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Abstract

Partial differential equations describing the patterning of thin crystalline films are typically
of fourth or sixth order, they are quasi- or semilinear and they are mostly defined on simple
geometries such as rectangular domains. For the numerical simulation of these kind of problems
spectral methods are an efficient approach. We apply several implicit-explicit schemes to one
recently derived PDE that we express in terms of coefficients of trigonometric interpolants. While
the simplest IMEX scheme turns out to have the mildest step-size restriction, higher order SBDF
schemes tend to be more unstable and exponential time integrators are fastest for the calculation of
very accurate solutions. We implemented a reduced model in the EXPINT package syntax [3] and
compared various exponential schemes. A convexity splitting approach was employed to stabilize
the SBDF1 scheme. We show that accuracy control is crucial when using this idea, therefore we
present a time-adaptive SBDF1/SBDF1-2-step method that yields convincing results reflecting
the change in timescales during topological changes of the nanostructures. The implementation
of all presented methods is carried out in Matlab. We used the open source GPUmat package
to gain up to 5-fold runtime benefits by carrying out calculations on a low-cost GPU without
having to prescribe any knowledge in low-level programming or CUDA implementations and
found comparable speedups as with Matlab’s PCT or with GPUmat run on Octave.

Keywords: Quantum dot self-assembly, time-stepping, GPU computing, IMEX, pseudospectral
method, convexity splitting, exponential integrators, Matlab

1 Introduction

There exists a large amount of literature that is concerned with the time-stepping of ODEs of the
following type

ut = Lu+ N(u) ∈ CN . (1.1)

Many discretized PDEs can be written in this form with a linear operator L and a nonlinearity N,
both are typically obtained from the application of suitable differentiation matrices. In this work
we describe and compare several methods that have been used to solve an equation of type (1.1)
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numerically. The underlying PDE is a recently derived model for the self-arrangement of certain thin
crystalline films. The physical set-up will be introduced later on, however, for a detailed treatment
of the modeling and the analysis of the self-assembly of nanostructures such as quantum dots, the
interested reader should study also other literature, e.g. [6, 12, 20, 21, 30, 33].

We treat the problem in discrete Fourier space, so that u is an N -vector of complex numbers, and
we will show how the operators in (1.1) can be obtained from spectral differentiation in Fourier space.
More precisely, the terms in the original evolution equation are interpolated trigonometrically. The
coefficients for these globally defined functions form a system as above. Our pseudospectral method
benefits from highly accurate derivatives. In the work by Korzec and Evans, where the underlying
PDE has been derived [20], the linear part, which is a diagonal N×N matrix in the vectorial notation
(1.1), has been treated implicitly while the nonlinearity has been approximated explicitely in a simple
Euler type scheme that we will refer to as SBDF1 (semi-implicit backward differentiation formula). In
this work we improve the method. We carry out a study by implementing several schemes known to
serve well for problems of the form (1.1) and discuss them in terms of stability, accuracy and runtime.
First of all we can stabilize the numerics by applying the convexity splitting idea in a very similar
fashion as it has been used in connection with the Cahn-Hilliard equation. It has been introduced by
Eyre [10], a more detailed discussion is given in [34], and it has been also applied successfully to related
problems, such as binary inpainting [29]. Note that this approach yields stability, an unconditional
one at its best, but does not necessarily bring along accuracy. To gain the latter, main parts of this
work are devoted to elaborated time-discretizations.

Although ODE methods such as the Runge-Kutta formulae exist since more than 100 years [28],
the development and improvement of schemes for discretized PDEs that can be written in the form
(1.1) continues. Kassam and Trefethen found that an exponential time differencing (ETD) method
with fourth order Runge-Kutta time-stepping (RK4) (see [18, 19]), a slight modification of the update
by Cox and Matthews [8], lead to convincing results. We show that it is also an efficient method for
the simulation of quantum dot self-assembly. We find that in terms of calculating accurate solutions
the ETD4RK method is superior to semi-implicit backward-time differencing (SBDF) schemes (see
[2]). The simple SBDF1 scheme has best time step restriction properties. If we are interested in
qualitative behavior only, a simple, straightforward implementation suffices, while for quantitative
agreement (e.g. for comparisons of time scales with experiments) we suggest fourth order exponential
integrators, such as the ETD4RK method, as better alternative. We show that the application of the
convexity splitting approach [10] is useful for our equation, but that it has to be applied with care, as
the possibility to carry out larger steps can lead to very large errors. We extend the SBDF1 method
by applying an SBDF1/SBDF1-2-step method of second order. In this way we gain error control
and improve the order of the SBDF1 time-stepping procedure without much effort, and the convexity
splitting approach can be applied in a more assured framework.

Because of the renewed interest in exponential integrators, the Matlab package EXPINT [3],
containing a vast amount of schemes and examples, has been implemented a few years ago and the
authors give an overview over the schemes. Grooms and Julien [13] analyzed a whole set of IMEX and
ETD type methods on stiff systems of ODEs derived from PDEs. Also in this reference one can find
a more complete discussion on high order integration methods. Overall we can conclude from these
works that exponential time integration methods are competitive and accurate, but that results vary
depending on the nonlinear problem one works on. We report on the method’s applicability to the
evolution equation describing quantum dot self-assembly, reduced to the two-dimensional setting. In
particular, the ETD4RK method from before and a method by Strehmel and Weiner, see [32], turned
out to be most efficient.
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In a last step we transfer the calculations onto a GPU by exploiting the free GPUmat package,
built on top of NVIDIA CUDA, and compare the runtime benefits with those obtained from the in-
house Matlab parallel computing toolbox (PCT). With a standard graphic card we obtained up to
a five-fold acceleration in comparison to calculations carried out with standard workstation CPUs, in
case of large-scale simulations. Therefore the user does not need to have any knowledge in CUDA or
any deeper GPU architecture insights. We show a Matlab implementation for the SBDF1 method
and explain how to work with the GPUmat package for our needs. It is as efficient as the PCT,
but one can save the costs for acquiring the package. Overall, for implementing a method that gives
reasonable accuracy quickly, we suggest using an SBDF1/SBDF1-2-step method on a NVIDIA GPU.
For the constant step method we we present a simple Matlab code. It can be adjusted for a whole
class of evolution equations.

We start the main body of this work with an introduction on the PDE describing the self-assembly
of certain crystalline structures in Section 2, before we present the time-stepping methods applied to
our problem, see Section 3. Next, in Section 4 it is explained how we use trigonometric interpolants to
derive system (1.1) for the coefficients and we present how we split the operators for stability reasons.
Section 5 is devoted to the actual results of the numerical simulations for the various time-stepping
procedures. There we begin with few own implementations for the 2+1D setting and continue with
many different methods from the EXPINT package in the reduced 1+1D case. In Section 6 we explain
the benefit obtained by carrying out the computations on the GPU. Finally, in Section 7 we give a
short summary and discuss our results and the future of GPU computing for PDEs in Matlab. In
the Appendix the reader may find corresponding Matlab code snippets.

2 The quantum dot model

Substrate

deposition
of atoms planar growth

(continuum model)

(a) (b) (c) instability, pyramid 
formation, coarsening

Figure 1: 2D sketch of the Stranski-Krastanov growth + continuum approximation; (a) deposition of
atoms onto a substrate; (b) planar growth and continuum approximation; (c) pyramids and coarsening
during continued growth and/or annealing.

