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Abstract
Noise in spiking neurons is commonly modeled by a noisy input current or by generating output spikes stochastically with a
voltage-dependent hazard rate (“escape noise”). While input noise lends itself to modeling biophysical noise processes, the
phenomenological escape noise is mathematically more tractable. Using the level-crossing theory for differentiable Gaussian
processes, we derive an approximate mapping between colored input noise and escape noise in leaky integrate-and-fire
neurons. This mapping requires the first-passage-time (FPT) density of an overdamped Brownian particle driven by colored
noise with respect to an arbitrarily moving boundary. Starting from the Wiener–Rice series for the FPT density, we apply the
second-order decoupling approximation of Stratonovich to the case of moving boundaries and derive a simplified hazard-rate
representation that is local in time and numerically efficient. This simplification requires the calculation of the non-stationary
auto-correlation functionof the level-crossingprocess: For exponentially correlated input noise (Ornstein–Uhlenbeckprocess),
we obtain an exact formula for the zero-lag auto-correlation as a function of noise parameters, mean membrane potential and
its speed, as well as an exponential approximation of the full auto-correlation function. The theory well predicts the FPT and
interspike interval densities as well as the population activities obtained from simulations with colored input noise and time-
dependent stimulus or boundary. The agreement with simulations is strongly enhanced across the sub- and suprathreshold
firing regime compared to a first-order decoupling approximation that neglects correlations between level crossings. The
second-order approximation also improves upon a previously proposed theory in the subthreshold regime. Depending on a
simplicity-accuracy trade-off, all considered approximations represent useful mappings from colored input noise to escape
noise, enabling progress in the theory of neuronal population dynamics.

Keywords Integrate-and-fire neuron · Interspike interval density · First-passage-time density · Colored noise · Escape noise ·
Hazard rate · Threshold-crossing statistics · Neuronal population dynamics

1 Introduction

Neurons in the brain must operate under highly non-
stationary conditions. In fact, most behaviorally relevant
sensory stimuli as well as internal signals are rarely con-
stant in time but may change rapidly. In the presence of
noise, such dynamic stimuli can be reliably encoded in the
time-dependent population activity of a large population of
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spiking neurons (Gerstner et al. 2014). The time-dependent
population activity also provides a concise coarse-grained
description of the collective dynamics of interacting spik-
ing neurons. Therefore, theories that predict the population
activity in response to a time-dependent signal have been
of fundamental interest in theoretical neuroscience (Knight
1972; Gerstner 2000; Augustin et al. 2017; Schwalger et al.
2017).

The population activity of noisy spiking neurons can be
mathematically described by population density equations
(Nykamp and Tranchina 2000; Chizhov 2017). The form
of the population density equation depends on the noise
model. Two popular ways to model neuronal noise consist
of modeling noise either in the input or in the output of the
neuron (Gerstner et al. 2014). In the first model class (input
noise), noise enters the dynamical equations of themembrane
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potential, currents or conductances leading to stochastic dif-
ferential equations. If the noise is Gaussian white noise, the
subthreshold dynamics becomes a diffusion process and the
input noise is also called diffusive noise (Gerstner 2000).
The corresponding population density equation is a Fokker–
Planck equation and the population activity can be obtained
as the probability flux across the threshold (Abbott and
van Vreeswijk 1993; Brunel and Hakim 1999; Fourcaud
and Brunel 2002; Nykamp and Tranchina 2000; Richard-
son 2008; Augustin et al. 2017). Models based on diffusive
noise naturally appear as the result of modeling biophysical
processes such as synaptic shot-noise or ion channel noise.
In particular, a frequently considered source of noise is back-
ground synaptic input modeled as external Poisson processes
(Brunel 2000; Potjans and Diesmann 2014). The fluctuating
part of this external shot noise leads, via a diffusion approxi-
mation (Gerstner et al. 2014), toGaussianwhite noise driving
the synaptic input current or conductance. Besides its bio-
physical interpretability, input noise has the advantage that it
permits modeling both temporal (Fourcaud and Brunel 2002;
Schwalger et al. 2015) and spatial (Lindner et al. 2005) corre-
lations of synaptic inputs and enables mean-field theories for
recurrent networks of sparsely connected integrate-and-fire
neurons (Brunel and Hakim 1999; Brunel 2000).

In the second model class (called output noise or escape
noise (Gerstner 2000)), the dynamical equations for the state
variables are deterministic, while spikes (“output”) are gen-
erated stochastically through a hazard rate or conditional
intensity (Gerstner 2000; Paninski 2004; Truccolo et al.
2005; Pillow et al. 2008; Pillow and Latham 2008; Naud
and Gerstner 2012; Brea et al. 2013; Galves and Löcherbach
2016; Gerhard et al. 2017; Raad et al. 2020). This hazard
rate depends on the state variables via a link function. For
example, it may be given as λ̂(t) = Ψ (u(t), t̂(t)), where
u(t) is the membrane potential and t̂(t) is the last spike
time of the neuron at time t . If the neuron model is a
non-homogeneous renewal or quasi-renewal (Naud and Ger-
stner 2012) process, the corresponding population density
equation is a renewal integral equation or, equivalently, a
refractory density equation (Gerstner et al. 2014; Gerstner
2000; Naud and Gerstner 2012; Chizhov and Graham 2007,
2008; Dumont et al. 2016; Schwalger and Chizhov 2019).
Althoughoutput noise is of phenomenological naturewithout
a quantitative link to biophysical mechanisms, it has several
advantages (Schwalger and Chizhov 2019) owing to its sim-
pler mathematical tractability: First, the refractory density
or integral equation admits an extension to finite numbers
of neurons (Schwalger et al. 2017; Schwalger and Chizhov
2019; Schmutz et al. 2020, 2021). This extension allows to
account for finite-size fluctuations of the population activ-
ity at the mesoscopic scale. Second, models with output
noise provide analytical expressions for the likelihood func-
tion, and thus, model parameters can be efficiently fitted

to experimental data of single neuron recordings (Panin-
ski 2004; Truccolo et al. 2005; Pillow et al. 2008; Gerhard
et al. 2017; Mensi et al. 2012; Pozzorini et al. 2015; Teeter
et al. 2018). And third, the state space for models with
output noise remains approximately one-dimensional even
for multi-dimensional conductance-based neuron models
(Chizhov and Graham 2007). The one-dimensional descrip-
tion permits highly efficient numerical solutions, in contrast
to Fokker–Planck equations (Apfaltrer et al. 2006), which
become intractable and computationally inefficient for sev-
eral state variables.

In view of the wide use of biologically interpretable input
noise and the mathematical advantages of output noise, an
intriguing question is whether input noise can be approxi-
mately mapped to output noise, so as to take full advantage
of both noise models. Mathematically, such a map requires
the specification of the hazard rate λ̂(t) in terms of a link
function Ψ , which depends on some dynamical variables
and defines the escape-noise model. Unfortunately, a stan-
dard method to derive such a link function does not exist.
To see this, let us consider the example of non-homogeneous
renewal processes as a popular class of neuron models. In
these models, the probability density P(t |t̂) to fire the next
spike at time t given a spike at time t̂ , t̂ < t , does not depend
on the state of the model before time t̂ , i.e., the memory
of renewal neurons only reaches back to its last spike. An
important example of non-homogeneous renewal models in
neuroscience are one-dimensional integrate-and-fire neurons
driven by white input noise (Gerstner et al. 2014). For this
model class one can formally construct the hazard rate via
the formula λ(t |t̂) = P(t |t̂)/[

1 − ∫ t
t̂ P(s|t̂) ds] (Gerstner

et al. 2014). However, there are two obstacles: first, in order
to apply this formula, the “interspike interval (ISI) density”
P(t |t̂)wouldbeneeded in analytical form forarbitrary, time-
dependent input currents {I (t ′)}t ′∈(t̂,t) that occurred since the
last spike. However, the calculation of the ISI density for
time-dependent inputs is equivalent to a first-passage-time
(FPT) problemwith time-dependent parameters or boundary.
The solution of this FPT problem requires the solution of the
Fokker–Planck equation with moving absorbing boundary,
which is known to be a hard theoretical problem (Bulsara
et al. 1996; Schindler et al. 2004; Lindner 2004b). Second,
even if one succeeds to derive an approximate formula for
the hazard rate λ(t |t̂), it is still challenging to represent the
hazard rate in the form of a link function Ψ

(
u(t), {z(t)}, t̂)

that depends on some voltage-like variable u(t), the last
spike time t̂ and possibly further dynamical variables {z(t)}
locally in time (as opposed to a “non-local” functional of
{u(t ′), z(t ′)}t ′∈(t̂,t)).

Several theoretical studies have suggested approximate
local hazard rates for leaky integrate-and fire (LIF) models
driven by white (Plesser and Gerstner 2000; Herrmann and
Gerstner 2001; Chizhov and Graham 2007) or exponentially
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correlated (Chizhov and Graham 2008) Gaussian noise, or
quasi-static (frozen) noise (Goedeke and Diesmann 2008).
In this paper, we explore an alternative approach to the haz-
ard rate and the first-passage-time density based on the theory
of level crossings (Verechtchaguina et al. 2006). In Sect. 2,
we introduce the LIF model with time-dependent driving
and constant threshold and map this process an equivalent
model with constant input and moving barrier. In Sect. 3,
we consider the level crossing statistics with respect to this
moving barrier and use the Wiener–Rice series and approx-
imations thereof to provide formal expressions for the FPT
density. These expressions form the starting point for deriv-
ing approximate hazard rates that are local in time. This
derivation reveals some unexpected results concerning the
correlations of level-crossings ofGaussian processes at small
time lags (Sect. 3.4). Then, we turn to the LIF model and the
problem of mapping input noise to escape noise (Sect. 4)
and apply this map to predict the time-dependent population
activity of LIF neurons with colored input noise (Sect. 5).
Each of the Sects. 3, 4 and 5 closes with a comparison of the
level-crossing theory with simulations and a previous the-
ory by Chizhov and Graham (2008). Detailed derivations are
provided in Appendix.

