) and Q : (iℓ, tℓ), . . . , (ir, tr) be a

subsequence of consecutive NTPs in P . We shall refer to Q as an arc-subpath of P if any

pair of consecutive NTPs in Q are arc-linked, i.e., (ik, ik+1) ∈
←→
A for k = ℓ, . . . , r− 1.

In this case, Q can be seen as the sequence (iℓ, iℓ+1), . . . , (ir−1, ir) of arcs in
←→
A

together with starting time tℓ from node iℓ. If in addition, iℓ−1 = iℓ or iℓ = i1 and

ir = ir+1 or ir = iq, then Q is called a maximal arc-subpath of P . Assume that Q is

an arc-subpath of P . For a point in time α ∈ [0, T ], we define a path P |Q(α) as

P |Q(α) : (i1, t1), . . . , (iℓ−1, tℓ−1), (iℓ, αℓ), . . . , (ir, αr), (ir+1, tr+1) . . . , (iq, tq)

(14)

where αℓ := α and αk+1 := αk + λik,ik+1
for k = ℓ, . . . , r − 1. Roughly speak-

ing, P |Q(α) is constructed from P by changing the starting time of arc-subpath Q
from tk to α.

Suppose that P : (i1, t1), . . . , (iq, tq) is a path (or cycle) from NTP (i, α) to NTP

(j, β). For each arc (i, j) ∈
←→
A , we let vP

i,j denote the corresponding incidence vector

whose entries are the times that arc (i, j) is used in P . The incidence vector vP
i,j is

defined to be empty (of length 0) if arc (i, j) is not used at any point in time along P .

Notice that the entries of vP
i,j are ordered according to the times at which arc (i, j) ap-

pears along path P . Thus the path P can be identified by a family
n

vP
i,j | (i, j) ∈

←→
A

o

of incidence vectors. For each ǫ > 0, the ǫ-neighborhood N (P, ǫ) of P is defined as the

set of all paths P ′ from (i, α) to (j, β) for which

|vP
i,j| = |v

P ′

i,j| and ||vP
i,j − vP ′

i,j ||∞ < ǫ ∀(i, j) ∈
←→
A .

Notice that for a vector v = (v1, . . . ,vm) ∈ R
m, the notations |v| and ||v||∞ de-

note the length and infinity-norm of v, respectively, i.e., |v| := m and ||v||∞ :=

max{|v1|, . . . , |vm|}.
The ǫ-neighborhood of P can be characterized in another way. Let Q be an arc-

subpath of P with starting time t. It is then easy to see that P |Q(α) is contained

in N (P, ǫ) if |t − α| < ǫ. In fact, N (P, ǫ) contains those paths that can be obtained

from P by changing the starting time of some arc-subpath of P at most by ǫ.
Here we introduce the concept of augmenting paths and cycles. Given a (piecewise

analytic) flow x with corresponding storage y, the residual capacity of a path P :

(i1, t1), . . . , (iq, tq) is defined as

cap(P ) := min{δ1, . . . , δq−1},
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where for k = 1, . . . , q − 1

δk :=

8

>

>

>

>

<

>

>

>

>

:

aik,ik+1
(tk)− xik,ik+1

(tk) if (ik, ik+1) ∈ A,

xik+1,ik
(tk+1) if (ik, ik+1) ∈

←−
A ,

min{bik
(t)− yik

(t) | tk ≤ t ≤ tk+1} if ik = ik+1, tk < tk+1,

min{yik
(t) | tk+1 ≤ t ≤ tk} if ik = ik+1, tk+1 < tk.

The value cap(P ) gives the maximum additional flow rate that can be pushed through P
without violating the feasibility of x. The path P is called an augmenting path un-

der x if for each ǫ > 0, N (P, ǫ) contains some path P ′ with positive residual capacity.

In other words, a path P is an augmenting path if for each ǫ > 0 we can send an

additional flow along a path in N (P, ǫ). Notice that each path with positive residual

capacity is an augmenting path. However, we might have some augmenting path with

zero residual capacity (see Example 1). In the same way, we can define an augmenting

cycle.

Next we want to define the cost of an augmenting path P : (i1, t1), . . . , (iq, tq). To

do this in a reasonable way, we first observe that for k = 1, . . . , q − 1 the following

holds:

(i) if (ik, ik+1) ∈ A, then aik,ik+1
− xik,ik+1

is not identically zero on any open

interval containing tk,

(ii) if (ik, ik+1) ∈
←−
A , then xik+1,ik

is not identically zero on any open interval con-

taining tk+1,

(iii) if ik = ik+1 and tk < tk+1, then yik
(t) < bik

(t) for each t ∈ (tk, tk+1),

(iv) if ik = ik+1 and tk+1 < tk, then yik
(t) > 0 for each t ∈ (tk+1, tk).

In particular, if Q : (iℓ, tℓ), . . . , (ir, tr) is a maximal arc-subpath of P , then P |Q(α) is

also an augmenting path for each α in (tℓ−ǫ, tℓ) or (tℓ, tℓ+ǫ) for some sufficiently small

ǫ > 0. Depending on whether P |Q(α) is an augmenting path for each α in (tℓ − ǫ, tℓ),
(tℓ, tℓ + ǫ), or (tℓ − ǫ, tℓ + ǫ), we define the cost c(Q) of Q as

c(Q) :=

8

>

<

>

:

Pr−1
k=ℓ cik,ik+1

(tk−) if α in (tℓ − ǫ, tℓ),
Pr−1

k=ℓ cik,ik+1
(tk+) if α in (tℓ, tℓ + ǫ),

Pr−1
k=ℓ min{cik,ik+1

(tk−), cik,ik+1
(tk+)} if α in (tℓ − ǫ, tℓ + ǫ).

