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Abstract

We study the problem of computing socially optimal routes with re-
spect to a game-theoretic dynamic flow model. We consider different
algorithms to heuristically solve the problem and compare their perfor-
mance.

1 Introduction

Routing problems are among the classic problems studied in combinatorial op-
timization. In their simplest form a routing problem is characterized as follows:
Given a directed graph D = (V, A), a source s and a sink ¢t in V, and a weight
function ¢ : A — R>g, what is the shortest path from s and ¢ with respect to
¢? The problem was considered and solved by Dijkstra in [Dij59]. Several im-
provements have been made regarding the computational efficiency in situations
where for a given graph D and cost ¢ requests between multiple source/sink pairs
84, t; are made successively, for a survey see [WWO07]|. However, this simple rout-
ing model is insufficient for many real-world applications due to the following
shortcomings:

Firstly travel times throughout networks are not generally constant but rather
time-dependent: Consider for example a public transport line which is serviced
by vehicles in regular intervals. In this case the travel time depends on the time
at which a traveler arrives at a certain stop of the line. Therefore in this case the
routing problem consists of a directed graph D = (V, A), time-dependent weight
functions ¢ : A x N — R>( for the arcs a € A, a pair s,t € V and a departure
time t; € N. The task is again to find a shortest s-t-path with respect to c.
The problem becomes NP-hard in this case, however, there are some important
special cases which remain tractable. Firstly, if the weights ¢ obeys the FiFo
(first in first out) principle a shortest path can be computed using a variant of
the algorithm proposed by Dijkstra. Secondly, if the traveler is permitted to
wait at intermediate nodes in the graph it is possible to transform the problem
to an equivalent problem which weights ¢’ obeying the FiFo principle which can
then be solved efficiently.

The problem becomes more complex when we consider examples such as road
networks. In the best case the time taken to traverse a road segment will only



depend on the length of the segment and the imposed speed limit. This holds
true for off-peak times. However, during rush-hour time the travel times will
increase due to congestion. Therefore the travel times are most certainly time-
dependent. But even a time-dependent weights are not sufficiently accurate to
model the travel times for road-networks. This is due to the fact that travelers
traversing the same road segment at the same time influence each other. As a
result the travel time for each individual traveler does not only depend on their
path but also on the paths taken by every other traveler in the network.

2 Related literature

Ford and Fulkerson introduce dynamic flows in [FF58]. They study the problem
of sending a maximum amount of flow from a given source to a given sink within
a fixed time horizon T. The problem can be reduced to a static flow problem
which can be solved efficiently. An alternative to sending the maximum amount
of flow from source to sink within a given time horizon it is sometimes desired
to maximized the amount of flow sent through the network at every single point
in time. The resulting earliest arrival flows can be computed efficiently, for a
survey see [Sku09].

The first theoretical investigation of road networks is due to Wardrop in [War52]
who introduced the Wardrop equilibirum, an equilibrium concept similar to a
that of a (mixed) Nash equilibrium. It was remarked that equilibria often suffer
from inefficiency with respect to a common social welfare. The inefficiency can
be quantified using the so-called Price of Anarchy, a term introduced in [KP99].
The Price of Anarchy for road networks utilizing the Wardrop model has been
studied in [RT02].

3 Preliminaries

We assume throughout the rest of this paper that we are given a directed graph
D = (V,A). A (static) path P = (a1, ...,a;) in D is a tuple of arcs a; € A where
for a; = (u,v) it holds that a;+; = (v,w). We make the assumption that the
path is simple in the sense that no node is visitited more than once. The source
s(P) of P is v such that a; = (v,v’), the target t(P) is defined analogously. We
denote by A(P) the arcs contained in the path P and we let P be the sets of all
paths in D. For given nodes s,t € V we define P, ; to be the set of paths with
source s and target t.

An instance of a routing problem is given by a set of demands d; = (s;, t;, ;) for
i=1,...,k where s;,t; € V are the source resp. sink nodes and #; € N is the
departure time. A (static) solution x is a tuple of paths leading from sources to
sinks:

= (P € Pst;)i=1,..k (1)

For a path P = (ay,...,a;) we let tj;,t; be the entering resp. leaving time of
the arcs in P:

thtp: A(P) - N (2)



4 The deterministic queuing model

Let us assume that we have a given set S = (Py,..., P;) of paths and some
departure times (tp) pes. A dynamic model M may be used to derive the travel
times of the paths in S:

M : (S> tA) - (tgat;’)PES (3)