2 Leaky integrate-and-fire models and the
associated first-passage-time problem

As a spiking neuron model with input noise, we consider a
leaky integrate-and-fire model driven by synaptically filtered
(“colored”) noise (Schwalger and Schimansky-Geier 2008;
Gerstner et al. 2014; Schuecker et al. 2015). In this model,
spikes are emitted whenever the membrane potential V (t)
reaches a threshold VT. The subthreshold dynamics for V <

VT can be written as

τmV̇ = −V + μ(t) + η(t), (1a)

τsη̇ = −η + √
2τsσηξ(t), (1b)

where τm is the membrane time constant and μ(t) = Vrest +
RI (t) is the mean neuronal drive consisting of a constant
resting potential Vrest and a time-dependent input current
I (t) (R denotes themembrane resistance). Furthermore, η(t)
is a colored noise modeled as a one-dimensional Ornstein–
Uhlenbeck process with correlation time τs and variance σ 2

η ,
and ξ(t) is a zero-mean Gaussian white noise with auto-
correlation function 〈ξ(t)ξ(t ′)〉 = δ(t − t ′). The colored
noise captures the effect of various intrinsic and extrinsic
noise sources, such as fluctuations of synaptic background
activity in vivo (shot noise due to random spike arrival from
background neurons). After threshold crossing and spike
emission, V (t) is reset to a reset potential VR , VR < VT , and

the subthreshold dynamics Eq. (1) resumes after an absolute
refractory period of length tref following the reset.

We are seeking a corresponding spiking neuron model
with escape-noise (Gerstner 2000) given by a hazard rate
(conditional intensity) of the form Ψ

(
u(t), u̇(t), {zi (t)}, t −

t̂
)
. Here, u(t) is a membrane-potential variable that obeys

the noiseless membrane dynamics of the LIF model between
spikes:

τmu̇ = −u + μ(t). (2a)

Furthermore, we allow an explicit dependence on the speed
of the membrane potential u̇(t) (in accordance with previous
studies (Plesser and Gerstner 2000; Herrmann and Gerstner
2001; Chizhov and Graham 2007; Goedeke and Diesmann
2008)), the time since the last spike t − t̂ , and possibly fur-
ther auxiliary variables {zi } whose dynamics between spikes
is given by ordinary differential equations. Given these vari-
ables at time t , a spike is fired independently in the next time
step with probability

Pr
(
spike in (t, t + dt)|u(t), u̇(t), {zi (t)}, t − t̂

)

= Ψ
(
u(t), u̇(t), {zi (t)}, t − t̂

)
dt (2b)

where dt is a small step size. This probabilistic firing rule
is the counterpart of the firing rule with a hard threshold
in the LIF model with input noise. After a spike, u(t) is
reset to VR and the auxiliary variables {zi } are also reset to
some suitable fixed reset value. During an absolute refractory
period of length tref, the variables are clamped to their reset
values and the hazard rate is set to zero. Because all memory
is erased upon resetting, the escape-noise model is a non-
homogeneous renewal process .

The main goal is to map the model with colored input
noise, Eq. (1) to themodel with escape noise, Eq. (2). Strictly
speaking, mapping the two models is an ill-posed problem
because the model with input noise is a non-renewal process,
whereas the escape-noise model is a (non-homogeneous)
renewal process. In fact, the temporal correlations of the col-
ored noise in Eq. (1) introduces memory that is not erased
upon spiking. This memory leads to correlations between
interspike intervals (ISIs) (Lindner 2004a; Schwalger and
Schimansky-Geier 2008; Schwalger et al. 2015). However,
if the correlation time τs of the colored noise is much smaller
than the mean interspike interval, these correlations will be
small and the model with input noise can be regarded as
approximately renewal. In this case, it is sufficient to match
the ISI densities of the two models in order to obtain an
approximate mapping. Therefore, our goal of mapping the
two models can be phrased more modestly as follows: Can
we find a link function Ψ of the escape-noise model such
that for an arbitrary given stimulus μ(t) the time-dependent
ISI densities P(t |t̂) of the two models approximately match
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for all t and t̂ < t? We emphasize that this definition of the
mapping rests on the assumption of sufficiently small cor-
relation times of the colored input noise. Biologically, this
assumption seems to be reasonable given that typical time
scales of excitatory and inhibitory postsynaptic currents are
often only on the order of a few milliseconds (Gerstner et al.
2014).

To derive the link function Ψ that maps input to output
noise, one needs to solve a first-passage-time (FPT) prob-
lem: As mentioned in Introduction, the hazard rate can be
obtained from the ISI density of the model with input noise,
Eq. (1). In this model, the interspike interval is determined
by the “first-passage time” that is needed for the membrane
potential to travel from the reset potential to the threshold.
Thus, the ISI density P(t |t̂) is equivalent to the FPT den-
sity (apart from a time shift due to the deterministic absolute
refractory period). To compute the FPT density, one needs
to choose suitable initial conditions for the colored noise
η(t). The ISI starting at the last spike time t̂ is composed
of the initial absolute refractory period of length tref and the
stochastic FPT t∗. We thus need the initial value η(t̂ + tref)
of the noise at the starting time t̂ + tref of the stochastic
motion. At the firing time t̂ , the distribution of the noise
pfire(η, t̂) is biased toward positive values of η (Lindner
2004a; Schwalger and Schimansky-Geier 2008; Schwalger
2013; Schwalger et al. 2015), in contrast to the stationary dis-
tribution pst(η) of the Ornstein–Uhlenbeck noise, which has
zero mean. During the absolute refractory period, the noise
distribution relaxes toward the stationary distribution. Even
though the noise at time t̂ + tref may not be fully stationary
yet, it is reasonable to assume stationary initial conditions,
where η(t̂ + tref) ∼ N (0, σ 2

η ) is drawn from a normal dis-
tribution with variance σ 2

η . This initial condition is justified
because the noise correlation time τs has been assumed to
be much smaller than the mean ISI; hence, we do not expect
that the precise shape of the initial noise distribution has a
significant effect on the FPT density.

Because in the following we focus on the FPT starting at
t̂+ tref, we will conveniently choose the time origin such that
t̂ + tref = 0. Furthermore, since we are only interested in
the first threshold crossing after time t = 0, we can omit the
voltage resetting for t > 0 without changing the FPT statis-
tics. The resulting non-resetting process V̂ (t) is the freely
evolving solution of Eq. (1) without reset and with initial
conditions V̂ (0) = VR, η(0) ∼ N (0, σ 2

η ) (Fig. 1a). This
non-resetting process will be useful for the level-crossing
approach below.

For mathematical convenience, we will now reformulate
the FPT problem in terms of a time-homogeneous process
x(t) and a moving boundary b(t), so as to eliminate the
time-dependent parameter μ(t) in Eq. (1) (Fig. 1b). This is
achieved by subtracting the mean non-resetting membrane
potential 〈V̂ (t)〉 = u(t):

(a)

(b)

Fig. 1 First-passage time of an integrate-and-fire neuron model and
an equivalent model with moving boundary. a At time t = 0, differ-
ent realizations of the non-resetting membrane potential V̂ (t) (colored
thin lines) are released from the reset potential VR. The non-resetting
membrane potential follows a Gaussian process with time-dependent
mean 〈V̂ (t)〉 (gray thick line). Shown are three realizations (green, red,
blue lines) that have an identical threshold crossing at time t = t∗
(blue circle), which is not necessarily the first crossing (indicated by an
arrow). b Transformation to an equivalent time-homogeneous process
x(t) with moving boundary b(t), in which the positions of thresh-
old crossings are preserved. Parameters: τs = 4 ms, τm = 10 ms,
σV :=σx (∞) = 0.25(VT − VR)

x(t) = V̂ (t) − u(t) (3)

b(t) = VT − u(t), (4)

where u(t) is given by Eq. (2a) with initial condition u(0) =
VR. Furthermore, setting y = η/τm, γ = 1/τm, τy = τs and
D = τsσ

2
η /τ 2m, we find the Langevin equation

ẋ = −γ x + y (5a)

τy ẏ = −y + √
2Dξ(t) (5b)

with initial conditions

x(0) = 0, y(0) ∼ N (0, σ 2
y ) (6)

The dynamics of x(t) can be interpreted as an overdamped
motion of Brownian particle in a parabolic potential sub-
ject to a colored noise y(t) (Ornstein–Uhlenbeck process).
Here, D and τy are intensity and the correlation time of the
noise, respectively, andγ is the friction coefficient.Asbefore,
ξ(t) is a zero-mean Gaussian white noise. At time t = 0,
the random initial condition for the colored noise y corre-
sponds to a stationary Gaussian distribution with mean zero
and variance σ 2

y = D/τy . By construction, the domain of
the particle is bounded from above by the time-dependent
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boundary b(t), where b(0) > 0 and b(t) is a differentiable
function of time. The FPT t∗ is defined as the time when
x(t) exits the domain, i.e., when it reaches the boundary,
for the first time. The FPT density will be denoted by P(t),
i.e., P(t)dt = Prob(t∗ ∈ [t, t + dt)) for an infinitesimal
time interval of length dt . We emphasize again that the FPT
density of the Brownian particle x(t) with moving boundary
b(t) is the same as the FPT density of themembrane potential
V (t) with respect to the constant threshold VT.

Beyond neuroscience, the escape of the doubly low-
pass filtered process, Eq. (5), from a domain with moving
boundary b(t) may serve as a simple archetypal model for
non-stationary FPT problems. One prominent example is
reaction times of bimolecular chemical reactions (Hänggi
et al. 1990). If x(t) is interpreted as a reaction coordinate and
the domain x < b(t) corresponds to the reactant state, the
boundary b(t) can be interpreted as a time-dependent energy
barrier that needs to be surpassed to reach the product state.
Accordingly, the first-passage time can be interpreted as the
reaction time.