(15)

Notice that cik,ik+1
(tk−) and cik,ik+1

(tk+) denote the limit of cik,ik+1
at tk from the

left and from the right, respectively, i.e.,

cik,ik+1
(tk−) := lim

t→t
−

k

cik,ik+1
(t) and cik,ik+1

(tk+) := lim
t→t

+

k

cik,ik+1
(t).

The cost c(P ) of P is then defined as c(P ) :=
P

Q c(Q), where the sum is taken over

all maximal arc-subpaths Q of P . An augmenting path P from (i, α) to (j, β) is said

to be a shortest augmenting path if it has the minimum cost among all augmenting

paths from (i, α) to (j, β). Similarly, the cost of an augmenting cycle is defined. An

augmenting cycle is called a negative augmenting cycle if its cost is negative.

We can define the cost of an augmenting path (or cycle) P : (i1, t1), . . . , (iq, tq) as

the sum of the costs of the arcs at the times when they appear along P , i.e.,

cost(P ) :=
X

k:(ik,ik+1)∈
←→
A

cik,ik+1
(tk).



15

1 2 3
a1,2

c1,2

a2,3

c2,3

(a) Original network.

time

0

1

2

1 2 3

(b) Flow x in the time expanded network.

1 2 3

a1,2 − x1,2

c1,2

a2,3 − x2,3

c2,3

−c1,2

x1,2

−c2,3

x2,3

(c) Residual network.

time

0

1

2

0.5

1.5

1 2 3

(d) Residual network in time expanded
network.

Fig. 1 Network for Example 1.

Here, the index k varies from 1 to q−1. We notice that cost(P ) is equal to c(P ) for the

case that the cost functions are continuous, but in general it is not the case. However,

we will show that the network contains a negative augmenting cycle if and only if there

is a cycle W with cap(W ) > 0 and cost(W ) < 0.

The following example illustrates the idea of augmenting paths and cycles.

Example 1 We consider the network shown in Fig. 1(a). The transit costs and transit

capacities are as follows:

c1,2(t) =

8

>

<

>

:

1 0 ≤ t < 0.5,

2 0.5 ≤ t < 1,

1 1 ≤ t ≤ 2,

c2,3(t) =

8

>

<

>

:

1 0 ≤ t < 1,

2 1 ≤ t < 1.5,

1 1.5 ≤ t ≤ 2,

a1,2(t) =

8

>

<

>

:

4t 0 ≤ t < 1,

0 1 ≤ t < 1.5,

1 1.5 ≤ t ≤ 2,

a2,3(t) =

8

>

<

>

:

1 0 ≤ t < 0.5,

0 0.5 ≤ t < 1,

4t− 2 1 ≤ t ≤ 2.

The storage capacities are given as

b1(t) =∞, b2(t) = 1, b3(t) =∞, t ∈ [0, 2].

The transit times and storage costs are assumed to be zero. The problem is to send

an initial storage of one unit from node 1 to node 3 within the time interval [0, 2].
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One possible solution x is obtained as follows. We send flow into arc (1, 2) with rate

2t within the interval [0, 1). The flow arriving at node 2 is stored there till time 1. So

there will be one unit of flow at node 2 at time 1. We send this amount of flow into

arc (2, 3) with rate 2t − 2 within the interval [1, 2]. Fig. 1(b) shows the flow x in the

corresponding time-expanded network. Formally, x is given by

x1,2(t) =

(

2t t ∈ [0, 1),

0 t ∈ [1, 2),
x2,3(t) =

(

0 t ∈ [0, 1),

2t− 2 t ∈ [1, 2],

with corresponding storage

y1(t) =

(

2t t ∈ [0, 1),

0 t ∈ [1, 2),
y2(t) =

(

0 t ∈ [0, 1),

2t− 2 t ∈ [1, 2),
y3(t) =

(

0 t ∈ [0, 1),

2t− 2 t ∈ [1, 2).

We are now interested in identifying the augmenting paths and augmenting cycles.

Fig. 1(c) depicts the network with backward arcs and Fig. 1(d) depicts the paths and

cycles with positive residual capacities in the corresponding time-expanded network.

However, there are more augmenting paths and cycles in addition to those shown in

Fig. 1(d), whose residual capacities are zero. Some of them are given below

P1 :(1, 0), (2, 0), (3, 0), (3, 2),

P2 :(1, 0), (2, 0), (2, 0.5), (3, 0.5), (3, 2),

P3 :(1, 0), (1, 0.5), (2, 0.5), (3, 0.5)(3, 2),

P4 :(1, 0), (1, 1.5), (2, 1.5), (2, 2), (3, 2),

P5 :(1, 0), (1, 2), (2, 2), (3, 2)

W1 :(1, 0), (1, 2), (2, 2), (3, 2), (3, 1), (2, 1), (2, 0), (1, 0),

W2 :(1, 1), (1, 2), (2, 2), (3, 2), (3, 1.5), (2, 1.5), (2, 1), (1, 1),

W3 :(1, 0.5), (1, 2), (2, 2), (3, 2), (3, 1.5), (2, 1.5), (2, 0.5), (1, 0.5),

with costs

c(P1) = 2, c(P2) = 2, c(P3) = 2, c(P4) = 2, c(P5) = 2,

cost(P1) = 2, cost(P2) = 1, cost(P3) = 2, cost(P4) = 2, cost(P5) = 2,

and

c(W1) = −1, c(W2) = −2, c(W3) = −2,

cost(W1) = −1, cost(W2) = 1, cost(W3) = −1.

We observe that the equality c(P ) = cost(P ) does not hold for some path or cycle P .