A variety of dynamic models has been proposed to model traffic flows in road
networks. The different models are often used to simulate traffic flows ob-
served in certain areas. Dynamic models are judged based on their ability to
accurately model traffic flows observed in the real world. In general there is a
tradeoff between the accuracy of the model and its computational tractability.
In the following we shall focus on the deterministic queuing model as propsed
by Gawron [Gaw98]. In this model each arc a has three nonnegative parameters
(la, 04, uq). The value I, denotes the time to travel across the arc disregarding
any congestion arising from any traffic situation. The value on the other hand
0, denotes the number of travelers which can leave the arc a in a fixed time
interval. Its value might be dependent on the number of lanes of a given road
segment. The last parameter, u, quantifies the storage capacity of the arc a, i.e.
the maximum number of travelers which can occupy arc a at any given time.
The intuition behind the model is the following: A traveler ¢ = 1,...,k uses
some path P € Ps, 4, to travel from his source to his destination. For each arc
a € P the following steps take place:

1. The traveler decides if it is possible to enter arc a, i.e. if the limit imposed
by u, is reached or not.

2. The traveler enters a at time ¢ € N and proceeds through the arc arriving
at its tip at time t + [,.

3. The traveler enters the queue at the tip of arc a. There might be some
travelers in the queue ahead of him. In order to proceed he has to wait
for those travelers to leave. At each time step at most o, travelers can
leave the queue, however, a traveler can only leave an arc if it is possible
to enter the succeeding arc on his path. After some additional waiting
time traveler ¢ can enter the next arc a’ in P.

It is easily possible to apply the deterministic queuing model to the tuple (S, )
by stepping through the time from past to present. The details are shown in
Algorithm 1.

Remark 1. e It is possible that travelers can’t immediately start along their
path due to the capacity constraints. In this case we allow the traveler to
wait at the source node.

e It is possible for a deadlock to occur in the model. Consider the situation
depicted in Figure 1: If we let l,,04,u, = 1 for all arcs a € A and all
travelers start at ¢ = 0 along paths leading from node i to node i + 2
mod 3 then it is not possible for any traveler to continue to the target
node. Deadlocks can be detected during the execution of Algorithm 1.



Algorithm 1 APPLYING THE DETERMINISTIC QUEUING MODEL

Require: A set S of paths, corresponding departure times (;)ics
Ensure: A set of travel times (t5,t5)pes

1: for P € S do
2: Mark P to be considered at p
3: end for
4: while There is some P € S to be considered do
5: P <+ next traveler to be considered
6: t < current time
7 if P is on top of the queue of an arc a or P is at their source then
8: if P is at their destination then
9: Remove P from the queue a
10: tp(a) <t
11: else
12: a’ < next arc on the path P
13: if P can enter a’ then
14: Remove P from the queue at a
15: tp(a) «t
16: Mark P to be reconsidered at ¢ + I/,
17: else
18: Mark P to be reconsidered at t + 1
19: end if
20: if The queue at a’ is not empty but no longer contains P then
21: P’ <+ the traveler on top of the queue
22: Mark P’ to be considered at ¢
23: end if
24: end if
25 else if P is about to enter the queue at arc a then
26: Add P to at the tail of the queue
27: t’ <+ time at which P leaves the queue
28: Mark P to be reconsidered at ¢’
29: th(a) «t
30: end if
31: end while

Figure 1: Demands along a cycle may lead to a deadlock. Arcs are drawn solid,
demands dashed.
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Figure 2: Pairs of blocking arcs (red) as part of the line graph of a given graph.

e The deterministic queuing model satisfies the FiFo principle, that is a
traveler entering an arc earlier than an other traveler is guaranteed to
leave the arc no later than that traveler.

e The deterministic queuing model can be seen from a game-theoretic stand-
point: The travelers are players in a game, traveler ¢ has as strategies the
paths in P, ;,. The cost for player ¢ according to the resulting travel
times (T'(P;))i=1,..x can be set to the travel time T(P;)(t(P;)) — t;. Due
to the the fact that the FiFo principle is satisfied the existence of a Nash
equilibrium is guaranteed. However, the inefficiency given by the Price of
Anarchy (PoA) with respect to the total travel time may be unbounded
in this case.

e In general there might be ties between travelers arriving at queues at the
same time. These ties can be broken using the ordering of the travelers.

Algorithm 1 may be used to apply the deterministic queuing model to a given
set of paths. However, the algorithm will not generally complete in polynomial
time. This is due to the fact that for a traveler on top of a queue may have to
be considered at every time step in succession until it is possible for them to
enter the next arc.