3 Level-crossing theory for a moving barrier

3.1 Hazard-rate representation of first-passage-time
density

To find approximations to the FPT density from approxi-
mate hazard rates, we use concepts from renewal theory,
especially the notion of hazard rate and survival probabil-
ity (Cox 1962). Because the process Eq. (5) starts at time
0, the hazard rate λ(t) is defined here as the conditional
probability per small time interval dt to find a boundary
crossing in the interval (t, t + dt) given the absence of
crossings in the interval (0, t). On the other hand, the sur-
vival probability S(t) is defined as the probability of an
absence of crossings in (0, t). The two definitions imply that
S(t + dt) = S(t)(1−λ(t)dt), hence dS(t)/dt = −λ(t)S(t).
Because the survival probability is unity at time t = 0, we

thus obtain S(t) = exp
(
− ∫ t

0 λ(s) ds
)
for t > 0. The prob-

ability to find the first crossing after time 0 in the interval
(t, t + dt) is equal to the probability to find a crossing in
(t, t + dt) and to have no crossings in (0, t). Hence, the FPT
density is given by the product P(t) = λ(t)S(t), or

P(t) = λ(t) exp

(
−

∫ t

0
λ(s) ds

)
. (7)

Given the hazard rate λ(t) for t > 0, Eq. (7) provides a
simple formula for the FPT density. An advantage of this
representation is that the exponential factor can be turned
into a first-order differential equation,

P(t) = λ(t)S(t),
dS

dt
= −λ(t)S(t), S(0) = 1. (8)

Thus, if the hazard rate λ(t) can be efficiently computed
for t > 0, this representation permits an efficient numeri-
cal integration of the first-passage-time density forward in
time. Therefore, the main strategy in this paper is to derive
computationally efficient approximations for the hazard rate.

In general, the calculation of the hazard rate is as difficult
as the calculation of the FPT density itself. However, finding
approximations for λ(t) has several advantages over direct
approximations of P(t). Firstly, as a probability density, P(t)
must satisfy the normalization to unity. Thus, the value of the
FPT density at different times cannot be calculated indepen-
dently. In particular, the value of P(t) strongly depends on
the values for t ′ ∈ (0, t). By contrast, λ(t) is not a probability
density and can thus, in principle, be arbitrary as long as it

is nonnegative and S(t) = exp
(
− ∫ t

0 λ(s) ds
)
converges to

zero as t → ∞. Thus, if we are able to find any approxi-
mation for λ(t), the normalization of P(t) is guaranteed by
Eq. (7).

Secondly, the character of the hazard rate is more local
in time than the FPT density, and thus, we expect more
efficient approximations for the hazard rate. The non-local
character of P(t) has been already mentioned above. More-
over, the non-locality becomes particularly evident by the
integral in Eq. (7), which accumulates the history of hazard
rates. The exponential factor S(t) shaped by this integral thus
contributes a trivial history-dependence of the FPT density
P(t), which is present already for time-homogeneous pro-
cesses. By contrast, this trivial history-dependence is divided
out in the hazard rate λ(t) = P(t)/S(t). The remaining
time-dependence of the hazard rate singles out effects of
non-stationarity and explicit time-dependence of the system,
which can be captured by local variables. Thirdly, because
of the locality in time, time-dependent rates are interesting
in its own right as they are often the natural choice to model
escape processes in terms of aMarkovian dynamics andmas-
ter equations.

From the above considerations, it becomes clear that the
hazard rate representation, Eq. (7), is only useful if we suc-
ceed to derive approximations for λ(t) that are local in time.
This means that we are seeking an approximation of the haz-
ard rate in the form

λ(t) ≈ Φ
(
b(t), ḃ(t), . . . , {zi (t)}, t

)
, (9)

which may depend on time explicitly and through a few
variables such as the value and its derivative of the time-
dependent boundary, b(t) and ḃ(t), respectively, and possibly
through a few auxiliary variables zi (t) that obey simple ordi-
nary differential equations. Note that we use the notations Φ

for the boundary-dependent hazard rate of the model Eq. (5)
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and Ψ for the voltage-dependent hazard rate of the model
Eq. (2b). The two functions are related in a simple way, see
Sect. 4.1.

3.2 Wiener–Rice series

Our approach to tackle the time-dependent FPT problem is
to employ the level-crossing statistics of a Gaussian process
(Rice 1945; Ricciardi and Sato 1983; Verechtchaguina et al.
2006; Braun and Thul 2017; Azaïs and Wschebor 2009).
To this end, let us consider the sub-set of all realizations
of x(t) that cross the barrier b(t) from below in the time
interval (t∗, t∗ + Δt), a so-called “up-crossing” (Fig. 1b).
The up-crossing at time t∗ is not necessarily the first one but
could be the second, third (and so on) up-crossing (e.g., green
and red lines in Fig. 1b). To compute the density of the first
up-crossing, one can make use of the statistics of repeated
up-crossing events. These events form a point process in the
time interval [0, t∗]

s(t) =
N (t∗)∑

i=1

δ(t − t̂i ), (10)

where N (t∗) denotes the (random) number of up-crossings
in that interval, {t̂i }i=1,...,N (t∗) are the up-crossing times and
δ(·) is the Dirac δ-function. The statistics of the point pro-
cess can be fully described by the set of moment functions
fk(t1, . . . , tk) = 〈s(t1) · · · s(tk)〉, for k = 1, 2, . . . and non-
coinciding time arguments ti (Stratonovich 1967a; van Kam-
pen 1992). The moment functions can be interpreted such
that for a small time step Δt the quantity fk(t1, . . . , tk)Δtk

yields the probability to find an up-crossing events in each of
the non-overlapping intervals (t1, t1 + Δt), ..., (tk, tk + Δt).
For instance, f1(t) yields the rate of up-crossings at time t ,
and f2(t1, t2)/ f (t1) is the conditional rate of an upcrossing
at time t2 given an up-crossing at time t1. For level-crossings
of Gaussian processes, the distribution functions fk can be
calculated explicitly, for both stationary and non-stationary
processes (see Appendix, Sect. 3).

The distribution functions fk allow for an exact series
expression of the FPT density, sometimes called Wiener–
Rice series (Verechtchaguina et al. 2006; Braun and Thul
2017):

P(t) =
∞∑

k=0

(−1)k

k!
∫ t

0
dt1 · · · dtk fk+1(t1, . . . , tk, t) (11)

A detailed explanation of this formula is given in reference
(Verechtchaguina et al. 2006). In brief, it counts—for a large
ensemble of trajectories—the number of those trajectories
that have a crossing in [t, t + dt) but no crossing in (0, t).
Starting with the fraction f1(t)dt of all trajectories that cross

the boundary at time t (k = 0 term), the fraction with no
previous crossing can be computed by subtracting those tra-
jectories that crossed the boundary before time t . The second
term

∫ t
0 f2(t1, t)dt1 in Eq. (11) accounts for these trajectories

but overestimates their number because some trajectories are
counted multiply. This corresponds to trajectories that cross
the boundary more than once before time t (e.g., red line in
Fig. 1). To correct for the excessive subtraction, one needs
to add the fraction of trajectories with two or more cross-
ings before t . This is taken into account by the third term
1
2

∫ t
0

∫ t
0 f3(t1, t2, t)dt1dt2 which computes the mean number

of crossing pairs {t̂1, t̂2} per trajectory (e.g., in Fig. 1, the blue
andgreen curve contributes zero and the red curve contributes
one such pair; the factor 1

2 accounts for permutations of t̂1 and
t̂2). Again, this term overestimates the fraction of trajectories
with double crossing events because trajectories with more
than two crossings are multiply counted (e.g., a trajectory
with three crossings gives rise to three pairs {t̂1, t̂2}, {t̂1, t̂3},
{t̂2, t̂3}). Continuing this correction procedure for trajectories
with arbitrary number of crossings leads to the infinite series
expression Eq. (11).

An alternative statistical description of the point pro-
cess s(t) is given by the k-th-order cumulant functions
gk(t1, . . . , tk) (see (Stratonovich 1967a; van Kampen 1992)
and Sect. 1), which remove the dependence on lower-
order moment functions: for instance, g1(t) = f1(t) and
g2(t1, t2) = f2(t1, t2)− f1(t1) f1(t2). The probability to find
no event in the interval (0, t) (i.e., the survival probability)
is related to the cumulant functions by (Stratonovich 1967a;
van Kampen 1992)

S(t) = exp

( ∞∑

k=1

(−1)k

k!
∫ t

0
dt1 · · · dtk gk(t1, . . . , tk)

)

.

(12)

From this expression, the Wiener–Rice series for the FPT
density, Eq. (11) is recovered by P(t) = −dS(t)/dt . Simi-
larly, the hazard rate can be obtained by λ(t) = −d(ln S)/dt .
As infinite series expressions, Eq. (11) and Eq. (12) are of
no practical use for direct computations of the FPT density.
However, these formal expressions are used as a starting point
for further approximations.

3.3 Decoupling approximations

The series expression for the survival probability, Eq. (12),
simplifies considerably if higher-order cumulant functions
gk are approximated in terms of lower-order cumulant func-
tions, thereby neglecting higher-order dependencies between
up-crossings. In this section, we review two approxima-
tions based on such a decoupling of (temporal) interac-
tions between events (Stratonovich 1967a): a first-order
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decoupling approximation, where all up-crossing events are
assumed to be independent, and a second-order decoupling
approximation, in which higher-order interactions are mod-
eled in terms of pairwise interactions. While the first-order
approximation readily results in local hazard rates, the more
accurate pairwise interaction approximation is highly non-
local and therefore not useful for practical calculations.
However, as we shall show in Sect. 3.5, the pairwise inter-
action model can be used as a starting point for deriving an
efficient local approximation of the hazard rate (second-order
decoupling approximation) that accounts for higher-order
interactions between up-crossings.