As mentioned already above, an augmenting path (or cycle) must satisfy the con-

ditions (i)-(iv). But the other direction may not hold, that is, a path satisfying these

conditions is not necessarily an augmenting path in general. The following paths and

cycles show this fact:

P6 :(1, 0), (2, 0), (2, 1), (3, 1), (3, 2),

P7 :(1, 0), (1, 1), (2, 1), (3, 1), (3, 2),

W4 :(1, 1), (1, 2), (2, 2), (3, 2), (3, 1), (2, 1), (1, 1).
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In what follows, we consider NTP (1, 0) as the source and investigate the existence

of shortest augmenting paths from NTP (1, 0) to every NTP (i, t). For ease of notation,

we assume that the network G contains an augmenting path from NTP (1, 0) to every

other NTP. Notice that this assumption imposes no loss of generality since this is

satisfied, if necessary, by introducing an artificial storage node s and adding artificial

arcs (s, i) joining node s to node i for each node i ∈ N . The artificial node s has a

large initial storage, a large cost and an infinite capacity, and each artificial arc (s, i)
has a zero transit time, a large cost, and an infinite capacity. It is clear that no artificial

arc would appear in a shortest augmenting path from (1, 0) to any NTP (i, t) unless

network G contains no augmenting path from (1, 0) to (i, t) without artificial arcs.

The problem of determining shortest augmenting paths is closely related to the

continuous-time dynamic shortest path problem for which transit times can take neg-

ative values. This problem is already studied by Koch and Nasrabadi [22]. They show

that the dynamic shortest paths may not exist in general, particularly if transit times

are irrational or cost functions have an infinite number of extrema (see [22, Section 4.1]

for a detailed discussion on this subject). However, they prove the existence of dynamic

shortest paths if the cost functions are piecewise analytic and transit times are rational.

In the following, we use the same techniques as in [22] to show that shortest augmenting

paths from NTP (1, 0) to every NTP (i, t) exist under Assumptions 1 and 2.

Throughout the rest of this section, we fix a feasible flow x with corresponding

storage y and suppose that P : (i1, t1), (i2, t2), . . . , (iq, tq) is an augmenting path from

NTP (1, 0) to NTP (n, T ). Due to Theorem 2, the flow x is assumed to be piecewise

analytic. The path P is said to be a local shortest augmenting path if there exists an

ǫ > 0 such that c(P ) ≤ c(P ′) for all augmenting paths P ′ in the ǫ-neighborhood of P .

A local shortest augmenting path can be characterized in another way in terms of its

arc-subpaths. To this end, we need some definitions and lemmas.

Let f be a real-valued function defined on [0, T ]. The support of f , denoted by

supp(f), is defined as the set of all points t ∈ [0, T ] for which f is not identically zero

on any open interval containing t. For the case that f is a piecewise analytic function,

supp(f) can be expressed as a finite union of disjoint closed intervals.

Lemma 4 Let f : [0, T ] → R be a piecewise analytic function. If f is not identi-
cally zero, then supp(f) is a finite union of disjoint closed intervals.

Proof We know, by the definition of piecewise analytic functions, that there exist a

partition {t0, t1, . . . , tm} of [0, T ], a real value ǫ > 0, and analytic functions gk on

(tk1
− ǫ, tk + ǫ) with gk(t) = f(t) for t ∈ [tk1

, tk), k = 1, . . . , m. Moreover, it is

well known that the Lebesgue-measure of zero set of a nonzero analytic function is

zero. Thus, for each k = 1, . . . , m, f is either identically zero or has a zero set of

Lebesgue-measure zero on the interval [tk1
, tk), implying (tk1

, tk) ⊆ [0, T ] \ supp(f)

or [tk1
, tk] ⊆ supp(f), respectively. This establishes the desired result. ⊓⊔

Now let Q : (iℓ, tℓ), . . . , (ir, tr) be an arc-subpath of P . It is not difficult to see

that a new augmenting path under x can be constructed from P by slightly changing

the starting time tℓ of Q. More precisely, there exists an (inclusion-wise) maximal

closed interval [u, v], say, containing tα so that the path P |Q(α), given by (14), is an

augmenting path for every α ∈ [u, v]. Here the term “maximal closed interval” means

that there is no closed interval [u′, v′] strictly containing [u, v] so that P |Q(α) is an

augmenting path for each α ∈ [u′, v′]. The interval [u, v] can be found in the following

way.
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We define a function f : [0, T ]→ R≥0 as

f(t) := min
ℓ≤k≤r−1

8

<

:

fk

0

@t +

k−1
X

p=ℓ

λip,ip+1

1

A

9

=

;

,

where for k = ℓ, . . . , r − 1, fk is a real-valued function on [0, T ] given by

fk(t) :=

(

aik,ik+1
(t)− xik,ik+1

(t) if (ik, ik+1) ∈ A,

xik+1,ik
(t) if (ik, ik+1) ∈

←−
A ,

Notice that for each t ∈ [0, T ], the value f(t) represents the maximum additional flow

rate that can be sent from node iℓ to node ir along path Q at time t. Further, we

define two more functions gℓ, gr : [0, T ]→ R≥0 as

gℓ(t) :=

(

biℓ
(t)− yiℓ

(t) if t ≥ tℓ,

yiℓ
(t) if t ≤ tℓ,

gr(t) :=

(

yir
(t + λQ) if t ≥ tℓ,

bir
(t + λQ)− yir

(t + λQ) if t ≤ tℓ.

where λQ is the transit time of arc-subpath Q, that is,

λQ :=
X

ℓ≤k≤r−1

λik,ik+1
.

For each t ∈ [0, T ] the value gℓ(t) gives an upper bound on the amount of flow that

can be increased or decreased from the stored flow at node iℓ at time t, depending on

whether t > tℓ or t ≤ tℓ, respectively. A similar interpretation holds for the value gℓ(t)
for each t ∈ [0, T ].