Recently a new model for the formation of quantum dots has been derived [20]. The corresponding
experimental observations have been discussed in [9, 27]. Quantum dots are – generally speaking
– three-dimensionally confined crystals on the nano-scale that find application in opto-electronics.
They are in particular useful for blue lasers [26] or photovoltaics [24], as they have similar excitation
and discrete energy level states as single atoms. There exist many different kinds of quantum dots,
produced in complex processes that most often involve high temperatures, but do not rely on as high
as melting temperatures. In the setting under consideration, atoms of one crystalline material such
as germanium are slowly deposited onto a substrate, e.g. a silicon wafer that has perfectly arranged
atoms in its natural crystalline cubic grid. The deposited adatoms (those absorbed by the substrate)
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adopt the positions of the substrate’s ordering coherently. The process takes place in a hot chamber in
near vacuum conditions. One observes a so-called Stranski-Krastanov growth-mode that is sketched in
Figure 1. In the first stage of evolution a flat film forms that grows layer by layer in vertical direction.
After a critical thickness is reached, a stress-driven instability occurs due to the lattice mismatch
between the two materials. The Asaro-Tiller-Grinfeld (ATG) instability [1] releases the stresses and
leads to ripple formation in the film. Eventually the surface decomposes into areas of a very thin film
and islands, faceted pyramids that communicate through the thin wetting layer without introducing
crystal failures at early stages of evolution. For a more detailed introduction to the topic, see [30]. In
[20] a quasi-linear quantum dot self-assembly evolution equation has been obtained that was further
extended to also capture strong surface energy anisotropies [21] with a randomly perturbed deposition
term. For the purpose of numerical comparisons we treat a constant, nonperturbed positive flux F ,
constrain ourselves to weak anisotropies and analyze the model for the evolving surface h = h(x1, x2, t)
whose evolution is governed by the PDE

ht = ∇2

(
F−1[−ẽkF [h]]−∇2h− γ̃

h2
− (∂x1

∂hx1
+ ∂x2

∂hx2
)W (hx1

, hx2
)

)
+ F. (2.1)

Here, γ̃ is a wetting parameter, ẽ a material coefficient and k =
√
k21 + k22 is the length of the wave

vector (k1, k2), corresponding to the Cartesian variables x1 and x2 in the spatial rectangular domain
[0, L1]× [0, L2]. F is the Fourier transform and F−1 is its inverse. The integral term stems from the
elastic subproblem (linear elasticity in film and substrate with a mismatch condition at the interface)
that has been treated by Tekalign and Spencer [33]. The fourth order derivatives of h always appear
when incorporating a constant part in the surface energy density. The h−2 nonlinearity results from
a boundary layer formula applied for the transition of surface energies between substrate and film.
Finally, the W dependent term stems from the anisotropic part of the surface energy. In the discussed
simulations we use a quadruple well representing the cubic anisotropy

W (hx1
, hx2

) = G((h2x1
− 1)2 + (h2x2

− 1)2) ≥ 0, (2.2)

i.e. four distinct slopes form a set of preferred orientations for the regularly growing surface. This
formula makes the PDE quasilinear due to the quartic terms and larger anisotropy coefficients than
G = 0.25 are forbidden. This has been indicated by a linear stability analysis as in [20], however, a
rigorous well-posedness analysis has not yet been set up. In this work we concentrate on equation
(2.1) with the anisotropy (2.2) and G < 0.25. Note that variations and extensions of the model are
possible, where the same kind of numerical methods as those presented here would be applicable.
In particular one can imagine different anisotropies and the additional effect of a sixth order term
that stems from a corner regularization [21]. Finally we remark here that equation (2.1) is given in
nondimensional form and all plots show nondimensional scales.

So far we have not talked about boundary conditions. As we are intrinsically forced to consider
only a small part of a wafer due to the generic difference of its overall scale (∼cm) and the dots
characteristic lengths (∼nm), one is content to work on sufficiently large parts of the wafer where the
effects on the nano- or mesoscale are visible. Square domains with an extent of a few micrometers
typically suffice. As the patterns of the dots are statistically of the same quality throughout the wafer,
periodic boundary conditions are a realistic and suitable choice for this kind of patterning phenomena.
When using Neumann boundary conditions instead, the evolution should not be affected too much
either. As we apply a Fourier pseudospectral method, we stick to the periodic version. Figure 2 shows
the typical evolution of a quantum dot array described by the above model. After a critical height
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is reached, h forms a ripple pattern that passes on to an array of pyramids that are connected by a
thin layer. The images at later times, t = 30, 150 show how these islands evolve, i.e. how the average
structure size grows. This happens in an Ostwald ripening fashion. The two images on the right of
Figure 2 depict magnifications of one fourth of the domain at t = 10 and t = 150, clearly showing the
effect of the surface energy anisotropy on the smoothly faceted geometry of larger islands.

Figure 2: Evolution of quantum dot surface via equation (2.1).

3 Time-stepping methods

We work with one global interpolation method for the discretization of the spatial variables (presented
in Section 4) and different time-stepping procedures. We first present the (multi-step) SBDF methods
and the ETD4RK scheme based on fixed step sizes that are generally applicable for PDEs with linear
and nonlinear contributions, and we shortly discuss the methods of the Matlab package EXPINT
that we have used, too. Thereafter we show how we adapt the step sizes to the rates of changes of
the evolving unknowns.

3.1 SBDF schemes and exponential integrators

We consider a problem that can be written as in (1.1) with a linear part L and a nonlinearity N.
IMEX schemes extrapolate the nonlinearity from earlier time steps and are allowed to treat a portion
of the linear part implicitly. The θ-method for the linear part and fixed explicit nonlinearity reads

un+1 − un = dtN(un) + dt[(1− θ)L(un) + θL(un+1)],

where the choice of θ ∈ [0, 1] defines different schemes. Here the subscript of the unknown vector
u denotes the time level, un = u(t = ndt), and dt is a fixed time step size. For θ = 0 this is the
well-known forward Euler scheme. For θ = 1 the nonlinearity N is still extrapolated to time step tn+1,
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but a first order backward differentiation scheme is used for the linear part L. Hence overall this is a
first order semi-implicit backward differentiation formula (SBDF1). The update can be obtained by
solving

(I − dtL)un+1 = (un + dtN(un)) , (3.1)

where I is the identity. It becomes particularly efficient for diagonal linearities, then the inverse
becomes a scalar multiplication in each component, while in general one solves a system of linear
equations.

The SBDF1 scheme can be generalized to higher order accuracy in terms of multi-step methods.
These kind of methods have been presented by Ascher et al. [2] who derived it by stating a general
equation for an s-step method with possibly implicit linear part and obtained a system of equations
for an IMEX scheme of sth order. They are also given in Cox and Matthews work [8]. These are
Adams-Bashforth backward differentiation type schemes, however, we stick to the SBDFk notation.
By solving the system one obtains the following multistep SBDF2, SBDF3 and SBDF4 updates

(3I − 2dtL)un+1 = 4un − un−1 + 4dtN(un)− 2dtN(un−1), (3.2)

(11I − 6dtL)un+1 = 18un − 9un−1 + 2un−2 + dt[18N(un)− 18N(un−1) + 6N(un−2)], (3.3)

(25I − 12dtL)un+1 = 48un − 36un−1 + 16un−2 − 3un−3

+ dt[48N(un)− 72N(un−1) + 48N(un−2)− 12N(un−3)] . (3.4)

The linear parts are treated as in the standard BDF updates and the nonlinearity does only depend on
previous time steps. We can simply solve for un+1 as before to obtain an explicit updating formulas.