In order to improve the running time to a polynomial in the input it is necessary
to store information about blocking arcs of the graph D. We say that an arc a
is blocked by a successor a’ of a at time ¢ € N if the traveler on top of the queue
of a can’t enter a’ due to the capacity constraints imposed on a’. At every time
step t pairs of blocking arcs form an induced subgraph B(t) of the directed line
graph of A (see Figure 4). We assume that B(t) is acyclic, otherwise the graph
would be deadlocked at t. Clearly travelers on top of queues of a blocked arc a
don’t have to be considered until a time ¢’ > ¢ where a is a sink of B(t').

It is possible to modify Algorithm 1 to maintain the blocking graph. As a result
the following holds:

Theorem 1. The deterministic queuing model can be applied to a set of k paths
on a digraph with m arcs in O(mklog k)

Proof. We modify Algorithm 1 by lazily maintaining blocking arcs: If we find
that a traveler attempts to enter an arc which is at capacity we add the cor-
responding pair of blocking arcs, we remove blocking arcs once the capacity
decreases. Thus in every step one of the following actions are performed:



1. A traveler enters the queue at the tip of some arc. In total this can happen
at most mk times.

2. A traveler leaves the queue to either enter the succeeding arc or to complete
their journey. This might trigger the removal of blocking arcs throughout
the network. However, each time a blocking arc is removed there is at
least one traveler who can continue his journey. Thus, in total at most
mk blocking arcs are removed.

3. A traveler attempts to enter an arc but fails. At this point a blocking arc
is added. Since the number of added blocking arcs is equal to the number
of removed blocking arcs there will be at most mk events of this type.

The operations performed in the loop are of constant complexity so the total
cost in terms of running time is given by the costs caused by finding the next
event to be considered. Since at any time during the algorithm there are at
most k events to be considered a priority queue can be used to reduce the
required running time to O(log(k)). In total the running time is in O(mklog k)
as claimed.

O

5 Algorithms

Let us assume that a central authority is informed about the demands (d;)i=1,... x-
Such an authority might aim at providing a set of paths (P;);=1,.. r such that
the total travel time (given by (4)) is minimized.

k
Tior := S T(P)(HPY) — i (4)
i=1

Unfortunately the resulting optimization problem is NP-hard in the case of the
deterministic queuing model. In particular it is already hard to find add an
optimal path for a single traveler to an existing set. This is due to the fact
that decisions made at an early point in time may affect different travelers at a
much later point in time in a complex fashion. In the following we will consider
various heuristics yielding sets of paths and compare their performance.

If we are given a set S of paths together with their travel times (Tp)pcg it is
possible to obtain an estimate regarding the time which an additional traveler
would need to traverse a single arc a: For each path P € S there is a (possibly
empty) interval Ip in time at which the traveler corresponding to P is waiting
in the queue @, associated with a. If a new traveler arrives at a point ¢ in time
there will be a set

Sq(t):={PeS|telp} (5)

Thus, the traveler would have to wait at least [|S4(t)|/04| units of time in
order to be able to reach the target node of a. We can therefore bound the
time-dependent travel time from below via

CS,a(t) = la + [|Sa(t +1a)|/0a] (6)



We can make use of this estimation to derive a simple heuristic (see Algorithm 1).
Informally we repeat the following: After having assigned routes to a subset S
of the travelers we use the estimation given by (6) to find a route for the next
traveler which we then add to the set S.

Algorithm 2 SUCCESSIVE SHORTEST PATH
Require: Demands (d;);=1,._

Require: A permutation w € S({1,...,k})
Ensure: Paths (P;)i=1,.. &

1S« 0

2: for j=1,...,k do

3: 14— 71'(])

4: P; + SHORTESTPATH(s;,t;, i, (€5.0)acA)
5: S« S + Pz

6: end for

Since the paths (P;);=1,..r depend on the order 7 in which the demands are
considered the heuristic can be improved by considering multiple randomly cho-
sen permutations 71, ...,m; and chose the set of paths which provide the lowest
total travel time. As an alternative we can attempt to improve the paths simul-
taneously yielding Algorithm 3.

Algorithm 3 DyNnAMIC FRANK-WOLFE
Require: Demands (d;);=1,._ &
Require: A number of iterations [
Ensure: Paths (P;);=1,.
1S« 0
2: for j=1,...,ldo
3: fori=1,...,k do
: P; + SHORTESTPATH(s;,t;, i, (C5.0)acA)

4
5 end for

6: S(—{P,L|Z:177k}

7 Determine a new lower bound (cg,q)qeca using Algorithm 1
8: end for

6 Instances

For our experiments we used a digraph of the Berlin region, which was derived
from data gathered by the OpenStreetMap contributors, see www.openstreetmap.
org. The digraph has |V| = 36,308 nodes and |A| = 88,199 arcs. The parame-
ters required for the model can be obtained from the tags which are associated
with the ways stored in the raw OSM data. The physical length of an arc a
divided by the imposed speed limit yields a reasonable value for the length [,,.
The outflow o, of a can be assumed to be given by the number of lanes of the
way corresponding to a. The storage capacity is generally determined from the
previous two attributes:

ug = (physical length of a x #lanes of a)/length occupied by a car  (7)


www.openstreetmap.org
www.openstreetmap.org

where the length occupied by a car is assumed to be roughly 7.5 meters.