The function f is not identically zero and in particular, tℓ is a member of supp(f)

since P is an augmenting path. However, tℓ may not be a member of supp(gℓ) or

supp(gr). If it is the case, then setting [u, v] := [tℓ, tℓ] leads to the desired interval.

Now we consider the case that tℓ ∈ supp(gℓ) ∩ supp(gr). In this case, there exists a

maximal closed interval [u∗, v∗] containing tℓ such that gℓ(t) > 0 and gr(t) > 0 for each

t ∈ (u∗, v∗). On the other hand, it follows from Lemma 4 that supp(f) can be expressed

as
S

k∈I [uk, vk], where I is a finite set of indices and [uk, vk] ∩ [uk′ , vk′ ] = ∅ for each

k, k′ ∈ I with k 6= k′. The fact that P is an augmenting path implies tℓ ∈ supp(f) and

consequently tℓ ∈ [uk, vk] for some k ∈ I. We now define [u, v] := [uk, vk] ∩ [u∗, v∗].
It is now easy to see that P |Q(α) is an augmenting path for every α ∈ [u, v] and

moreover, there is no closed interval [u′, v′] strictly containing [u, v] so that P |Q(α) is

an augmenting path for each α ∈ [u′, v′].
So far, we have proved the existence of a maximal interval [u, v] for which the

path P |Q(α) is an augmenting path for all α ∈ [u, v]. We now define a cost function

cQ : [u, v]→ R with respect to Q as

cQ(α) :=

8

>

>

<

>

>

:

P

k:(ik,ik+1)∈A cik,ik+1
(αk−) α = v,

P

k:(ik,ik+1)∈A min{cik,ik+1
(αk−), cik,ik+1

(αk+)} α ∈ (u, v),
P

k:(ik,ik+1)∈A cik,ik+1
(αk+) α = u,

(16)



19

where the index k varies from ℓ to r − 1. We recall that αℓ = α and αk+1(α) =

αk+λik,ik+1
for k = ℓ, . . . , r−1. For the case that u = v = tℓ, we define cQ(α) := c(Q),

where c(Q) is given by (15). The function cQ is lower semi-continuous at any point

α ∈ [u, v] and such a function attains its local minimum on a closed interval. We shall

use this fact later on to prove the existence of shortest augmenting paths.

It is straightforward that the cost function cQ has a local minimum on [u, v] at

the point tℓ if P is a local shortest augmenting path. Conversely, if for each arc-

subpath Q : (iℓ, tℓ), . . . , (ir, tr) of P , then cQ attains a local minimum at the point

tℓ within the interval [u, v], then P is a local shortest augmenting path. Thus we have

established the following lemma, which gives an alternative characterization of local

shortest augmenting paths.

Lemma 5 The path P is a local shortest augmenting path if and only if for each
arc-subpath Q of P with starting time tℓ the cost function cQ, given by (16), has
a local minimum at the point tℓ.

In what follows, let Ploc be the set of all augmenting paths P from NTP (1, 0) to

NTP (n, T ) such that for each maximal arc-subpath Q of P with starting time t the

function cQ, given by (16), has a local minimum at t and is not constant on any open

neighborhood containing t. Further, we assume that two paths P1 and P2 are identified

if they differ only in the starting time t1 and t2 (t1 < t2), respectively, of one common

arc-subpath Q and cQ is constant over [t1, t2]. Note that in this case P1 and P2 have

the same cost, i.e., c(P1) = c(P2). Then, for each local shortest augmenting path, one

augmenting path with the same cost is contained in Ploc. Hence, the following lemma

shows that the set of local shortest augmenting paths from NTP (1, 0) to NTP (n, T )

is finite.

Lemma 6 The set Ploc is finite.

Proof Let λ̂ be the greatest common factor of the transit times and so

λ̂ = min
S>0

n

S is a finite sum of transit times λi,j , (i, j) ∈
←→
A

o

.

Note that τ̂ exists and is greater than zero because of Assumption 1. Thus each arc

(i, j) ∈
←→
A can appear at most

l

T

λ̂

m

times in any arc-suppath of an arbitrary path. In

other words, every arc-subpath of any augmenting path contains at most
l

T

λ̂

m

· |A|

arcs. Consequently, the number of possible maximal arc-subpaths is bounded by a

constant where two arc-subpaths that differ by the starting time are identified. We

now assume by contradiction that the cardinality of Ploc is infinite. Hence there exists

an infinite number of paths in Ploc all containing the same maximal arc-subpath Q,

say, but with different starting times. It then follows from Lemma 5 that the cost

function cQ, given by (16), has an infinite number of local minimum points. This is a

contradiction because cQ is a piecewise analytic function and has only a finite number

of local extrema. This establishes the lemma.

⊓⊔

The next lemma shows that Ploc contains the shortest augmenting path from NTP

(1, 0) to NTP (n, T ).

Lemma 7 Let P be an augmenting path from NTP (1, 0) to NTP (n, T ). Then
there exists an augmenting path P ′ ∈ Ploc with c(P ′) ≤ c(P ).
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Proof If P ∈ Ploc, then we are done. So we consider the case where P is not in Ploc.

In this case we iteratively apply the following procedure to construct an augmenting

path P ′ ∈ Ploc:

(i) Let Q : (ik, tk), . . . , (ir, tr) be a maximal arc-subpath of P such that the cost

function cQ does not have a local minimum at tk or is constant on an open interval

containing t. Notice that such a arc-subpath exists because of the definition of

Ploc and the fact that P is not in Ploc. Further, choose P ′ such that it contains

a minimal number of arcs.