Next, we introduce an exponential time differencing (ETD) method, the ETD4RK scheme. Mul-
tiplying the general equation (1.1) by e−Lt and integrating over one time step [tn, tn+1] = [tn, tn + dt]
one derives the update (for the more general case N = N(u, t)),

un+1 = eLdtun + eLdt
∫ dt

0

e−LτN(u(tn + τ), tn + τ)dτ.

Dependent on the integral evaluation on the right hand side, many different methods are possible,
similarly as for standard Runge-Kutta methods. Cox and Matthews [8] introduced an arbitrary order
ETD scheme that was used to derive an ETD method based on a fourth order Runge-Kutta time-
stepping. The update reads

un+1 = eLdtun + α1N(un, tn) + α2(N(an, tn + dt/2) + N(bn, tn + dt/2))

+ α3N(cn, tn + dt) (3.5)

with the coefficients αj , j = 1, 2, 3 and an, bn, cn defined as in Appendix A. Kassam and Trefethen
[19] made comparisons between different time-stepping methods and used also this ETD method. We
adapted their code and the way they evaluated the coefficients αj .

We show that the ETD method gives better results than the SBDF schemes, consequently we
extend the analysis to more, related updates. Within the EXPINT package various exponential
integrators have been implemented in Matlab [3]. We do not go into the details of the schemes,
they can be found in the documentation file corresponding to the package. We will use the simple
Crank-Nicholson (CN) scheme, the exponential time differencing methods ETD3RK, ETD4RK of
third and fourth order, respectively, see [8], and the related fourth order schemes Lawson4 (L4,
[23]), Adams-Bashforth Lawson4 (ABL4, [23]), Generalized Lawson41 (GL41, [22]), Friedli (F, [11]),
Strehmel-Weiner (SW, [32]), Hochbruck-Ostermann4 (HO4, [15]). We will apply the methods to a
dimension-reduced version of model (2.1).
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3.2 Adaptive time-stepping

For increasing accuracy of a the low order SBDF1 formula, we make larger steps in regions with
slow changes and small steps in the other case. The error control significantly improves the method,
i.e. one captures the changes in the solutions that happen on varying time scales. We adjust the
Euler/Euler-2-step method to a SBDF1/SBDF1-2-step variant, and calculate the two updates

(I − dtL)un+1 = un + dtN(un) ,

and

(I − dt

2
L)ūn+1/2 = un +

dt

2
N(un) ,

(I − dt

2
L)ūn+1 = ūn+1/2 +

dt

2
N(ūn+1/2) ,

which are cheap to obtain when L is diagonal. This is true for our problem equation (2.1) equipped
with periodic boundary conditions. Then the above systems are ’solved’ by single multiplications in
each component. This update yields a residual approximation by calculating their relative differences
and assuming that the initial un = u(t) is exact,

R = ‖un+1 − ūn+1‖/dt ≈ dt

2
‖Lu′(t)− 1

2
u′′(t)‖ . (3.6)

Once a tolerance ε is defined, one can proceed in the usual way: If R ≤ ε the update is set to
u+ = 2ūn+1 − un+1, else, in the case when R > ε, one repeats the time step starting from un with
smaller dt. In both cases one can use the typical step size update

dt← ν
ε

R
dt , (3.7)

which incorporates the safety factor ν < 1 to make rather too small than too large time steps.
Typically ν = 0.9 or ν = 0.95 is used. Note that by updating in the above fashion, one reduces
the truncation error by one order. While u(t + dt) = ūn+1 + O(dt2), the new update corresponds
to u(t + dt) = 2ūn+1 − un+1 + O(dt3). Depending on the definition on R, e.g. when taking the
time-absolute error (dtR in (3.6)), the update (3.7) needs to be adjusted accordingly, e.g. by taking
the square-root of ε/R.

4 A trigonometric interpolation method for PDE (2.1) and
convexity splitting

In this section we show how the previously introduced PDE (2.1) with periodic boundary conditions
can be written in the form (1.1). We write the bracket on the right hand side in (2.1) as

µ = Lµ + Nµ ,

Lµ = F−1[−ẽkF [h]]−∇2h , (4.1)

Nµ = − γ̃

h2
− 4G(∂x1

(h3x1
− hx1

) + ∂x2
(h3x2

− hx2
)) . (4.2)
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The nonlinear part (4.2) can be generalized for different anisotropies than (2.2). Using the
quadruple-well we have a linear part in (4.2), however, we leave it in this form in scope of possi-
ble other anisotropy formulas. To discretize the right hand side of (2.1) we apply a Fourier collocation
method (see for example [5]). Therefore we interpolate above defined expressions in terms of trigono-
metric global functions, using the complex exponentials as basis. As we prescribe periodic boundary
conditions, this set seems a generic choice.

Let us consider the rectangular domain Ω = [0, L1] × [0, L2] with N1 equidistant grid points in
x1 and N2 in x2 directions. The corresponding two-dimensional discrete Fourier transform and its
inverse are

ûk = N−1
∑
j

uje
−ik·xj , u(xj) =

∑
k

ûke
ik·xj , (4.3)

where j = (j1, j2), k = (k1, k2), xj =
(

2π
N1
j1,

2π
N2
j2

)
and N = N1N2 is the overall number of grid

points. The N -weight of both transforms can be found distributed in different ways elsewhere. The
quantities ûk and u(xj) can be stored in one complex and one real N1 ×N2 matrix. Replacing xj in
the inverse transform in (4.3) by an arbitrary x ∈ [0, L1] × [0, L2], one sees that the inverse discrete
Fourier transform directly brings along the trigonometric interpolant

Inu(x) =
∑
k

ûke
ik·x ,

where n = (N1, N2). Now if u is sufficiently smooth, the derivatives of Inu are spectrally accurate,
see e.g. Canuto et al. [5].

The wavenumber pairs k have to be chosen out of a suitable set K. Its ordering is essential for
correct calculations and it depends on the Fourier transform used by the programming language under
consideration. The above interpolant has very simple derivatives, as e.g.

∂xl
Inu(x) =

∑
k

iklûke
ik·x, l ∈ {1, 2}, ∇2 Inu(x) =

∑
k

−|k|2ûkeik·x, |k| =
√
k21 + k22 .

We treat the global transforms in (4.1) as discrete ones, which we just defined in (4.3). Then we use
the global interpolant Inh(x) instead of h itself, to gain the approximate linear part

Lµ ≈ F−1[−ẽ|k|F [Inh(x)]]−∇2 Inh(x)

=
∑
k

(−ẽ|k|+ |k|2)ĥke
ik·x .

For the other terms we interpolate the nonlinearities

Nµ ≈ − In[
γ̃

h2
]− 4G

(
∂x1 In[h

3
x1
− hx1 ] + ∂x2 In[h

3
x2
− hx2 ]

)
=
∑
k

(
−γ̃v̂k − 4Gi(k1ξ̂k + k2η̂k)

)
eik·x ,

with the two-dimensional transforms v̂ = F(1/h2), ξ̂ = F(h3x1
−hx1

) and η̂ = F(h3x2
−hx2

). Inserting
these expressions, using that the coefficients are time-dependent, into evolution equation (2.1), we
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gain ∑
k

∂tĥke
ik·x = ∇2

∑
k

(
(−ẽ|k|+ |k|2)ĥk − γ̃v̂k − 4Gi(k1ξ̂k + k2η̂k)

)
eik·x + F

=
∑
k

(
(ẽ|k|3 − |k|4)ĥk + |k|2γ̃v̂k + 4Gi|k|2(k1ξ̂k + k2η̂k)

)
eik·x + F .