3.3.1 Independent upcrossings

If the correlation time of the process x(t) is much smaller
than the (typical) intervals between upcrossings, up-crossing
events can be regarded as independent, i.e., the series of up-
crossing events is an inhomogeneous Poisson process with
rate f1(t). Mathematically, this corresponds to neglecting
higher-order cumulants except for the first one: g1(t) = f1(t)
and gk ≈ 0 for all k ≥ 2 (Stratonovich 1967a). In this case,

Eq. (12) reduces to S(t) = exp
(
− ∫ t

0 f1(τ ) dτ
)
, and hence

the FPT density reads

P(t) ≈ f1(t) exp

{
−

∫ t

0
f1(τ ) dτ

}
. (13)

From this expression, we see that the hazard rate is simply
given by the upcrossing rate of the freely evolving process
x(t): λ(t) ≈ f1(t). The upcrossing rate f1(t) can be calcu-
lated analytically in termsof the current value of the boundary
b(t) and its derivative ḃ(t) (see Appendix 3 and 4). The result
is the first-order decoupling approximation:

λ(t) ≈ f1(t) = Φ1
(
b(t), ḃ(t), t

)

:=
√

σ 2
x σ 2

y − σ 2
xy

2πσ 2
x

H

⎛

⎝ (γ σ 2
x − σxy)b + σ 2

x ḃ√
2(σ 2

x σ 2
y − σ 2

xy)σx

⎞

⎠ e−B(b,ḃ,t),

(14)

where H(x) = 1 − √
πxex

2
erfc(x) and

B(b, ḃ, t) =
(
γ 2σ 2

x − 2γ σxy + σ 2
y

)
b2 + 2

(
γ σ 2

x − σxy
)
bḃ + σ 2

x ḃ
2

2
(
σ 2
x σ 2

y − σ 2
xy

) .

(15)

In these equations, the time-dependent moments σxy(t) =
〈x(t)y(t)〉 and σ 2

x (t) = 〈x2(t)〉 are given by

σxy(t) = τ̃ σ 2
y

(
1 − e−t/τ̃

)
, (16a)

σ 2
x (t) = τ̃ σ 2

y

γ

(
1 − e−2γ t

)
+ 2τ̃ σ 2

y

2γ − τ̃−1

(
e−2γ t − e− t

τ̃

)

(16b)

with σ 2
y = D/τy and τ̃−1 = γ + τ−1

y (see Sect. 2, esp.
Eq. (59) for a numerically stable ODE representation of the
moments).

Similar expressions for the level-crossing density in the
time-inhomogeneous case have been derived in previous
studies (Ricciardi and Sato 1983; Badel 2011).

3.3.2 Upcrossings correlated in pairs

If the average time between upcrossings 1/ f1(t) is on the
order of or smaller than the correlation time of x(t) given
by τcor = γ −1 + τy , upcrossing events cannot be regarded
as being independent anymore. To account for correlations
between upcrossings, we follow a decoupling approximation
(DA) of higher-order correlation functions gk(t1, . . . , tk),
k ≥ 3, proposed by Stratonovich (Stratonovich 1967a, b).
This approximation assumes that higher-order correlations
are governed by the same time scales as pair-wise correla-
tions and can therefore be expressed in terms of the first two
correlation functions f1(t) and g2(t1, t2). Specifically, corre-
lation functions with k ≥ 2 are approximated by the ansatz
(Stratonovich 1967a, b)

gk(t1, . . . , tk) = (k − 1)! f1(t1) · · · f1(tk){R(t2, t1) · · · R(tk , t1)}sym.

(17)

here the function R(t, t ′) describes the pairwise interactions
between events at time t and t ′, and {· · · }sym denotes the
operation of symmetrization (i.e., the arithmetic mean of
all permutations of the time arguments). As suggested in
(Stratonovich 1967a, b), we choose R(t, t ′) as the normal-
ized auto-correlation function

R(t, t ′) = f2(t, t ′)
f1(t) f1(t ′)

− 1, (18)

which makes the ansatz Eq. (17) exact for k = 2. Note that
compared to (Stratonovich 1967a, b), we use an opposite sign
in the definition of R for mathematical convenience. The
auto-correlation function R(t, t ′) can be interpreted as the
conditional probability density of an event at time t ′ given an
event at time t normalized by the unconditional probability
density f1(t ′) and shifted by the mean such that R(t, t ′) = 0
if events at time t and t ′ are independent. For stationary point
processes, R(t, t ′) = R(|t − t ′|) only depends on the time
difference. In analogy to the common use for spatial point
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processes, R(t − t ′) will be called pair correlation function
in this case.

We expect the following behavior of the auto-correlation
function: firstly, if events are far apart, |t − t ′|  τcor,
they occur independently, hence f2(t, t ′) ≈ f1(t) f1(t ′). This
implies a vanishing auto-correlation function R(t, t ′) ≈ 0.
Secondly, the behavior when t and t ′ are close depends on the
correlations between events: if close events occur indepen-
dently as in the case of an inhomogeneous Poisson process,
R(t, t ′) vanishes. In contrast, a positive pair correlation func-
tion R(t, t ′) > 0 at small time lag indicates that events are
attractive and tend to cluster. Conversely, for a negative pair
correlation function R(t, t ′) < 0 at small time lag, events
are repulsive, i.e., the occurrence of close events is less fre-
quent than expected for a Poisson process. In particular, if
a point process exhibits a refractory period after each event
(“hardcore interaction”), we find that f2(t, t ′) = 0 and hence
R(t, t ′) = −1 if t and t ′ fall within a refractory period. Sim-
ilarly, non-approaching random points (Stratonovich 1967a)
are characterized by R(t, t) = −1 in the limit of vanish-
ing time lag. Interestingly, it has been assumed by some
authors that level crossings of differentiable processes are
non-approaching events with R(t, t) = −1 (Verechtch-
aguina et al. 2006; Puelma Touzel and Wolf 2016). In
Sect. 3.4, we shall investigate this assumption in more
detail.

While the decoupling approximation (DA), Eq. (17), is
exact for k = 2 by construction, it must be considered as
a physically motivated, heuristic ansatz for k ≥ 3, which
in general is not expected to be exact. Nevertheless, the
ansatz and the above-described behavior of R(t, t ′) ensure
some important properties of the higher-order correlation
functions gk : first, the DA is exact for an inhomogeneous
Poisson process because in this case R(t, t ′) ≡ 0 and
thus Eq. (17) recovers the expected result gk ≡ 0 for all
k ≥ 2. Second, gk does not depend on the order of the
time arguments because of the symmetrization operation in
Eq. (17). Third, gk(t1, . . . , tk) ≈ 0 if the time difference
of two arguments is much larger than τcor because their
pair correlation vanishes. And forth, it is known that for a
system of non-approaching random points gk(t, . . . , t) =
(−1)k(k − 1)! f k1 (t) (Stratonovich 1967b), which is consis-
tent with Eq. (17) and R(t, t) = −1.

Substituting the DA, Eq. (17), into the general expression
for the survival probability, Eq. (12), yields (Stratonovich
1967a, b; Verechtchaguina et al. 2006; van Meegen and van
Albada 2019)

S(t) ≈ exp

{
−

∫ t

0
f1(τ )

ln [1 + q(t, τ )]

q(t, τ )
dτ

}
, (19)

where

q(t, τ ) =
∫ t

0
R(τ, τ ′) f1(τ ′) dτ ′

= 1

f1(τ )

∫ t

0

[
f2(τ, τ

′) − f1(τ ) f1(τ
′)

]
dτ ′ (20)

is a measure of upcrossing correlations on the time scale
t . The formula Eq. (19) has been termed Stratonovich
approximation (Verechtchaguina et al. 2006). Comparing the
Stratonovich approximation with the first-order decoupling
approximation, Eq. (13), we observe that the upcrossing rate
f1(τ ) is multiplied by a correction factor ln(1+ q)/q. How-
ever, this correction factor depends explicitly on time t ,which
precludes a direct interpretation of the integrand in Eq. (19)
as the hazard rate (but see (vanMeegen and vanAlbada 2019)
for a hazard rate approximation of the integrand in the time-
homogeneous case). For the Stratonovich approximation to
be applicable, one has to require that

q(t, τ ) > −1 (21)

for all t and τ so as to keep the argument of the logarithm
positive (Verechtchaguina et al. 2006).

In practice, Eq. (19) is not useful as a computational
tool. A numerical evaluation is highly inefficient because
Eq. (19) contains nested integrals on three levels: for each
τ of the outer integral, the integral q(t, τ ) needs to be
evaluated independently for each time t . Furthermore, the
numerical integration of q(t, τ ) is itself computationally
complex because R(τ, τ ′) involves a further integration (tak-
ing already into account that one of the two integrals in the
definition of f2, Eq. (81), Sect. 5, can be evaluated analyti-
cally (Ricciardi and Sato 1983; Verechtchaguina et al. 2006);
we note that f2 can also be expressed in terms of Owen’s T
function (vanMeegen and van Albada 2019)). Therefore, we
will further simplify Eq. (19) by deriving a local approxima-
tion of the hazard rate.

3.4 The auto-correlation function of level crossings
for small time lags

We now proceed with calculating the auto-correlation func-
tion R(t, t+τ) in the limit of small time lags τ . Based on the
zero-lag limit we then propose a rough estimation of the tem-
poral correlation structure for τ > 0, which will be required
for the simplification of the Stratonovich approximation in
the next section. While the rate of level-crossings has been
studied extensively (e.g., (Rice 1945; Stratonovich 1967b;
Verechtchaguina et al. 2006; Tchumatchenko et al. 2010b)),
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the calculation of second-order statistics such as the auto-
correlation function has not received much attention. To the
best of our knowledge, closed-form analytical formulas for
the auto-correlation function of non-stationary level cross-
ings have not been published previously. InAppendix Sect. 2,
we also provide formulas for the auto-correlation function
of general Gaussian level-crossing processes in the station-
ary state (see also (Burak et al. 2009) for special cases and
(Jung1994) for the related but distinct result for the stationary
auto-correlation function of the two-state process triggered
by level crossings).