(ii) The function cQ is also lower semi-continuous. Thus it takes its minimum over

[u, v] at some point t. If it has several local minimum, then choose t to be the

one with maximum value.

(iii) Let P |Q(t) be the augmenting path from NTP (0, 1) to NTP (n, T ) obtained

from P by shifting the arc-subpath Q by tk − t time units. Since P |Q(t) may

contain continuous-time dynamic cycles, we delete all of them in P |Q(t).
(iv) Set P := P |Q(t). If P is not in Ploc, then go to (i).

The above procedure terminates after a finite number of iterations and the resulting

augmenting path P is contained in Ploc. Further, in each iteration the cost of P does

not increase which proves the lemma. ⊓⊔

As a consequent of Lemmas 6 and 7, we conclude that a shortest augmenting path

from NTP (1, 0) to NTP (n, T ) exists, that is the one in PK with minimum cost.

Further, Lemma 6 as well as Lemma 7 remain true if NTP (n, T ) is replaced by every

other NTP (i, t). This leads to the main result of this section.

Theorem 3 Suppose that x is a piecewise analytic solution for CDNFP. For each
NTP (i, t) let di(t) be the cost of a shortest augmenting path from (0, 1) to (i, t).
Then, for each node i ∈ N , the label τi(t) exists for all t ∈ [0, T ] and the function
τi : [0, T ]→ R is piecewise analytic.

Proof The existence of τi(t) follows from 6 and 7 for each NTP (i, t). It thus remains

to show that τi is piecewise analytic on [0, T ] for each i ∈ N . In the following we fix a

node i ∈ N . Similar to the definition of Ploc define Ploc(t) as the set of augmenting

paths P from (1, 0) to (i, t) such that for each maximal arc-subpath Q of P with

starting time t̄ the function cQ has a local minimum at t̄ and is not constant on any

open neighborhood containing t̄. Then Pv := ∪t∈[0,T ]Ploc(t) contains (nearly) all

shortest augmenting paths for any point in time θ ∈ [0, T ].

Next we define an equivalence relation ∼ on Pv. let P : (i1, t1), . . . , (iq, tq) and

P ′ : (i′1, t
′
1), . . . , (i′q′ , t′q′) be two members of Pv. We define ∼ on Pv by P ∼ P ′ if and

only if q = q′ and there is some r ∈ {1, . . . , q − 1} such that

(i) (i′k, t′k) = (i′k, t′k) for each k ≤ r, ir = ir+1 = i′r = i′r+1 and tr+1 6= t′k+1,

(ii) ik = i′k for each k ≥ r + 1 and the NTP sequences (ir+1, tr+1), . . . , (iq, tq) and

(i′r+1, t
′
r+1), . . . , (i′q′ , t′q′) are arc-subpaths of P and P ′, respectively.

Roughly speaking, P and P ′ are equivalent if they differ only in the starting time

of the last maximal arc-subpath. For an equivalence class [P ] we denote by P1 the

path consisting of the first r NTPs of P and by P2 the arc-path consisting of the last

q − r + 1 NTPs of P . Note that P1 and P2 can be the empty path. Further, P1 and

P2 are well-defined in the sense that they are coincide for any member of [P ]. On the

other hand, any augmenting path in [P ] is obtained by concatenating P1 and P2 and
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changing the starting time of P2 (if P is an arc-path we put it in the equivalence class

P1 = ∅ and P2 = P ).

We now consider the quotient set Pv/ ∼ and an equivalence class [P ] ∈ Pv/ ∼.

Then each maximal arc-subpath Q of P1 and the maximal arc-subpath P2 locally

minimizes cP ′ . Hence, along the same lines as in the proof of Lemma 6 we obtain that

there exists only a finite number of possibilities for P1 and P2. Hence, Pv/ ∼ is a finite

set. In order to get an expression for τi we define a cost function c[P ] : [0, T ]→ R by

c[P ](t) := c(P1) +

(

cP2
(t− λP2

) if t > λP1
+ λP2

,

∞ if t ≤ λP1
+ λP2

,

Then, for every P ∈ Pv we have c(P ) = c[P ](t) where t is the last time that we

reach node i along P , i.e., (i, t) is the last NTP of P . Thus we obtain τi = min{c[P ]}.
Therefore τi is piecewise analytic since it is the minimum of a finite number of piecewise

analytic functions. ⊓⊔

4 Optimality conditions and strong duality

In this section we return to the optimality conditions for CDNFP. In particular we

show that not only conditions (CS1)-(CS4) are sufficient for optimality, but also are

necessary under Assumptions 1 and 2. Furthermore, we develop more necessary and

sufficient conditions for optimality and derive a strong duality result between CDNFP

and CDNFP∗.

We consider a feasible flow x and suppose that W : (i1, t1), . . . , (iq, tq) is an

augmenting cycle. We have defined the cost of W in two different ways: c(W ) in terms

of the cost of arc-subpaths of W and cost(W ) as the sum of the costs of the arcs at

the times they appear around the cycle W . Further, we have observed that these two

values are not equal in general. However, we have the following result.

Lemma 8 Let x be a piecewise analytic flow. The network G contains a nega-
tive augmenting cycle if and only if there is a cycle W with cap(W ) > 0 and
cost(W ) < 0.