As F can be expressed as zeroth mode, F = F
∑
k

1k=(0,0)e
ik·x, where 1k=(0,0) is the characteristic

function being 1 at the wavenumber origin and 0 else, we derived the ODEs for the coefficients

∂tĥk =
(

(ẽ|k|3 − |k|4)ĥk + |k|2γ̃v̂k + 4Gi|k|2(k1ξ̂k + k2η̂k)
)

+ F1k=(0,0),k ∈ K .

One can guess from this ODE that it is hard to treat the nonlinear parts implicitly and this is why our
time-stepping methods will always treat parts of the problem in an explicit fashion. This reasons that
decomposing the equation in explicit and implicit parts is the way to proceed. As there are infinitely
many possibilities to do so, we want to understand what makes an efficient approach.

We still need to define a suitable set of wavenumbers K, therefore we set

K = {(k1, k2) : kj ∈ {0, 1, . . . ,
Nj
2
,−Nj

2
+ 1, . . . , . . . ,−1}2π

Lj
, j = 1, 2}

or in Matlab notation, with the ordering corresponding to its FFT,

k1=[0:n1/2 -n1/2+1:-1]’*2*pi/L1; k2=[0:n2/2 -n2/2+1:-1]’*2*pi/L2;

which gives the dense wavenumber matrices [kx, ky] = meshgrid(k,k); or for example the Lapla-
cian -kx.^2-ky.^2.

The above dense matrix approach (the wavenumbers used for differentiation are stored in dense
matrices) is convenient for the implementation and all updates presented in Section 3 are directly
applicable in this way and this is how we have written the code in Appendix A. However, for
theoretical discussions we stick to the vector notation introduced in (1.1), hence the derivatives become
diagonal operators. Therefore the matrices of coefficients are rearranged from matrices to vectors and
ĥ(l,m) ↔ u(p), say for example p = (l − 1)N2 + m. The complete linear and nonlinear parts
corresponding to the notation in (1.1) are

L = diag
(
(ẽ|k|3 − |k|4),k ∈ K

)
(4.4)

and
N(u)k∈K = (|k|2γ̃v̂k + 4Gi|k|2(k1ξ̂k + k2η̂k) + F1k=(0,0),k ∈ K). (4.5)

4.1 Convexity splitting

For high order equations that are partly treated in an explicit fashion, step size restrictions due to
stability considerations can be severe. The convexity splitting idea introduced by Eyre for the Cahn
Hilliard equation [10] allows to make larger time steps without blow-up, and leads to unconditionally
stable schemes at its best. It has been discussed and implemented in the last years by many authors
for related problems [17, 29, 34]. The original idea is to decompose the energy into an convex and a
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concave part in a suitable way – there are infinitely many such possibilities –, treat the convex part
implicitly and the concave part in an explicit fashion.

We refrain from presenting a detailed description and analysis of the convexity splitting approach
applied for evolution equation (2.1). Instead we proceed in an intuitive fashion and show that the
splitting we present in the following is indeed capable of stabilizing the time-stepping procedures, but
that it should be applied with care. Therefore, similarly as in the Cahn-Hilliard equation, we add and
subtract the convex function

c(h,∇h) =
c1
2
h2 +

c2
2
|∇h|2

to the energy of the model and treat one of these terms implicitly and the other ones in an explicit
fashion, here cj ≥ 0, j = 1, 2. By going through the derivation of the PDE this gives linear second
and fourth order terms. We replace expressions (4.4) and (4.5) by

Lc = diag((ẽ|k|3 − (1 + c2)|k|4 − c1|k|2),k ∈ K) , (4.6)

Nc(h)(k) = N(h)(k) + c1|k|2 + c2|k|4,k ∈ K. (4.7)

To test the effect of the two parameters c1, c2, we applied the SBDF1 update (3.1) with Lc, Nc and
various values for c1 and c2 between 0 and 0.5. We noted approximate values of the time step dt,
for which an instability occurs in the time interval [0, 1], with N1 = N2 = 64, L1 = L2 = 5, G = 0.2
and the other material parameters as before. We evolved from a randomly perturbed state around
H = 0.5 for a time interval of dimensionless length one and used this shape, plotted in Figure 3 (a),
repeatedly as initial condition for different values of (c1, c2). If dt, and hence the error, is sufficiently
small, the final stage, after a time interval of length 50, is as in Figure 3 (b). To calculate the critical
step sizes at which the schemes blow-up, we employed a bisection method. When a solution extends
a certain threshold during evolution, i.e. max |h(x, y, t)| > tolblowup, the time step is marked as a
blow-up step size. In this way we can work with intervals [dt1, dt2], where the simulation is stable
for the smaller dt1 and unstable for dt2. Such intervals are then halved in each iteration giving an
intermediate dt3. Either dt1 is set to dt3 (in case the calculation with dt3 is stable) or dt2 is updated
to dt3 (in the other case). This is repeated until a threshold for the final dt is reached. Due to the
’arbitrary’ choice of tolblowup the found critical step sizes are not exact, but they allow for qualitative
statements. We used a cut-off time step size dtmax = 5, where we stopped increasing the values.

The numbers we obtained would differ on different space, time and grid domains. Also note that
the underlying problem leads to more stability difficulties at larger times, which is possible due to
the quasilinear character of the PDE. Our tests show that the presented approach for stabilizing the
scheme works. Figure 3 (c) plots the critical step sizes in dependence of both parameters, c1 and
c2. As expected the stability restrictions are less severe when either increasing one of the quantities.
We see that at some trajectory in the (c1, c2)-plane the instability is suddenly suppressed and one
reaches the maximal allowed value dtmax. This has the following reason: Using large values for the
regularization induces errors that can be, if working without care, huge. In real space on the level of
the PDE (not the energy) the implicit-explicit components sum up to

c2(hn+1 − hn)xxxx + c1(hn+1 − hn)xx ≈ c2dthxxxxt + c1dthxxt .

By construction these terms are supposed to be approximately zero, which is the case, if once again
dt is sufficiently small. The sudden change of blow-up step sizes in Figure 3 (c) can be explained,
because for large values of (c1, c2) one does not even see the physical instability (ATG) happening
to the surface h that one wants to see.The shape in Figure 3 (b) is adopted, when using too large
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Figure 3: (a) Initial state; (b) correct end state; (c) approximated critical step size dependent on
splitting parameters c1, c2. The vertical axis is in logarithmic scale, dtmax = 5, the minimal value, for
the case without convexity splitting, is at dt ≈ 0.4.

time steps. After evolving one dimensionless time one still is in a state similar to that given as initial
condition. We conclude, convexity splitting is a possibility to stabilize schemes for the quantum dot
model (2.1), but even if one is able to choose large time steps, it is not always a good idea. Note that
it is possible to take larger values for the cj , but in this case one should incorporate a control over the
error.