According to Eq. (18), the auto-correlation function at
zero time lag is given by

R0(t) = f2(t, t)

f 21 (t)
− 1, (22)

where f2(t, t) ≡ limτ→0 f2(t, t + τ) is defined through the
limiting procedure τ → 0. This corresponds to the con-
tinuous part of the auto-correlation function, i.e., f2(t, t)
excludes the singular self-correlation of points given by
f1(t)δ(τ ). The correlations betweenupcrossing in the limit of
vanishing lag can be calculatedwithin a saddle-point approx-
imation (see Appendix, Sect. 5). The result is

f2(t, t) = 3
√
3 − π

36π2

σ 2
y /τy

√
σ 2
x σ 2

y − σ 2
xy

e−B(b,ḃ,t) (23)

=: f̂2
(
b(t), ḃ(t), t

)
(24)

It is instructive to discuss the stationary case, ḃ = 0 and
t → ∞, in which the pair correlation function R(τ ) for
vanishing time lag τ obtains the simple form

R0 = β
1 + γ τy√

γ τy
exp

(
b2

2σ 2
x

)
− 1 (25)

with the numerical constant β = (3
√
3−π)/9 ≈ 0.228284.

For any fixed value of γ τy , this expression becomes minimal
at b = 0 (Fig. 2c, blue dashed line). From this, we infer
that R0 is always positive if γ τy < 0.0583757 (“white noise
regime”) or γ τy > 17.1304 (strong friction or large noise
correlation time). In this case, upcrossings tend to cluster. In
the wide intermediate range 0.0583757 < γτy < 17.1304,
the sign of R0 depends on the ratio |b|/σx of barrier height
to standard deviation of x(t). For vanishing or low barrier
height such that |b|/σx is below the critical value

bcrit
σx

=
√

2 ln

( √
γ τy

β(1 + γ τy)

)
, (26)

the pair correlation function will be negative at small time
lags, i.e., upcrossings tend to repel each other. Closer inspec-

tion of Eq. (25) shows that for any barrier height b, R0

becomes minimal (i.e., most negative) if γ τy = 1. The
absolute achievable minimum is found as R0 = −0.543431.
Therefore, the value R0 = −1 expected for non-approaching
points is never realized for level crossings of a doubly
low-pass-filtered white noise such as Eq. (1) and (5) for
the membrane potential and overdamped Brownian parti-
cle driven by a one-dimensional Ornstein–Uhlenbeck noise,
respectively. This result is in marked contrast to the assump-
tion of non-approaching level crossings made in previous
studies (Verechtchaguina et al. 2006; Puelma Touzel and
Wolf 2016).

On the other hand, for high barriers such that |b| > bcrit ,
the pair correlation function is positive at small time lags,
implying that upcrossing events tend to cluster. Intuitively,
upcrossings are mediated by large fluctuations of x(t) in
order to reach the high barrier. Once the barrier is reached,
x(t) persists at high values for some period because values
of x(t) are positively correlated at short time lags. During
this period, the probability to cross the barrier for a second
time is strongly increased. That is, upcrossings tend to cluster
in periods on the order of the correlation time of x(t). This
clustering corresponds to a positive pair correlation R0

3.5 Local hazard function

From theStratonovich approximation, Eq. (19),weobtain the
corresponding hazard rate by differentiating − ln S(t) with
respect to t . Using Eq. (20), the result can be written as

λ(t) = f1(t)

{
F

(
q(t, t)

) +
∫ t

0
f1(τ )F ′(q(t, τ )

)
R(t, τ ) dτ

}

(27)

where F(q) = ln(1 + q)/q. Because of the integral in
Eq. (27), the hazard rate is still non-local in time. In order to
obtain a local approximation, we make two ad hoc approx-
imations. First, Eq. (27) can be considerably simplified if
F ′(q(t, τ )) only weakly depends on τ such that we can pull
this function out of the integral. Under this assumption and
using again Eq. (20), the hazard rate reduces to the particu-
larly simple form

λ(t) = f1(t)

1 + q(t)
, (28)

where we used the short-hand notation

q(t) ≡ q(t, t) =
∫ t

0
R(t, t ′) f1(t ′) dt ′. (29)

The above ad hoc approximation seems plausible because
the pair-correlation function R(t, τ ) is different from zero
only in a region of width |τ − t | ∼ τcorr around its peak at
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(a)

(b)

(c) (d)

Fig. 2 Correlations of level crossings of a stationary process x(t). a
Normalized auto-correlation function R(τ ) ≡ R(t, t + τ) as a function
on the time lag τ (in units of τ1

def= τm = γ −1, τ �= 0) for constant
barriers b (as indicated on top) and small time constant τy = 0.4τm.
The solid magenta lines show the exact semi-analytical result obtained
from numerical integration of Eq. (81), and the blue dashed lines
show the exponential approximation, Eq. (30), respectively. b Same
as a but with τy = 2.5τm. c Correlations in the limit of vanishing

time lag, R(0) = limτ→0 R(τ ), as a function of the time scale ratio
τ2/τ1 = τy/τm for three different constant (ḃ = 0) threshold levels b
(as indicated). d Correlations for vanishing time lag as a function of
the instantaneous threshold level b(t) for three different slopes ḃ(t) (at
τy = 0.4τm): decreasing thresholds lower probability of observing two
infinitesimally close level crossings (blue dashed line), whereas increas-
ing threshold increase this probability (finely dashed red line) compared
to constant thresholds (solid green line). In all panels, black dotted lines
indicate the zero baseline corresponding to a Poisson statistics

the integration boundary τ = t , where τcorr is the correlation
time defined in Eq. (31) (Fig. 2a, b). On this time scale,
q(t, τ ) represents indeed a slowly varying function of τ since
it results froman integrationover R (cf. Eq. (20)).Note that an
alternative approximationhas been suggested in (vanMeegen
and van Albada 2019), which neglects the second term in
Eq. (27).

The formula Eq. (28) reveals a simple relation between
the upcrossing rate and the hazard rate, which is the rel-
evant quantity for the FPT: In the absence of correlations
between upcrossings, q = 0, the two rates are equal, while
negative correlations (repulsion of up-crossings) increase the

hazard rate and positive correlations (attraction or clustering
of up-crossings) decreases the hazard rate compared to the
up-crossing rate f1.

Second, to find a local estimation of q(t) we need to turn
the integral in Eq. (29) into a differential equation for q. A
simple way to achieve this is to use an exponential approxi-
mation for the pair correlation function

R(t, t ′) ≈ R0(t) exp

(
−|t − t ′|

τcorr

)
, (30)

where R0(t) = f2(t, t)/ f 21 (t) − 1 is the limit of vanishing
time lag τ → 0. Accordingly, the function f2(t, t) has to be
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understood as the limit limτ→0 f2(t, t + τ), which has been
calculated analytically in the previous section. Furthermore,
τcorr is the typical correlation time with which correlations
between upcrossings decay as function of their temporal dis-
tance. As a rough approximation, this correlation time is
given by the correlation time of the stationary process x(t)
itself:

τcorr =
∫ ∞

0

Cxx (τ )

Cxx (0)
dτ = τm + τs. (31)

here Cxx (τ ) is the auto-correlation function of x(t) in
the stationary state. In fact, comparison of the exponen-
tial approximation with numerical evaluation of the exact
quadrature formula of the correlation function confirms our
choice of τcorr and also shows that that the exponential ansatz
is reasonable as long as R0 is significantly different from zero
(Fig. 2 a,b, left and right panels). In the crossover region from
negative to positive R0 when the barrier height b is increased,
the auto-correlation function has both positive and negative
phases that are not captured by an exponential function (Fig. 2
a,b, middle panels). However, these deviations are less sig-
nificant because absolute correlations are small in this case.

Inserting the exponential ansatz Eq. (30) into Eq. (29), we
can pull R0(t) in front of the integral and obtain:

q(t) ≈ R0(t)z(t), (32)

where z(t) = ∫ t
0 exp

[−(t − t ′)/τcorr
]
f1(t ′) defines a new

auxiliary variable that satisfies the differential equation

dz

dt
= − 1

τcorr
z + f1(t) (33)

with z(0) = 0. We note that the slightly different ansatz

R(t, t ′) ≈ R0(t ′) exp
(
− t−t ′

τcorr

)
yields slightly different equa-

tions with similarly good results. In Sect. 5.2, we will thus
only show the results for the above ansatz, Eq. (30).

We note that in the limit of vanishing correlations between
upcrossings, R0(t) ≡ 0, the first-order DA λ(t) ≈ f1(t) is
recovered fromEq. (28). Thus, the first-order approximation,
Eq. (14), is expected to be valid if

|q(t, t)| � 1 (34)

for all t > 0.
In summary, the local hazard rate in the second-order DA

is given by

λ(t) ≈ Φ2
(
b(t), ḃ(t), z(t), t

) def= Φ1
(
b(t), ḃ(t), t

)

1 + R̂0
(
b(t), ḃ(t), t

)
z(t)

.

(35)

here Φ1 is given by Eq. (14) and

R̂0
(
b, ḃ, t

) = f̂2
(
b, ḃ, t

)

[
Φ1

(
b, ḃ, t

)]2 − 1 (36)

is the zero-lag correlation between up-crossings, Eq. (22),
where f̂2 is given by Eq. (23). In contrast to the first-order
approximation Φ1, the hazard rate Φ2 depends on the addi-
tional local variable z that obeys

dz

dt
= − 1

τcorr
z + Φ1

(
b(t), ḃ(t), t

)
, z(0) = 0. (37)

Together with Eq. (8), this ordinary differential equation pro-
vides an update rule for the numerical evaluation of the FPT
density P(t) forward in time.