Proof Suppose first that W is a cycle with cap(W ) > 0 and cost(W ) < 0. Clearly W
is an augmenting cycle since cap(W ) > 0. So we need to show that c(W ) < 0. Recall

that c(W ) =
P

Q c(Q) where sum is taken over all maximal arc-subpaths Q of W and

c(Q) is computed by (15). For each maximal arc-subpath Q : (iℓ, tℓ), . . . , (ir, tr) of W ,

we define cost(Q) :=
P

k:(ik,ik+1)∈
←→
A

cik,ik+1
(tk) where the index k varies from ℓ to

r−1. The fact that cap(W ) > 0 implies that there exists some ǫ > 0 so that W |Q(α) is

an augmenting cycle for each α ∈ (tℓ, tℓ +ǫ). Due to the definition of c(Q) and cost(Q)

and the fact that cost functions are right-continuous, we can conclude c(Q) ≤ cost(Q).

Therefore, c(W ) ≤ cost(W ) which gives the result in one direction.

To prove the other direction, suppose that W is a negative augmenting cycle.

Let Q : (iℓ, tℓ), . . . , (ir, tr) be a maximal arc-subpath of W . Then we know that

there is some ǫ > 0 such that W |Q(α) is also an augmenting cycle for each α in

(tℓ − ǫ, tℓ) or (tℓ, tℓ + ǫ). We assume without loss of generality that W |Q(α) is an

augmenting cycle for each α in (tℓ − ǫ, tℓ). Then for some α ∈ (tℓ − ǫ, tℓ), we have

|cost(Q(α))−c(Q)| < ǫ. Here Q(α) denotes the arc path (iℓ, iℓ+1), . . . , (ir−1, ir) with
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starting time α. More precisely, we have Q(α) : (iℓ, αℓ), . . . , (ir, αr) where αℓ = α
and αk+1(α) = αk + λik,ik+1

for k = ℓ, . . . , r − 1. Further, α can be chosen in such

a way that cap(Q(α)) > 0. Now we consider the cycle W |Q(α) and repeat the above

procedure for all remaining maximal arc-subpaths of W . Let W ′ be the resulting cycle.

It is easy to see that for sufficiently small ǫ > 0, we get cap(W ′) > 0 and cost(W ′) < 0.

⊓⊔

Lemma 8 provides another characterization of negative augmenting cycles. Accord-

ing to this we can conclude the following result.

Lemma 9 Let x be a piecewise analytic flow. Then x is not optimal if the network
G has a negative augmenting cycle.

Proof Suppose that the network G contains some negative augmenting cycle. Then, we

conclude from Lemma 8 that the network G contains a cycle W : (i1, t1), . . . , (iq, tq)

with cap(W ) > 0 and cost(W ) < 0. Therefore, for every k = 2, . . . , q with ik−1 6= ik,

there exist δk and γk such that

xik−1,ik
(t) ≤ aik−1,ik

(t)− δk, t ∈ [tk−1, tk−1 + γk),

if (ik−1, ik) ∈ A, and

δk ≤ xik,ik−1
(t), t ∈ [tk, tk + γk),

otherwise. Let δ and γ be the minimum of δk and γk, respectively, and define ǫk = 2δγ.

Also for every k = 2, . . . , q with ik−1 = ik, there exist δk and γk such that

yik
(t) ≤ bik

(t)− δk, t ∈ (tk−1 − γk, tk + γk),

if tk−1 < tk, and

δk ≤ yik
(t), t ∈ (tk − γk, tk−1 + γk),

otherwise. Let δ and γ be the minimum of δk and γk, respectively. We then define

ǫk :=

(

2δγ, if ik−1 6= ik,

δ, if ik−1 = ik,

for k = 2, . . . , and let

z∗ :=
1

2γ
min{ǫ2, ǫ3, . . . , ǫq}.

We now define

zi,j(t) :=

8

>

<

>

:

z∗ if i = ik, j = ik+1, t ∈ [tk, tk + γ) and k = 1, . . . , q − 1,

−z∗ if j = ik+1, i = ik, t ∈ [tk+1, tk+1 + γ), and k = 1, . . . , q − 1,

0 otherwise.

We can easily see that x + z is a feasible flow.

Thus far we have seen that another feasible flow x̄ = x + z can be obtained by

augmenting the constant flow rate z∗, given by (17), along the arcs involved in the
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cycle W . The cost of augmenting, that is, the change in the objective function value

in moving from x to x̄, is computed by z∗
Pq

k=2 ζk, where

ζk :=

8

>

>

<

>

>

:

R tk+γ

tk
cik,ik+1

(t) dt if i = ik, j = ik+1,
R tk+1+γ

tk+1
−cik+1,ik

(t) dt if i = ik+1, j = ik,

0 otherwise.

for k = 2, . . . , q. Since z∗ > 0, x̄ will be a strictly improved feasible solution than x(t)
if

Pq
k=2 ζk < 0. We know that the cost functions c are piecewise analytic and right-

continuous. This implies
Pq

k=2 ζk < 0 for γ small enough since we have cost(W ) < 0.

This establishes the lemma. ⊓⊔

In the following we show that the converse of Lemmas 3 and 9 is also true and then

develop a strong duality result between CDNFP and CDNFP∗. To do so, we need the

following lemma.

Lemma 10 Suppose that x is a piecewise analytic flow. The network G contains
no negative augmenting cycle if and only if there exist piecewise analytic functions
τi, i ∈ N defined on [0, T ] which satisfy the following conditions:

(SP1) if xi,j(t) > 0, then ci,j(t) + τi(t)− τj(t + λi,j) ≤ 0;
(SP2) if xi,j(t) < ai,j(t), then ci,j(t) + τi(t)− τj(t + λi,j) ≥ 0;
(SP3) if yi(t) > 0 on (u, v), then τi is monotonic increasing on (u, v);
(SP4) if yi(t) < bi(t) on (u, v), then τi is monotonic decreasing on (u, v).