5 Accuracy of the time-stepping methods

We report on the simulation runs carried out with the different methods introduced in Section 3.
Therefore we work with a reduced 1+1-dimensional setting, as it is computationally hard to calculate
a trustworthy reference solution in the full setting in a reasonable time frame. We believe that the
results are similar if treating the full two-dimensional spatial domain, although quantities, such as
blow-up step sizes may change. The results will show that the exponential time differencing method
ETD4RK has stability benefits in comparison to higher order SBDF schemes, and that it is very
accurate. Hence we investigated further, to more detail, with help of the EXPINT package in Section
5.2, to see if other exponential integrators can compete.
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5.1 Simulations with SBDF and ETD4RK schemes

In Section 3 we introduced the ETD4RK method (3.5), and the SBDF schemes (3.1)-(3.4). We apply
these methods the dimension-reduced version of PDE (2.1), namely

ht = −∂xxxxh+ ∂xxF−1[−ẽ|k|F [h]]− ∂xx
γ̃

h2
− 4G∂xxx(h3x − hx), (5.1)

here without the deposition term. The periodicity is now in the x-variable only. We used the pa-
rameters G = 0.15, ẽ = 1.28, γ̃ = 0.05 for all calculations. In terms of the coefficients of the Fourier
interpolants we considered the problem

ût = Lû+ N(û) ,

Lû = −k4û+ ẽk2|k|û, N(û) = k2F [
γ̃

F−1[û]2
] + 4Gik3F [F−1[ikû]3 −F−1[ikû]].

Also here one could shift the linear part in N to the linearity. We leave it like that, but also work
with the convexity splitting for the fourth order term, which gives with the parameter c ≥ 0

ût = Lcû+ Nc(û) ,

Lcû = −(1 + c)k4û+ ẽk2|k|û,

Nc(û) = ck4û+ k2F [
γ̃

F−1[û]2
] + 4Gik3F [F−1[ikû]3 −F−1[ikû]].

Figure 4 shows a time space plot for the 1+1D problem. Starting with an initial condition above the

Figure 4: (a) Space-time plot for a calculation of approximate solutions to PDE (5.1). The white
areas indicate islands; (b) early stage of evolution, wrinkle patterns, corresponding to the dashed line
in (a); also: initial state for the EXPINT package tests; (c) later stage of evolution, 2D islands shapes
after coarsening; end state for the EXPINT global error test.

critical thickness that is randomly perturbed, islands form and coarsen with time. In (a) the white
areas depict the approximate islands (we used a simple height cut-off value that gives a rather coarse
result), while the black areas represent the connecting thin layer. One clearly sees that after some time
islands tend to collapse in an Ostwald ripening fashion. Figure 4 (b) shows the profile h at the level
of the dashed line in (a), a rippled surface. We took this shape as initial condition for our calculations
and also later for the tests with the EXPINT package; After an evolution of 50 dimensionless time
units the profile h(x, t) is similar as in Figure 4 (c), the final state, which has been used for global error

12



measurements. To have an accurate solution we solved the problem with Matlab’s ode15s solver.
With nearly as small as machine precision accuracy thresholds we obtained the final state depicted in
Figure 4 (c). We denote it here as reference solution href . To have proper initial conditions for the
SBDF2, SBDF3 and SBDF4 methods, we again used the ode15s procedure to iterate accurately to
capture the solution at the times dt, 2dt and/or 3dt. In this way we have accurate initial conditions.
For the ETD4RK method we used a similar script as presented in [19].

We repeated several runs for a range of time step sizes and calculated the relative error ‖h −
href‖∞/‖href‖∞. Figure 5 depicts the global error plot. We see that both high order SBDF methods
behave quite unstable. Especially in a range of dt that one typically likes to use, the solutions
blew-up. This is indicated by missing markers for the corresponding step sizes and schemes. Our
implementation of the SBDF4 method performs poorly, even when it converges, while the error with
the SBDF3 scheme drops down satisfactory. It is questionable if these schemes should be applied for
this kind of problem at all due to the severe step size restrictions. The convexity splitting approach did
not stabilize the schemes in our tests. The ETD4RK method on the other side allowed for larger time
steps and brought along higher accuracy than all of the SBDF schemes. In the range of larger time
steps the error decreases like dt2 and only for small values of dt the slope steepens. This reminds of
the stiff order of the scheme, which is 2. The SBDF2 method is not much worse than the exponential
integrator, while the SBDF1 method sticks to its first order. We conclude that if one chooses to
work with a fixed time step size, the exponential time differencing method is preferable to the SBDF
schemes. Only the SBDF2 method is a competitive alternative in accuracy and stability.

The question arises if the ETD4RK is the best exponential method there is and if the costs of
the more expensive iterations are not slowing down the whole method. Furthermore it is interesting
to see if one reaches the theoretically known decay rates for the local error. In the next section we
will show consistent results for many different high order exponential schemes by working with the
EXPINT package.
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Figure 5: Doubly logarithmic global error plot for the SBDFj, j=1,2,3,4 schemes and for the ETD4RK
method.

5.2 Comparisons using the EXPINT package

We found in the last Section 5.1 that the exponential scheme ETD4RK performed better than the
SBDF schemes. This motivates to test also related exponential schemes. We were lucky to find
the EXPINT package written in Matlab [3]. It allowed us to test many other given exponential
integrators, i.e. those introduced in the end of Section 3.1. Within the package PDE problems have
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been implemented that are similar to ours. The corresponding codes can be adjusted to our needs.
We adapted the one-dimensional setting (5.1) to the syntax used in the package. This saved us a large
amount of implementational work. In Appendix B we show and explain the Matlab code snippets
that were needed to incorporate this problem into the EXPINT package. How these can be used to
calculate for example the global and local errors – presented in the following – is explained in the
original reference [3].
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Figure 6: Global error results from application of different EXPINT schemes to PDE (5.1) in doubly
logarithmic plots. (a) time step plotted against the error; (b) actual time needed for the calculations
plotted against the error.

In Figure 6 we see the global error results obtained with different time-stepping procedures imple-
mented in the EXPINT package. Therefore we used the parameters as befor and we applied convexity
splitting with (c1, c2) = (0, 1). The abbreviations in the figure have been introduced in the end of
Section 3.1. Again we calculate the relative error to the reference solution. In Figure 6 (a) the time
step size is plotted against the error. We see that apart from two methods, Lawson4 and its variant
Adams-Bashforth Lawson 4, the error decreases initially (for larger values of dt) slower than dt2, but
that the slopes of the error curves steepen and eventually adopt a slope higher than dt2 in the range
of smaller time step sizes. They behave similarly as the ETD4RK method, which gives comparable
numbers as our own implementation seen before. The GL41 method does not converge for larger time
step sizes, but is very accurate for small ones, similarly as the SBDF3 and SBDF4 schemes before.
Figure (b) gives us an idea which of the methods are indeed working most efficiently, as the time
needed for one method to achieve a certain accuracy is plotted here. The box in the left bottom
shows a magnification of the faster exponential integrators, here one sees that the Strehmel-Weiner
method is fastest and that the ETD4RK method follows close by. It seems that all of the methods in
the box are competitive. As the Lawson methods have either bad convergence or stability properties,
they have to be marked as not very suitable for the application to our problem. Few other methods
from the package not mentioned here, such as the ABNorsett4 scheme, failed at the whole time step
range. Overall we can conclude that the ETD4RK method is one of the best exponential integrators
one can use for solving PDE (5.1). Strehmel and Weiner’s method, one of the earliest exponential
Runge-Kutta methods, performs even more efficiently. We expect a similar result for the full equation
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(2.1) as the stiffness due to the highest order term is influenced similarly by squares of the slopes hx
and hy.
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Figure 7: Doubly logarithmic local error plot for the different methods calculated with the EXPINT
package applied PDE (5.1). The accuracy of one time step is tested with the initial condition depicted
in Figure 4 (b). The dashed lines depict powers of the step sizes Cdtp, p = 1, 2, 3, 4. The right plot
is a magnification of the dashed marked square on the left, indicated by (#), showing the asymptotic
orders expected by the methods.