3.6 First-passage-time densities

Being equipped with local approximations of the hazard
rate, theFPTdensity P(t) canbe easily obtained fromEq. (8).
To test the performance of our theory, we compare the first-
and second-order decoupling approximations (DA)with sim-
ulations and an alternative hazard-rate theory proposed by
Chizhov and Graham (2008). An extended variant of the
Chizhov–Graham (C&G) theory is presented in Appendix 3,
Eq. (101).

For concreteness, we consider a periodically moving
boundary:

b(t) = 1 + α cos(2π f t) (38)

(Fig. 3, top panels). The case, where the amplitude of the
oscillating boundary is smaller than unity, α < 1, corre-
sponds to the subthreshold firing regime of LIF neurons. In
this case, both the first- and second-order DA (Eq. (8) with
λ(t) given by Eq. (14) and (35), respectively) yield excellent
agreements with simulations (Fig. 3a). In contrast, the C&G
theory (Eq. (8) with λ(t) given by Eq. (101)), shows clear
deviations from simulations at the peaks of the FPT density
and during the time spans when the boundary is increasing
(ḃ > 0), i.e., when the boundary moves away from zero. In
these regions, the drift component, Eq. (96), of the C&G haz-
ard rate is set to zero, leaving only diffusion as a source of
threshold crossings. The rectification of the drift component
also leads to a characteristic kink at the local extrema of the
boundary (ḃ(t) = 0).

The case of large amplitude oscillations of the boundary
(α > 1) is equivalent to a LIF model that is periodically
driven into the supra-threshold regime. In this case, the first-
order DA performs significantly worse than the second-order
approximation and the C&G theory, which both agree well
with simulation results (Fig. 3b). In particular, the first peak
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(a) (b)

Fig. 3 First-passage-time density for periodically moving barrier. a
Low amplitude α = 0.25 (subthreshold regime). Top: illustration of
moving barrier (green dashed line) and a sample trajectory x(t) (black
solid line). The shaded region indicates the mean 〈x〉 = 0 (horizontal
dashed line) ± the standard deviation σx (t). Bottom: first-passage-
time density P(t) from simulations (gray circles) and theory (first- and

second-order decoupling approximation—Eq. (13) (green dashed line)
and Eq. (7) (blue solid line), respectively; and the Chizhov–Graham
theory—Eqs. (96)–(101) (red thin line)). b Same with high amplitude
α = 1.2 (suprathreshold regime). Parameters: σx (∞) = 0.5, τx = 1,
τy = 0.2, f = 0.5

in the FPT density (green dotted line in Fig. 3b) is underes-
timated if correlations between upcrossings are neglected.
The underestimation is caused by a reduced hazard rate,
which can be understood from the simple formula Eq. (28):
in the first order approximation, the hazard rate is given by
the level-crossing rate λ(t) ≈ f1(t), while in the second-
order approximation λ(t) ≈ f1(t)/[1 + q(t)] with q(t) =
R0(t)z(t). The factor 1/(1+q) accounts for the correlations
between upcrossings. At the peak, the boundary b(t) is close
to zero. In this case, the zero lag pair correlation R0 is nega-
tive representing the reduced probability of nearby crossings
(“repulsion,” Fig. 2, left panels). Since z is positive, we have
−1 < q < 0 and thus the factor 1/[1+q] is larger than unity
(note that q > −1 by the assumption Eq. (21)). Therefore,
correlations between upcrossings lead to an increased hazard
rate and thus a stronger first peak of the FPT density.

4 Mapping colored input noise to escape
noise in the leaky integrate-and-firemodel

4.1 Link function

We now come back to our initial motivation to map col-
ored noise in the input to escape noise in the output of a
LIF neuron. Having derived the hazard rate Φ for the FPT
with moving boundary b(t), it is easy to formulate the link
function Ψ in Eq. (2) that provides the escape-noise model
corresponding to the LIF model with input noise Eq. (1). To
this end, we only need to shift time such that the FPT starts at
time t̂ + tref instead of t = 0, enforce a zero hazard rate dur-
ing the absolute refractory period, and express the moving

threshold b(t) in terms of the mean membrane potential u(t)
for t > t̂ + tref using Eq. (4). Accordingly, we also replace
the temporal derivative of the moving boundary by

ḃ(t) = −u̇(t) = u(t) − μ(t)

τm
(39)

for t > t̂ + tref. The last expression shows that, instead of
the two functions u(t) and u̇(t), one can also use the two
functions u(t) and μ(t) if the stimulus μ(t) is known.

With these changes, we obtain the link function in the
first-order DA as

Ψ1
(
u, u̇, τ

) = θ(τ − tref)Φ1(VT − u,−u̇, τ − tref). (40)

here θ(t) = 1t≥0 is the Heaviside step function and Φ1 is
given by Eq. (14). Note that in the first-order DA, the link
function Ψ (u, u̇, z, τ ) = Ψ1(u, u̇, τ ) does not depend on an
auxiliary variable z. In contrast, the second-orderDAexhibits
an additional auxiliary variable z. Taking the last spike time
and the absolute refractory period into account, its dynamics
reads

ż = − z

τm + τs
+ Ψ1(u,−u̇, t − t̂) (41)

with initial condition z(t̂) = 0. We can now write the link
function Ψ in the second-order DA as

Ψ2
(
u, u̇, z, τ

) = θ(τ − tref)Φ2(VT − u,−u̇, z, τ − tref),

(42)

where Φ2 is given by Eq. (35).
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(a) (b)

Fig. 4 First-passage-time density, survivor function and hazard rate
under non-stationary driving of a neuron that fired its last spike at time
t̂ = 0. a Weak subthreshold stimulus μ(t) (top panel) leads to a mean
membrane potential response u(t |0) below threshold at VT = 1 (sec-
ond panel). The first-passage-time density P(t |0) for the first threshold
crossing of V̂ (t) is shown in the third panel (gray circles: MC simu-
lations of 106 trials; red solid line: Chizhov–Graham theory, Eq. (7),
(101); blue dashed line: first-order decoupling approximation (inde-
pendent up-crossings), Eq. (45), (43); blue solid line: second-order

decoupling approximation (correlated upcrossings), Eq. (46), (43). The
survival probability S(t |0) = −dP(t |0)/dt and the corresponding haz-
ard rate λ(t |0) are shown in the two bottom panels, respectively. For
MC simulations, the hazard rate is computed from the ratio λ(t |0) =
P(t |0)/S(t |0). b The same for a suprathreshold stimulus, for which the
mean membrane potential u(t |0) reaches the threshold. In both figures,
τs = 4 ms, τm = 10 ms and ση is such that the standard deviation of V̂
is σV = 0.25

4.2 Comparison with simulation and C&G theory

To judge the performance of the level-crossing theory given
by the link functions Ψ1 and Ψ2, we compared ISI densities,
survival functions and hazard rates with Monte-Carlo simu-
lations of the LIF model with colored input noise, Eq. (1),
and the C&G theory. These functions are obtained from the
link functions as

P(t |t̂) = λ(t |t̂)S(t |t̂), (43)

S(t |t̂) = exp

(
−

∫ t

t̂
λ(s|t̂) ds

)
, (44)

where for the first-order decoupling approximation(DA)

λ(t |t̂) ≈ Ψ1
(
u(t |t̂), u̇(t |t̂), t − t̂

)
, (45)

and for the second-order DA,

λ(t |t̂) ≈ Ψ2
(
u(t |t̂), u̇(t |t̂), z(t |t̂), t − t̂

)
(46)

withΨ1 andΨ2 givenbyEq. (40) andEq. (42), respectively. In
Eq. (45) and (46),wehave introduced themembranepotential

and the auxiliary variable as deterministic functions of t and t̂ .
For t > t̂+ tref, these functions obey the first-order dynamics

u̇(t |t̂) = −u(t |t̂) + μ(t)

τm
, (47)

ż(t |t̂) = − z(t |t̂)
τm + τs

+ Ψ1

(
u(t |t̂),−u̇(t |t̂), t − t̂

)
. (48)

with initial conditions u(t̂+tref|t̂) = VR and z(t̂+tref|t̂) = 0.
The time-dependent stimulus μ(t), shown in Fig. 4 (top

panels), was obtained asμ(t) = μ0+μ1(t), whereμ1(t) is a
fixed realization of a band-limited white-noise process with
a cut-off frequency of 100 Hz.Without loss of generality, we
also choose the last spike time as the time origin, t̂ = 0. The
membrane potential u(t |0) is shown in Fig. 4 (second panel
from top). Note that in simulations and figures, we measured
voltages in units of VT−VR and chose the arbitrary reference
potential such that VR = 0, and hence VT = 1. For sub-
threshold stimuli (Fig. 4A), u(t |0) < VT, both the first- and
second-order decoupling approximations agree well with the
interval distribution obtained from simulations of the model
with colored input noise. As in the case of periodic sub-
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threshold driving (Fig. 3a), the C&G theory exhibits again
clear deviations at the peaks of the ISI density and in periods
where the slope of the mean membrane potential is negative,
u̇(t |0) < 0 (Fig. 4a, middle panel). The overall performance
is better visible in the survival function (Fig. 4a, second panel
from bottom), which is related to the cumulative ISI distribu-
tion via S(t |t̂) = 1 − ∫ t

t̂ P(s|t̂) ds. It confirms the excellent
performance of both decoupling approximations in the sub-
threshold regime. For completeness, we also compared the
hazard rates (Fig. 4a, bottom panel). Note that the initial tran-
sient of u(t |0) from reset to resting potential μ0 realizes a
relative refractory period, where the probability to fire is low.