Proof We first suppose that there exist piecewise analytic functions (τi)i∈N on [0, T ]

satisfying conditions (1)-(4). Now let W : (i1, t1), (i2, t2), . . . , (iq, tq) be a cycle with

cap(W ) > 0. We can write down the cost of W as

cost(W ) =
X

k:(ik,ik+1)∈A

cik,ik+1
(tk) +

X

k:(ik+1,ik)∈A

−cik+1,ik
(tk+1)

=
X

k:(ik,ik+1)∈A

cik,ik+1
(tk) + τik

(tk)− τik+1
(tk+1)

+
X

k:(ik+1,ik)∈A

−cik+1,ik
(tk+1) + τik

(tk+1)− τik
(tk)

+
X

k:ik=ik+1,tk<tk+1

τik
(tk)− τik

(tk+1)

+
X

k:ik=ik+1,tk<tk+1

τik
(tk+1)− τik

(tk),

where the index k varies from 1 to q−1. It is not difficult to see that each of the above

four summation terms on the right-hand side of the second equal sign is nonnegative

since cap(W ) > 0 and the pair x and τ satisfies (SP1)-(SP4). Hence Cost[W ] ≥ 0 and

it now follows from Lemma 8 that there are no negative augmenting cycles under x.

Let us now consider the other direction, that is, there exists no negative augmenting

cycle under x. For each node i ∈ N , we consider the function τi : [0, T ]→ R for which

τi(t) is defined to be the cost of a shortest augmenting path from (1, 0) to (i, t). We

know from Theorem 3 that τi exists and is piecewise analytic on [0, T ].
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It remains to show that the functions τi, i ∈ N satisfy conditions (1)-(4). Suppose

by contradiction that the condition (1) does not hold, that is, there are some arc

(i, j) ∈ A and some point in time t ∈ [0, T ] such that xi,j(t) > 0, but ci,j(t) + τi(t)−
τj(t + λi,j) < 0. Since x, c, and τ are piecewise analytic and thus right-continuous,

there is some ǫ > 0 for which xi,j(s) > 0 and ci,j(s) + τi(s) − τj(s + λi,j) < 0 for

each s ∈ [t, t + ǫ). Let us fix a point s ∈ (t, t + ǫ) and let P : (i1, t1), . . . , (iq, tq)

be the shortest augmenting path from NTP (0, 1) to NTP (i, s). We now consider the

augmenting walk P ′ : (i1, t1), . . . , (iq, tq), (j, s + λi,j) from (0, 1) to (j, s + λi,j) with

augmenting cost c(P ′) = τi(s) + ci,j(s). Since τj(s + λi,j) is the cost of the shortest

augmenting path from (1, 0) to (j, s + λi,j) and there are no negative augmenting

cycles under x, we get τj(s + λi,j) ≤ τi(s) + ci,j(s). This is a contradiction and so the

condition (1) must hold. In a similar way, we can show that the conditions (2)-(4) are

fullfiled. This completes the proof of the theorem. ⊓⊔

We are now in a position to prove the main results of this paper.

Theorem 4 (Reduced Cost Optimality Conditions) Suppose that x is a
piecewise analytic flow. Then x is optimal if and only if there are piecewise analytic
functions πi, i ∈ N defined on [0, T ] so that satisfy the following reduced cost

optimality conditions:

(RC1) if xi,j(t) > 0, then ci,j(t)− πi(t) + πj(t + λi,j) ≤ 0;
(RC2) if xi,j(t) < ai,j(t), then ci,j(t)− πi(t) + πj(t + λi,j) ≥ 0;
(RC3) if yi(t) > 0 on (u, v), then πi is monotonic decreasing on (u, v);
(RC4) if yi(t) < bi(t) on (u, v), then πi is monotonic increasing on (u, v).

Proof First suppose that x is optimal. Hence, by Lemma 9, there are no negative

augmenting cycles with respect to x. It next follows from Lemma 10 that there are

piecewise analytic functions τi, i ∈ N satisfying the conditions (SP1)-(SP4). Now we

let πi := −τi for each node i ∈ N , which gives the result in one direction. To prove the

other direction, it is easy to see that the conditions (RC1) and (RC2) are equivalent

to the conditions (CS2) and (CS2). On the other hand, by means of Lemma 1, we

can show that the conditions (RC3) and (RC4) are equivalent to conditions (CS3) and

(CS4). Now Lemma 3 implies that x optimal, which concludes the proof. ⊓⊔

Theorem 5 (Negative Cycle Optimality Condition) A piecewise analytic
flow x is optimal if and only if the network G contains no negative augmenting
cycle under x.

Proof Because of Lemma 9, it is sufficient to show that x is optimal if there are no

negative augmenting cycles under x. So we assume that the network G contains no

negative augmenting cycle. Then, by a similar argument as in the proof of Theorem 4,

we can deduce that there are piecewise analytic functions πi, i ∈ N such that the

pair x and π = (πi)i∈N satisfies the optimality conditions (CS1)-(CS4). It now follows

from Lemma 3 that x is optimal for CDNFP and π is optimal for CDNFP∗. ⊓⊔

Theorem 6 (Strong Duality) There exist piecewise analytic solutions x and π
for CDNFP and CDNFP∗, respectively, so that V [CDNFP, x] = V [CDNFP∗, π].