To understand better how the results from the global error analysis can be explained and that
they correspond well to the asymptotic theory as dt → 0, we also calculated local errors. Again we
started with the initial condition depicted in Figure 4 (b), but tested only one local step. Figure 7
shows the local errors made with the same methods as in Figure 6. As one has to calculate only one
step, it is easier to analyze much smaller step sizes than in the global analysis. For a smaller range of
dt values between 10−6 and 10−5 we magnified the error decays and plotted them again on the right
of Figure 7. While the plots still do not explain the bad behavior of the ABL4 method, the original L4
scheme does better and indeed gives asymptotically the expected dt5 decrease. However, the constant
in front of the error seems so large that it leads to a very unfavorable delay until the theoretical slope
is reached. Furthermore we observe the expected dt3 and dt4 slopes for the CN and the ETD3RK
methods, respectively. All other schemes are of fourth order and give slopes proportional to dt5. Only
the ETD4RK scheme stands somewhat out as its slope bounces between different rates. The average
however, seems to be good and in fact, for smaller values of dt we could even expect in the global
analysis that the ETD4RK method becomes more accurate from a certain value of dt on.

5.3 The time-adaptive scheme

One can observe that the coarsening events, that is, the collapses of single dots, happens on a faster
time scale than the other parts of the ripening process. Therefore it can be preferable to work with time
adaptivity. We applied the SBDF1/SBDF1-2-step method presented in Section 3.2 to PDE (2.1). We
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used 256×256 wavenumbers for a 50×50 domain. For the convexity splitting we used (c1, c2) = (0, 2),
the safety parameter was chosen ν = 0.95, the maximal step was 0.1 and the tolerance was relatively
large, ε = 0.01. We used the sum of squares as norm for the residual, which becomes easily large, so
that we were content with this threshold. Figure 8 visualizes the evolving shapes that change with
time as expected in the Stranski-Krastanov growth mode. The signal in the top left explains how the
time step changes with time. As in the early stage of evolution many dots collapse, it remains small,
and it grows at later times, always during intervals without coarsening events. The dashed ellipse in
the signal and in the two plotted surfaces at t = 102.41 and t = 103.792 shall make visible that the
collapse of a dot happens on a faster scale than the overall evolution and that because of this reason
it is a very good property of the adaptive time stepping scheme to make steps smaller exactly at these
events. Note that the upper plateau at dtmax = 0.1 is prescribed, as we not updated as in (3.7), but
added the bound, so that the update is in fact dt ← min(ν εRdt, dtmax). We found that the behavior
of the method relies quite strongly on the size of the domain, the way the residual norm is defined
and ε. So far we are not aware of optimal choices, but when working, the results are convincing. The
global error decay of the discussed methods in Section 5 was of the order dt2 for typical step sizes. We
expect a similar decrease as with the SBDF2 method, O(dt2), too, even with fixed step size, hence we
think that this kind of adaptivity relieves the computational costs significantly.

Figure 8: Temporal evolution of PDE (2.1) simulated with the SBDF1/SBDF1-2-step method from
Section 3.2. The signal to the left depicts the changes in the time step size, the surrounding figures
plot the state h(x, y, t) at different time points. The dashed ellipses indicate one coarsening event.
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6 Speeding up numerical simulations on a GPU

We begin with a section discussing GPU computing related to PDEs in general and the possibilities
to work with Matlab. Thereafter, we report on our GPU approach for solving PDE (2.1) faster by
exploiting the free GPUmat package. The runs are compared to Matlab parallel computing toolbox
(PCT) based computations and an implementation of GPUmat in Octave.

6.1 PDEs and GPU computing

For a long time computations on GPUs have been restricted to the purpose they were invented for:
accelerated graphic computations. On the verge of the new millennium people started to use so-called
programmable shaders on GPUs, which provided just very basic programmable features and often
needed to be programmed in low-level languages. This changed dramatically with the introduction
of NVIDIA’s CUDA architecture and non-graphical (general purpose GPU - GPGPU) applications
gained momentum. GPUs evolve into high performance, highly parallel processing units, and the
new generations support double arithmetic and allow for accurate scientific calculations. As also the
philosophy of CPU innovation changed, work on parallel architectures will further gain significance in
future.

For PDE applications one can find several publications that report on an order of magnitude gain
in computational speed, e.g. for wave propagation [25], for groundwater flow simulation [16], for
a Navier-Stokes solver [4] or the simulation of a Ginzburg-Landau equation [14]. These few works
concerning simulations of PDEs on graphical units have one thing in common: the authors use CUDA
and try to exploit the GPUs structure to gain the best benefits. Recently it has been reported that
PDEs like the wave-equation can be solved 20-60 times faster when exploiting a GPU by programming
in CUDA [25], which is a great improvement in runtime. On the down-side this means that the user
needs to know quite something about graphics hardware, a new programming language that is bound
to NVIDIA and time for carrying out the implementations. Another approach is the OpenCL language,
which allows, in theory, to write a parallel program once and use it on different types of hardware,
i.e. GPUs, CPUs, and others. However, OpenCL requires substantial programming efforts and we
think many researchers that are more concerned with PDEs than with computer science would prefer
if the implementation can be done in a simple language like Matlab instead of CUDA or OpenCL
without having to cope with the details of specific hardware. Then one will not harvest the full fruits
of parallel computing acceleration, but with little effort one has at least a significant speedup.

There are three main packages that allow GPU calculations with the MathWorks software; the free
GPUmat package (http://gp-you.org), the in-house parallel computation toolbox (PCT) [7] that allows
for GPU computing since 2010, or the well-performing Jacket package (http://www.accelereyes.com),
see [35] for a comparison of the packages. Although they exist for some time now, there seems to be only
one reported result for accelerating PDE computations on GPUs on the Matlab platform [31] and no
results for pseudospectral methods at all. The lack of the possibility to carry out sparse calculations in
PCT and GPUmat might be one of the major reasons and in GPUmat also the solving of dense linear
systems is not implemented. However, with our approaches to approximate solutions to PDE (2.1)
one does not rely on solutions to any equation. Our scheme works with basic arithmetic operations
and the FFT. Because of this simplicity the adaptation of the scheme to a GPU becomes trivial. We
are able to report on up to a five time increase in computational speed by incorporating the GPUmat
package, which is great due to evanescent efforts and costs the user has to invest once the package is
installed. One only needs a recent Matlab version and an up-to-date low-cost NVIDIA GPU that
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has sufficient memory to cope with the user’s matrices. Finally, we ported the GPUmat package to
GNU Octave. This allows to make all the parallel GPU computations, i.e. the implementation of our
Fourier collocation schemes, on a completely free platform.