For suprathreshold stimuli, where the mean membrane
potential exceeds the threshold, the first-order DA devi-
ates significantly from simulation results (Fig. 4b). This is
because level crossings occur more frequently when u is
close to the threshold and thus exhibit stronger (negative)
correlations. In this case, the assumption of independent
upcrossing is no longer valid. Again, the underestimation
of the first peak in the ISI density and the hazard rate
(dotted lines in Fig. 4b, middle and bottom panel) if cor-
relations are neglected can be understood from the simple
formula Eq. (28): under the assumption of independent
upcrossings, the hazard rate is given by the level-crossing
rate λ(t |0) ≈ f1(t), while correlations between upcross-
ings are accounted for in the second-order approximation
as λ(t |0) ≈ f1(t)/[1 + R0(t)z(t |0)]. We have seen that if u
is close to the threshold (corresponding to b = 0), the zero
lag pair correlation R0 is negative representing the reduced
probability of nearby crossings (“repulsion,” Fig. 2, left pan-
els). Since z is positive, the factor 1/[1+ R0z] is larger than
unity (Note that q ≡ R0z > −1 by assumption Eq. (21) for
the applicability of the Stratonovich approximation). There-
fore, correlations between upcrossings lead to an increased
hazard rate (2nd-order DA) as compared to the theory with
independent upcrossings (1st-order DA) (blue solid vs. blue
dotted line in Fig. 4b, bottom).

To characterize the error of the theoretical approximations
more systematically, we compare theory and simulations as
a function of the stimulus properties (Fig. 5). To this end, we
modelμ(t) as a complex stimulus sampled from a stationary
Ornstein–Uhlenbeck process with correlation time τμ, mean
μ̄ and variance (1 + τm/τμ)σ̄ 2. This parametrization has
been chosen such that the non-resetting membrane potential
V̂ has mean μ̄ and standard deviation σ̄ in the stationary
state. For a given realization μ(t), we quantify the deviation
of the theoretical ISI distribution Pμ(t |0) from the simulated
one P̂μ(t |0) using the Kolmogorov–Smirnov (KS) statistics
(Press et al. 1992). This statistics is then averaged over the
stimulus ensemble (the subscriptμ indicates the dependence
on a given realizationμ(t)). Explicitly, themeanKS statistics
is defined as

D =
〈
max
t>0

∣∣∣∣

∫ t

0
Pμ(s|0) ds −

∫ t

0
P̂μ(s|0) ds

∣∣∣∣

〉

μ

=
〈
max
t>0

∣∣∣Sμ(t |0) − Ŝμ(t |0)
∣∣∣
〉

μ

, (49)

where 〈·〉μ denotes the ensemble average over realizations
μ(t). Thus, the KS statistics can also be interpreted as the
largest absolute difference between the survival function
Sμ(t |0) and the simulated survival function Ŝμ(t) (see Fig. 4,
second panels from bottom).

The analysis confirms our previous observations that
the decoupling approximations perform best in the sub-
threshold regime (μ̄ < 1) at small stimulus variations σ̄

(Fig. 5); they both become worse in the tonically firing
regime (μ̄ > 1). Although the qualitative dependence on
the stimulus parameters is similar between the first- and
second-order DA, the error is considerably smaller for the
second-order DA throughout stimulus parameters. On the
other hand, the Chizhov–Graham (C&G) theory has an oppo-
site dependence; it generally performs well in the tonically
firing regime (μ̄ > 1) and shows small weaknesses in the
subthreshold regime (Fig. 5b, μ̄ < 1), but it exhibits a good
overall performance. For all three approximations, the error is
larger for a rapidly changing stimulus (Fig. 5a). Interestingly,
in the strongly mean-driven regime (μ̄ > 1), a constant or
weakly fluctuating stimulus (σ̄ � 1) turns out to more diffi-
cult for the second-order DA than amore strongly fluctuating
stimulus (Fig. 5b, c).

5 Population activity of LIF neurons
(time-dependent firing rate)

5.1 Integral equation

As an application of the noise mapping, we consider the
dynamics of the time-dependent firing rate, or equivalently
the population activity of LIF neurons with colored input
noise. Being in possession of an approximate hazard rate, it
is straightforward to use the renewal integral equation (Gerst-
ner 2000;Gerstner et al. 2014) (or equivalently, the refractory
density equation (Chizhov andGraham 2007, 2008; Dumont
et al. 2016; Schwalger and Chizhov 2019; Pietras et al.
2020)) to compute the population activity forward in time.
To this end, let us consider a population of N uncoupled
LIF neurons with colored input noise, Eq. (1). The spike
train Xi (t) of a given neuron i , i = 1, . . . , N is defined as
Xi (t) = ∑

k δ(t − ti,k), where {ti,k}k∈Z are the spike times
of that neuron. The population activity is defined as the total
number of spikes in a small time bin (t, t + Δt) divided by
the number of neurons N and the time stepΔt . In the limit of
infinitely many neurons and infinitesimally small time steps,
we obtain the deterministic population activity
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1st-order DA 2nd-order DA Chizhov-Graham(a)

(b)

(c)

Fig. 5 Error of the theoretical approximations for different stimulus
properties. The error is measured as the Kolmogorov–Smirnov distance
D between the theoretical and simulated ISI distribution. The stimulus
μ(t) driving the LIF model is sampled from an Ornstein–Uhlenbeck
process with mean μ̄, standard deviation

√
1 + τm/τμσ̄ and correla-

tion time τμ. a Color-coded value of D as a function of μ̄ and σ̄ for
a rapidly varying stimulus, τμ = 1 ms (left: 1st-order DA , middle:
2nd-order DA, right: Chizhov–Graham theory). b Same as a but for
a moderately fast stimulus, τμ = 10 ms. c Same as a but for a slow
stimulus, τμ = 100 ms. Other parameters as in Fig. 4

A(t) = lim
Δt→∞ lim

N→∞
1

NΔt

N∑

i=1

∫ t+Δt

t
Xi (t

′) dt ′. (50)

Note that this expression can also be interpreted as an ensem-
ble or trial average of a single neuron spike train, i.e., A(t) is
equivalent to the time-dependent firing rate of a single neu-
ron measured over many trials or realizations of a statistical
ensemble. The evolution of the population activity is given
by the renewal equation (Cox 1962; Gerstner et al. 2014)

A(t) = P (t |t0) +
∫ t

t+0
P

(
t |t̂) A (

t̂
)
dt̂, (51)

where P(t |t̂) is given by Eq. (43) and t+0 denotes the right-
sided limit. In Eq. (51), we assumed that the population is
initialized with a spike of each neuron at time t0 (“synchro-
nized initial condition”). The first term P(t |t0) represents the
contribution from neurons that fire at time t for the first time
after the initial spike at t0. The integral equation (51) can be
efficiently solved numerically (Gerstner and Kistler 2002).
In particular, for numerical solutions, it is useful to turn the
exponential factor into a differential equation as in Eq. (8):

dS(t |t̂)
dt

= −λ(t |t̂)S(t |t̂), S(t̂ |t̂) = 1 (52)

for all t̂ < t .
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(a) (b)

Fig. 6 Macroscopic population activity of non-adapting neurons under
non-stationary driving. a Weak subthreshold stimulus μ(t) (i) as in
Fig. 4a leads to a mean membrane potential response u(t |t0) below
threshold at VT = 1 (ii). The resulting population activity A(t) is shown
in (iii) and (iv) for strong (σV = 0.25) andweak (σV = 0.1) background
noise, respectively. Gray circles: MC simulations of 106 trials; red solid
line: Chizhov–Graham theory, Eq. (7), (101); blue dashed line: level-

crossing theory with independent upcrossings (first-order decoupling
approximation), Eq. (45), (43); blue solid line: level-crossing theory
with correlated upcrossings (second-order decoupling approximation),
Eq. (46), (43). b The same for a suprathreshold stimulus as in Fig. 4b,
for which the mean membrane potential u(t) reaches the threshold. In
both panels, τs = 4 ms, τm = 10 ms, tref = 4 ms and the population
was initialized at time t0 = −25 ms (initial transient not shown)

5.2 Comparison with simulations and C&G theory

As an example, we studied the response of the population
activity to the complex stimulus μ(t) shown in Fig. 6 Ai and
Bi. In the subthreshold regime,where themembranepotential
remains below threshold (Fig. 6a), the level-crossing theory
well predicts the population activity obtained from simula-
tions, while the C&G prediction exhibits small deviations
as expected from the deviations of the ISI density in the
subthreshold regime discussed above (Figs. 3 and 4). The
agreement is good for both strong and weak noise.

For suprathreshold stimuli, where themembrane potential
exceeds the threshold, the first-order decoupling approxima-
tion shows clear deviations (Fig. 6b). However, accounting
for correlations between level-crossings in the second-order
approximation recovers the population activity of simulated
neurons for both strong and weak noise. Similarly, the C&G
theory shows an excellent agreement with simulations.

6 Discussion

We developed a level-crossing theory for the hazard rate of a
leaky integrate-and-fire neuron driven by colored input noise.