Proof We know from Theorem 2 that CDNFP has a piecewise analytic optimal solu-

tion, say x, due to the fact that Assumptions 1 and 2 hold. Then, by means of Theorem
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Algorithm 1 Negative Cycle-Canceling Algorithm

establish an initial solution x

while G contains a negative augmenting cycle under x do

identify a negative augmenting cycle W under x

augment maximum flow rate along W

update x

end while

4, we conclude that there exists piecewise analytic functions πi, i ∈ N such that the

pair x and π := (πi)i∈N satisfy the optimality conditions (RC1)-(RC4). These con-

ditions are equivalent to conditions (CS1)-(CS4). The assertion of the theorem now

follows from Lemma 3. ⊓⊔

5 Conclusions and further work

In this paper we have studied the continuous-time dynamic network flow problem (CD-

NFP) to include time-varying features encountered in many practical situations. In this

problem, arc and node costs, arc and node capacities, and supplies and demands are

functions of time and the passage of time is continuous. Several network-related op-

timality conditions as well as a stung duality result have been developed for CDNFP

under the assumption that the input functions are piecewise analytic and the transit

times are rational. These results can be used to develop algorithms for solving CDNFP

in a similar way as in static network flows. For example, Theorem 5 lays the ground

for an algorithmic approach which we call the Negative Cycle-Canceling Al-

gorithm. Here we discuss the essential steps of a generic version of this algorithm.

Further details are beyond the scope of this paper and are left for further work.

Like the negative cycle-canceling algorithm for the static minimum cost flow prob-

lem, the algorithm maintains a feasible solution at each iteration and successively im-

proves the solution towards optimality. More specifically, the algorithm first establishes

a feasible solution x. It then proceeds by identifying negative augmenting cycles un-

der x and sending flow rate in these cycles, while preserving feasibility. The algorithm

terminates when the network contains no negative cycle with respect to x. Theorem 5

implies that when the algorithm terminates it has found an optimal solution. Alg. 1

specifies the generic version of this procedure.

In what follows, we investigate in more detail how we can implement the Negative

Cycle-Canceling Algorithm and discuss further research directions.

5.1 Obtaining an initial feasible solution

The problem of finding an initial feasible solution for CDNFP is not a difficult task.

In fact, for the case that b is piecewise linear, and a and r are piecewise constant, we

can construct a feasible flow by a static minimum cost flow computation in a so-called

time-expanded network (see [27, Section 3.2] for more details). However, for the more

general setting where the input functions are piecewise analytic, but not piecewise

constant/linear, we could construct an initial solution, which is also an extreme point

of the feasible region F , in a similar manner as in static network flows. Specifically,

this can be done by introducing an artificial storage node s and artificial arcs of zero
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transit time and infinite capacity and cost joining node i to s. We note that no such arc

would appear in an optimal solution unless the problem contains no feasible solution

without artificial arcs.

5.2 Identifying a negative-cycle

The most important task in the Negative Cycle-Canceling Algorithm is how

to check whether or not there exists a negative augmenting cycle with respect to a

given solution. Moreover, if such a cycle exists, then how to detect it. In the context of

static network flows, the problem of detecting negative cycles also plays an important

role in negative cycle-canceling algorithms for solving the minimum cost flow problem.

Hence several algorithms have been developed for detecting the presence of a negative

cycle if one exists (see, e.g., [14]). Most of them combine a shortest path algorithm

and a negative cycle detection strategy. Thus a natural approach to detect dynamic

cycles with negative cost could be developing algorithms analogous to those that are

available in the static case and would be an important topic for further investigation.

Another possible approach for detecting augmenting cycles with negative cycle is

to maintain an extreme point solution x and a potential function π which is comple-

mentary slack with x at each iteration. It is worth to mention that extreme points

of the feasible region for the static minimum cost flow problem correspond to the

flows which do not admit augmenting cycles. A similar characterization of the extreme

points for CDNFP has been derived by Anderson [3] (see also [27, Section 4.2]). We

now consider a feasible solution x for CDNFP which is an extreme point of the feasible

region5. The problem here is how to compute a potential function π which is comple-

mentary slack with x. It can be done in a similar manner as described in Anderson

and Philpott [7] (see also [7, Section 3] for details) by having complementary slackness

conditions (CS1)-(CS4) and the fact that x is an extreme point solution. Then we check

whether complementary slackness (or reduced costs) optimality conditions hold or not.

If optimality conditions hold for the pair x and π, then Lemma 3 (or Theorem 4)

implies that x is optimal for CDNFP and π is optimal CDNFP∗. Otherwise, there

is a negative augmenting cycle with respect to x, and the pair x and π enable us to

identify a negative augmenting cycle. We should mention that due to degeneracy, this

version of the algorithm cannot necessarily send a positive flow rate along this cycle.

The problem that how to overcome degeneracy and develop a network simplex version

of the Negative Cycle-Canceling Algorithm is very interesting and certainly

deserves further study.

5.3 Augmenting flow around a cycle

It remains to discuss how to augment flow rate around a negative dynamic cycle so

that the largest decrease in the objective function value is obtained. Suppose that

W : (i1, t1), (i2, t2), . . . , (iq, tq) is a negative augmenting cycle with respect to a

given feasible solution x. Because of Lemma 8 we can assume that cap(W ) > 0 and

cost(W ) < 0. We now consider two cases: that W is an arc-cycle, i.e., (ik, ik+1) ∈
←→
A

5 We note that any feasible flow can be converted into an extreme point solution without
increasing the objective function value using the purification algorithm described in [27]
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for k = 1, . . . , q − 1 and that W : (i1, t1), (i2, t2), . . . , (iq, tq) is not an arc-cycle,

i.e., for some k, we have ik = ik+1. The former case is simple since augmenting

flow along an arc-cycle does not effect the storage at nodes. But the latter case re-

quires a complicated argument and further investigation. The main reason for this is

that it effects the storage at node ik for which ik = ik+1 during the time interval

[min{tk, tk+1}, max{tk, tk+1}].
We conclude the paper by noting that the termination of the Negative Cycle-

Canceling Algorithm after a finite number of iteration is still an open problem and

deserves attention. Hence it is of great interest to investigate the convergence properties

of the algorithm, even for the special case that r and a are piecewise constant and c
and b are piecewise linear.
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