6.2 Solving PDE (2.1) on a GPU
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Figure 9: (a) Absolute runtimes (in seconds, doubly logarithmic scale) of quantum dot simulation
computations on the GPU and CPU with different configurations for seven increasing values of N for
an overall N ×N spatial grid; (b) speedup relative to Matlab code without GPU acceleration. The
compiled program was unable to run for N = 2048 due to memory restrictions.

We solved PDE (2.1) as described earlier with the SBDF1 update that does not rely on the
solution of systems of equations due to the explicit form the update is given in on CPU and GPU
based configurations. For larger problems we measured an up to 5-fold speedup when exploiting
the parallel structure of GPUs. Everyone who owns a good GPU and Matlab can achieve similar
improvement with the adjustments of the Matlab code we describe here. Our results rely on the
hard- and software described in Table 1.

Unit GPU CPU
Name NVIDIA GeForce GTX 260 Intel(R) Core(TM) i7 CPU 860
Memory 896 MB 4096 MB

Table 1: The hard- and software under consideration. We use CUDA 4.2 with driver 310.32 on SUSE
Linux 12.2 in AMD64 modus

An example source code for the SBDF1 method exploiting the GPUmat speedup is given in
Appendix B. Figure 9 shows a study for the runtimes needed for the quantum dot simulations with
this type of code. We averaged the elapsed times over three runs that turned out to have negligible
runtime differences. We used the step size dt = 0.01, the time interval length T = 50 and different
number of grid points. The x-axes denote N , for the overall matrix we have Ntotal = N2 entries. In (a)
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we see absolute runtimes for three CPU configurations, Matlab , GNU Octave and a multithreading
developer version of GNU Octave, and four GPU runs with help of the PCT, GPUmat in Matlab
, GPUmat in GNU Octave and GPUmat in Matlab with compilation of the main computation
part. Figure 9 (b) shows the extent of this acceleration by plotting the quotient of the Matlab CPU
runtime against the other runtimes for the same N , resulting in a dimensionless speedup quantity.
The compiled GPUmat and PCT versions start to be faster for problem sizes of 128 × 128 and the
non-compiled GPUmat programs somewhat later at about 256×256. This difference can be explained
by a dominant communication overhead in GPUmat for small problems, that is diminished by the use
of a compiled version. The factor becomes negligible for larger grid sizes. In compiled mode memory
is not freed until execution returns to Matlab, therefore our graphics card had insufficient memory
for a grid size of 2048× 2048 in compiled mode. The PCT seems to use a similar technique, but hides
it from the user and the memory management is more efficient as the biggest case performs without
problems. Octave is superior for very small problem sizes, but is increasingly getting worse for larger
N . The reason for Octave’s speedup decrease is the lag of support for multithreading FFT calculations
in its current stable branch as used in Matlab . A developer version of Octave already implements
this option and shows no such decrease, but performs worse for small N unless the multithreading of
FFT calculations is turned off again. Especially for larger problems, i.e. 2048 × 2048, the observed
runtime benefits are useful as one gains nearly a speedup of five. As runs on larger domains and time
intervals can last for many hours, this is a significant speedup.

We compared the GPU/CPU quotients with those achieved for pure two-dimensional FFT calcu-
lations of random matrices of the same sizes as the discretizations and averaged these calculations
over 10 FFT2 calls. Figure 10 shows these speedups and an increasing correlation between the FFT
times and our simulation times for increasing values of N . We can conclude as expected, namely
that the achievable runtime benefit is as good as the speedup of FFT evaluations, since this is the
computation of dominant order in our program. By using a more advanced GPU such as the Tesla
C2050 we hence expect a more dramatic picture. For the matrix size 8192 × 8192 MathWorks cites
a 30fold speedup for the two-dimensional FFT in comparison to calculations on a quad-core Intel
CPU. As the speedup of the FFT is directly linked to the speedup of the quantum dot simulation, we
anticipate this kind of runtime improvement by using high end GPUs. However, we have shown that
also on simple machines, easy to implement GPU based Matlab and GNU Octave codes give a nice
runtime improvement. Table 2 shows the requirements for working with the GPUmat package.�

�

�

�

• NVIDIA GPU with double support

• Matlab R2008a or newer version

• GPUmat (from http://gp-you.org)

• CUDA (from http://developer.nvidia.com/cuda/cuda-downloads)

Table 2: Requirements to run spectral IMEX schemes on a GPU with GPUmat on standard PC
workstations.
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Figure 10: Speedups achieved for FFT and inverse FFT computations on the GPU for seven increasing
values of N for an overall N×N grids, by using the different configurations. The SBDF1 quantum dot
simulation speedups – as in Figure 9 (b) – shows that it correlates stronger with the FFT calculation
times for larger values of N .

7 Conclusions and discussion

We have shown that fast and accurate simulations of the self-assembly of quantum dots, based on the
small-slope approximation of a surface diffusion model, are possible in terms of Fourier collocation
methods exploiting different time-stepping procedures. We want to stress that no supercomputers
are needed to carry out calculations for domains of relevance, i.e. one succeeds with standard PC
workstations. This is possible due to the reduction of the full problem from three to two dimensions,
an efficient spatial approximation in terms of trigonometric interpolants – exploiting spectral accuracy
–, efficient time-stepping and GPU acceleration. For the latter we used the free GPUmat Matlab
package for calculations on the parallel processors of the graphical unit and compared the runs with
Matlab’s PCT and runs with Octave. As there appear new possibilities to work with Matlab on
GPUs, we believe that in near future more studies will be carried out on this platform. Up to now
there is no publication we are aware of, where evolution equations are solved on a GPU in Matlab
or in GNU Octave. The new options of Matlab ’s PCT allow for this kind of improvement. The
cost for the package may be an obstacle that detains researchers on PDEs from working with it,
more importantly for the FEM (and related) community is the fact that sparse computations are
not yet implemented on this platform. The GPUmat package, however, is a competitive alternative
to the PCT. For small mesh-sizes CPU simulations, both in Octave and Matlab, have advantages
compared to GPU based calculations. The picture changes for intermediate sizes, where the PCT
and the compiled GPUmat configurations were fastest, though the code adjustments to work with the
PCT are marginal. For large scale simulations GPUmat in GNU Octave or Matlab showed similar
superior performance. Overall we suggest to work on GPUs when working with FFTbased methods
and sufficiently large grids. As GPUs and parallel packages evolve, we think that the benefits will be
larger in future.