It is on the other hand quite difficult to gather data related to the real-world
demands d;. Since the origins and destinations of travelers are hard to deter-
mine explicitly several algorithms haven been proposed to derive O-D matrices
from observed traffic flows (for a summary see [Wil78]). However, to derive
O-D matrices it is assumed that the system is in a steady state and effectively
time-independent. Since we assume a dynamic model these methods are not
applicable. We resorted to randomly generate demands. We considered two
different scenarios:

1. On the one hand Berlin is split into various districts which have geometric
boundaries corresponding to subsets of the nodes V' of the Berlin digraph.
For most (92 of 98) of these districts there is some statistical data available,
including the gross population and the imposed business taxes. Based on
this data it is possible to derive a simple model: We assume that demands
are due to people traveling to and from work within the Berlin area. The
origins of the demands are randomly distributed among the district node
sets with a weight proportional to the district population. Within these
sets we assume a uniform distribution of nodes. For the destinations we
merely change the weight of the districts to be proportional to the imposed
business taxes.

2. As an alternative we consider outgoing traffic, i.e. travelers leaving a
central district traveling towards the periphery of the city.

We further assume that the travel times are normally distributed. In this case
the standard deviation of the distribution is highly significant: For a large de-
viation the travelers are less likely to meet at the same arc at the same time.
Therefore there will be fewer interdependence between the travelers. To show
this difference we choose a narrow normal distribution with a standard deviation
of Oparrow = D minutes and a wide one with oyiqe = 1 hour.

7 Results

In the following we compare the resulting total travel times as determined by
various algorithms. We assume that without a central authority the travel-
ers choose their routes independently from each other. Also, the travelers don’t
have any information regarding the other travelers’ origins, destinations or travel
times. However, due to the availability of GPS-assisted route planning software
we assume that the the travelers do follow shortest paths. Without any in-
formation regarding the actual traffic situation it is reasonable to assume that
these shortest paths are chosen with respect to the lengths (I;)qca. The actual
outcome will of course have and increased total travel time with respect to the
deterministic queuing model.

It is apparent from Table 1 that the estimation by the travelers is generally
much lower than the actually experienced travel time which is the case even for
small instances. This is due to the fact that the deterministic queuing model
only lets travelers switch to new arcs at fixed time intervals. However, the previ-
ously introduced heuristics offer a notable improvement upon the independently
chosen routes, a fact which is apparent from Table 2: The total travel time Ti



Instance Estimated Ti,t Actual Tio¢

inner-wide-50 57,886 93,149
inner-narrow-50 56,687 92,561
outgoing-narrow-50 63,848 108,346
outgoing-wide-50 61,212 103,560
inner-wide-500 531,376 879,703
inner-narrow-500 548,544 891,001
outgoing-narrow-500 604,928 1,362,134
outgoing-wide-500 602,821 2,173,771

Table 1: Estimated vs actual values of Ti

Instance Naive value SUCCESSIVE SHORTEST DynaMiIC
PATH FrRANK-WOLFE
inner-wide-50 93,149 90,179 90,559
inner-narrow-50 92,561 88,941 89,271
outgoing-narrow-50 108,346 106,236 106,496
outgoing-wide-50 103,560 102,110 102,480
inner-wide-500 879,703 872,473 841,093
inner-narrow-500 891,001 861,471 865,191
outgoing-narrow-500 1,362,134 1,214,734 1,226,114
outgoing-wide-500 2,173,771 1,307,081 1,156,511

Table 2: Tio computed by various algorithms

is reduced significantly across the instances, the effect increases as the number
of demands grows.

7.1 Algorithmic parameters

In the following we show several attempts at improving the introduced algo-
rithms with respect to their running time. The largest portion of computation
time within Algorithm 2 is spent applying the deterministic queuing model us-
ing Algorithm 1. In order to avoid a portion of the computation it is possible
to recompute the dynamic paths only every [ > 1 iterations. It is on the other
hand possible to vary the number of permutations taken into consideration.
Figure 3 shows the computation time and travel time for various combinations
of recomputation frequencies and numbers of permutations. It is obvious that
increasing the number of permutations does not lead to an improvement with
respect to Tiot and merely increases the computation time.
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