Trigonometric interpolation that generically imposes periodicity is a very good choice for the spatial
differentiation in the presented problem setting. We have shown that many time-stepping schemes
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are possible, but not all of them are preferable. In general we found the high order SBDF schemes not
very reliable as they tend to be unstable. Although showing a good asymptotic decay, an application
for large scaled simulations seems unrealistic due to the severe step size restrictions. The extension of
the SBDF1 scheme to an adaptive 2-step method leads to accuracy due to tracking of the topological
changes of the evolving surface and corresponding adaption of the step size. The stability properties
of this scheme are good and can be improved further by employing the convexity splitting approach,
however, we have shown that the error control seems necessary when using this kind of stabilization.
To answer quantitative questions, exact coarsening rates and time intervals where the ripening takes
place, one of the more accurate exponential integrator schemes may be preferable. Our experience with
the ETDRK4 scheme shows that for our problems it is a good alternative for calculation of highly
accurate solutions while still maintaining reasonable computational times. The EXPINT package
showed that it is not only stable and accurate, but that also the absolute computational time needed
for a certain accuracy is small. Our tests on the dimension-reduced equation with the EXPINT
package suggests that most of the exponential integrators suit well, in particular the Strehmel and
Weiner method worked even better in the tests than the ETD4RK scheme.
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A (The ETD4RK update)

Here we present the ETD4RK4 update derived by Cox and Matthews [8]. It reads

un+1 = eLdtun + α1N(un, tn) + α2(N(an, tn + dt/2) + N(bn, tn + dt/2))

+ α3N(cn, tn + dt) (A.1)

with the variable coefficients

an = eL
dt
2 un + L−1(eL

dt
2 − I)N(un, tn) ,

bn = eL
dt
2 un + L−1(eL

dt
2 − I)N(an, tn +

dt

2
) ,

cn = eL
dt
2 an + L−1(eL

dt
2 − I)(2N(bn, tn +

dt

2
)−N(un, tn)) ,

and the constants

α1 = dt−2L−3[−4− Ldt+ eLdt(4− 3Ldt+ (Ldt)2)] ,

α2 = 2dt−2L−3[2 + Ldt+ eLdt(−2 + Ldt)] ,

α3 = dt−2L−3[−4− 3Ldt− (Ldt)2 + eLdt(4− Ldt)] ,
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that can be calculated before the actual time-integration is carried out, if the step-size dt is kept
constant. This scheme is known to be cancellation error prone when L has eigenvalues close to zero.
We use Kassam and Trefethen’s [18, 19] approach to this problem and we adapted the Matlab file
given in the first reference for our problem equation.

B (Matlab code for GPUmat SBDF1 simulation)

Here we post the Matlab code which was used for the simulation with the constant time-stepping
SBDF1 method on a GPU using the GPUmat package. The actual changes that have to be made to
carry out the simulations on the GPU are in bold format. For using Matlab’s PCT an equivalent
adjustment with slightly changed syntax is necessary. The following snippet includes graphical output.

1 function qd gpu
2 % Simulation of quantum dot self-assembly, SBDF1 on GPU
3 G = 0.15; E = 1.2778;r = 0.05; flux = 0.002; % parameters
4 n = 1024; % n number of coefficients in one dimension
5 L = 250; % domain length in one dimension
6 dx = L/n; % grid spacing
7 xgrid = dx*(1:n)'; % 1D spatial grid
8 [X, Y] = meshgrid(xgrid, xgrid); % 2D spatial grid
9 k=[0:n/2 -n/2+1:-1]'*(2*pi/L); % 1D wavenumbers

10 [kxT, kyT] = meshgrid(k,k); % 2D wavenumbers
11

12 % wavenumber matrices (double precision) on GPU
13 kx = GPUdouble(kxT);
14 ky = GPUdouble(kyT);
15 k 2 = kx.ˆ2 + ky.ˆ2;
16 k31 = (k 2).*kx;
17 k32 = (k 2).*ky;
18 k4 = k 2.ˆ2;
19 fluxmat fft = fft2(-flux*ones(n,n,GPUdouble));
20

21 t=0; t max = 100; dt = 0.001; % initial time, maximal time, step size
22 C = 2; % convexity splitting parameter
23 S = [1 - dt*(E*(k 2.ˆ(3/2)) - (1+C)*k4)]; %linear part
24 H = GPUdouble(h init 2D(xgrid)); %GPU array definition
25 u = fft2(H); %DFT
26

27 while t < t max
28 t = t+dt;
29 H = real(ifft2(u));
30 % visualization every few iterations
31 if mod(round(t/dt),50) == 0
32 figure(4);
33 surfl(X,Y,double(H));
34 colormap gray
35 shading interp
36 camlight right
37 axis([xgrid(1) xgrid(end) xgrid(1) xgrid(end) -0.1 10]);
38 view([-23.5 84]); drawnow;
39 end
40 % gradient of h, explicit nonlinear parts, update
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41 hx = real(ifft2(1i*kx.*u));
42 hy = real(ifft2(1i*ky.*u));
43 gx = 4*G*(hx.ˆ3 - hx);
44 gy = 4*G*(hy.ˆ3 - hy);
45 u plus = (u - dt*(-C*k4.*u - r*k 2.*fft2(1./(H.ˆ2)) - ...
46 1i*(k31.*fft2(gx) + k32.*fft2(gy)) + fluxmat fft))./S;
47 u = u plus;
48 end
49

50 function y = h init 2D(x)
51 y = (rand(length(x), length(x))-rand(length(x),length(x)))*0.001 + 0.5;

Code 1: Matlab code for the SBDF1 method with convexity splitting (C = c2) with calculations
on a GPU using GPUmat and with visualization. The differences to a CPU implementation are
accentuated by the bold format of the GPU commands.

C (Matlab snippets for EXPINT environment)

To simulate equation (5.1) in the EXPINT environment, we had to implement the following two
Matlab snippets for the linear, and nonlinear part, respectively. These are adaptions from the other
problems given within the package.

1 problem.domlength = problem.ND/4;
2 problem.dx = problem.domlength/problem.ND;
3 problem.x = problem.dx*(1:problem.ND)';% N-1 inner points
4 % problem parameters
5 problem.gam = 0.05; problem.E = 1.28; problem.cvxty = .3;
6 % linear part L
7 problem.k = [0:problem.ND/2-1 0 -problem.ND/2+1:-1]'/(problem.domlength/(2*pi));
8 problem.k2 = problem.k.ˆ2; problem.k3 = problem.k.ˆ3; problem.k4 = problem.k.ˆ4;
9 problem.L = problem.E*problem.k2.*abs(problem.k) ...

10 - problem.k4 - problem.cvxty*problem.k4;
11

12 % Initial condition
13 IC = s.IC;
14 switch lower(IC);
15 % add other options such as randomly perturbed initial state here
16 case {'loaded'}
17 H = load('init forETD.dat');
18 problem.y0 = H;
19 problem.ICname = 'loaded';
20 problem.ICnametex = 'perturbed flat state';
21 otherwise
22 error('koreva:invalidic', 'Unknown IC supplied');
23 end
24 problem.y0 = fft(problem.y0);
25

26 % Other problem parts
27 % nonlinear function, postprocessing, L+N function for ode15s, names
28 problem.N = 'koreva N';
29 problem.postprocessing = 'koreva post';
30 problem.LplusN = 'diagLplusN';
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31 problem.problemname = ['Korzec-Evans, ND=', int2str(problem.ND), ...
32 ', IC: ', problem.ICname];
33 problem.problemnametex = ['Korzec-Evans, ', ...
34 '$\mathrm{ND}=', int2str(problem.ND), ...
35 '$, IC: $', problem.ICnametex, '$'];

Code 2: Main parts of the Matlab code for setting up the problem structure for simulating equation
(5.1) in the EXPINT environment. The linear part L is defined by the wavenumbers, corresponding
to (4.6).

1 function Nr = koreva N(U, t, problem)
2 h = real(ifft(U));
3 hx = real(ifft(1i*problem.k.*U));
4 Nr = problem.gam*problem.k2.*fft(1./(h.ˆ2)) ...
5 + 0.6*1i*problem.k3.*fft(hx.ˆ3-hx) + problem.cvxty*problem.k4.*U;

Code 3: Matlab code for the nonlinear function (4.7).
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