To this end, we generalized the Stratonovich approximation
for the first-passage-time (FPT) density (Stratonovich 1967b;
Verechtchaguina et al. 2006; van Meegen and van Albada
2019) to the time-inhomogeneous case,where the stimulus or
boundary is time-dependent, and derived a simplification that
is local in time. Because higher-order correlations between
upcrossings are approximated through their pair-wise cor-
relations, we referred to this theory as the second-order
decoupling approximation (DA). Besides the mean mem-
brane potential u(t), the simplified hazard rate depends on the
speed u̇ and one additional variable z(t), which accounts for
correlations between level crossings. Therefore, the escape-
noise model defined by this hazard rate consists of only one
extra first-order differential equation, Eq. (41), besides the
dynamics of u, Eq. (2a). Our simulation results for the time-
dependent interspike-interval (ISI) density and population
activity show that the mapped LIF model with escape-noise
well matches the LIF model with colored input noise. Thus,
the hazard rate in the second-orderDA (link function Eq. (42)
and dynamics of z, Eq. (41)) provides a novel map from
input noise to escape noise. We note that the dependence on
the speed u̇ is important and qualitatively differs from com-
monly used escape-noise models, where the link function
only depends on the mean membrane potential u. Given the
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extensive theoretical literature on population models with
simple link functions Ψ (u) (Gerstner 2000; Cormier et al.
2020; Schmutz et al. 2021), it will be an interesting question
for further studies how themean-field dynamics is influenced
by an additional dependence on the membrane potential
speed u̇.

The map based on the second-order DA should be com-
pared to the 1st-order DA, which neglects any correlations
between upcrossings and represents a time-dependent gener-
alization of the Hertz approximation (Verechtchaguina et al.
2006), and the previously proposed map by Chizhov and
Graham (C&G) (Chizhov and Graham 2008). The general-
ized Hertz approximation (first-order DA) involves less ad
hoc approximations compared to the second-order DA (cf.
Eqs. (28) and (30)), and performs well in the fluctuation-
driven (subthreshold) firing regime at low firing rates. On
the other hand, its region of validity, Eq. (34), is rather lim-
ited, especially transiently large firing rates and mean-driven
(suprathreshold) firing are not well described by the first-
order approximation. Furthermore, the gain in numerical
efficiency compared to the second-order DA is minor, e.g.,
simulating the firing rate trajectory of 200ms in Fig. 6b (mid-
dle) took 134ms for the first-order DA versus 165 ms for the
second-order DA (Julia code run on an Intel(R) Core(TM)
i7-8550U CPU @ 1.80 GHz).

On the contrary, the C&Gmap exhibits some weaknesses
in the fluctuation-driven regime, while it has an excellent
performance for short, mean-driven firing-rate transients.
This behavior is expected because the theory represents
an interpolation between two limit cases, where the the-
ory is expected to work well: strong positive drift toward
the threshold without diffusion (cf. also (Goedeke and Dies-
mann 2008)) and pure diffusion without drift. During short
mean-driven periods the drift-induced firing dominates and
diffusion effects can be safely neglected. An advantage of the
C&Ghazard rate, Eq. (103), is its simpler mathematical form
and thus easier numerical implementation than the hazard
rates based on the level-crossing theory (first- and second-
order DA). Furthermore, the C&G theory permits to take the
white-noise limit, τs → 0, whereas the level-crossing theory
is not well defined in this limit: for τs → 0, the upcross-
ing rate f1 diverges (Rice 1945; Stratonovich 1967b) (cf.
Eq. (87)). Despite the divergence in the white-noise limit,
we found in simulations that the 2nd-order DA performswell
in the physiologically relevant range of synaptic time scales
including synaptic time constants as small as τs = 1 ms (rel-
ative to τm = 10 ms, data not shown). On the other hand, the
numerical efficiencyof theC&Gand the second-orderDAare
comparable (e.g., 175 ms and 165 ms run time, respectively,
for the 200ms firing rate trajectory in Fig. 6b, middle). Over-
all, the C&G theory represents a good compromise between
simplicity and accuracy.

Apart from the mapping of input noise to escape noise,
the analysis performed in this paper also provided some ana-
lytical insights into the Stratonovich approximation. First,
the ansatz of Stratonovich, Eq. (17), has been originally
proposed for a system of “non-approaching” random points
(level crossings) (Stratonovich 1967a, b). In our terminol-
ogy, this means that the pair correlation function at zero
time lag is R(t, t) = −1. Put differently, the conditional
rate νcond(t, τ ) = f2(t, t + τ)/ f1(t) of an upcrossing to
occur a time lag τ after a crossing at time t vanishes for
τ → 0 if upcrossings are non-approaching. However, we
found that in our case of the membrane potential driven by
an exponentially correlated Gaussian noise, i.e., a doubly
low-pass-filtered white noise (cf. Eq. (1) or (5)), the upcross-
ings do not form a system of non-approaching points. The
conditional rate νcond at zero time lag has a non-vanishing
minimum (corresponding to a reduced probability of close
upcrossings, νcond < f1) and can even exceed the sta-
tionary upcrossing rate, νcond > f1, (the probability of
an upcrossing is increased by an immediately preceding
upcrossing, as already noted by (Burak et al. 2009) for sta-
tionary level-crossings). Given the excellent agreement of
the second-order DA with simulations, the ansatz Eq. (17)
seems to be more general and not limited to systems of non-
approaching random points.

Based on the assumption of non-approaching level cross-
ings, the threshold-crossing process has been frequently
used as an analytically tractable model of neural spike gen-
eration. Examples include the calculation of information
rates (DeWeese and Bialek 1995), pairwise correlations and
synchronization of neurons due to shared inputs (Tchu-
matchenko et al. 2010b, a; Burak et al. 2009) and stochastic
resonance (Jung 1995). The intuition behind this assumption
is that level crossings exhibit refractoriness (Puelma Touzel
and Wolf 2016) or a silence period (Tchumatchenko et al.
2010b) because it takes some time for a trajectory to re-
cross the threshold from below. While this intuition is true
for sufficiently smooth Gaussian processes (Tchumatchenko
et al. 2010b, a) (auto-correlation functionmust be at least four
times differentiable at 0), it fails if the velocity of the process
is not differentiable (third derivative of auto-correlation at 0
does not exist), as in the present study and in (Verechtch-
aguina et al. 2006; Tchumatchenko and Wolf 2011; Badel
2011; Puelma Touzel and Wolf 2016). Because neurons
exhibit some degree of refractoriness, theGaussian processes
of threshold-crossing neurons should be sufficiently smooth
to be useful as a spiking neuron model.

Bymapping input noise to escape noisewe could apply the
renewal integral equation to predict the time-dependent pop-
ulation activity of infinitely many LIF neurons with colored
input noise. This detour via an approximate escape-noise
model allowed us to circumvent the direct numerical solution
of the two-dimensional Fokker–Planck equation associated
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with the LIFmodel Eq. (1). An intriguing question is whether
the same indirect approach could be used to solve the impor-
tant problem of finitely many neurons with input noise.
Neural circuits in the brain are often modeled by networks of
integrate-and-fire neurons driven by Poissonian input noise
(e.g., (Diesmann et al. 1999; Potjans and Diesmann 2014;
Donoso et al. 2018)). In these network models, the num-
ber of neurons per cell type range from about hundred to a
few thousand cells, consistent with experimental estimations
(Lefort et al. 2009). On this mesoscopic scale, finite-size
fluctuations of the population activity cannot be neglected. It
is, however, unknown how to generalize the Fokker–Planck
equation to a stochastic population equation in the case of
finite neuron numbers, so as to account for finite-size fluctu-
ations. On the other hand, the problem of finite-size neural
population equations has been recently solved for LIF neu-
rons with escape noise in the form of a stochastic integral
equation (Schwalger et al. 2017; Schmutz et al. 2021). In the
original paper (Schwalger et al. 2017), we have applied the
stochastic integral equation to the corticalmicrocircuitmodel
of (Potjans andDiesmann 2014) by roughly fitting an escape-
noise model with the simple link function Ψ (u) = ceβu to
match mean population activities of simulation data. How-
ever, with the map derived in this paper, where Ψ depends
on u and u̇, it should be possible to directly use the stochas-
tic integral equation as a new mesoscopic population model
for finite-size populations of LIF neurons driven by colored
input noise.

Acknowledgements I would like to thank Sven Goedeke and Markus
Diesmann for numerous inspiring and fruitful discussions throughout
this project, especially about applications to cortical synchroniza-
tion dynamics, Alexander van Meegen for interesting discussions
on the Stratonovich approximation and for sharing his unpublished
manuscript, and Wulfram Gerstner for his support during part of this
project.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data Availability Statement The code will become available at the
following GitHub link after publication: https://github.com/schwalger/
LIF_hazard_levelcross

Declarations

Conflict of interest The author declares that he has no conflict of inter-
est.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

FPT density from level-crossing statistics

General expression for survivor function

The sequence of upward crossings of the freely evolv-
ing, non-resetting membrane potential across the threshold,
or shortly the set of “upcrossings,” forms a point process
{t1, t2, . . . } in time with ti > 0. Thus, the upcrossing times

are defined by V̂ (ti ) = VT and ˙̂V (ti ) > 0. As any point
process, the upcrossing times for t > 0 can be fully charac-
terized by the joint distribution functions f1(t1), f2(t1, t2),
f3(t1, t2, t3), ... (see, e.g., (Stratonovich 1967a; van Kampen
1992)). These functions are defined such that

fk(t1, . . . , tk)dt1 · · · dtk + O(dt) (53)

is the probability to find an upcrossing in each of the non-
overlapping intervals [t1, t1 + dt1), ..., [tk, tk + dtk), with
sufficiently small intervals dt1, . . . , dtk < dt and non-
coinciding arguments ti �= t j for all i �= j . In the case of
coinciding arguments ti = t j for some i �= j , the function
fk is understood to be its limit value for ti → t j .
For our purpose, it will be more convenient to use the

correlation functions g1(t1), g2(t1, t2), g3(t1, t2, t3), ... (see,
e.g., (Stratonovich 1967a; van Kampen 1992)). Similar to
the joint distribution functions { fk}, the system of correlation
functions {gk} completely characterizes the statistics of the
upcrossing times. To define the correlation functions, we first
introduce the generating functional for the fk given by

L[v] ≡
〈

∏

ti>0

(1 + v(ti ))

〉

, (54)

where v(t) is a test function (Stratonovich 1967a; van Kam-
pen 1992). It can be shown that expanding the generating
functional in powers of v(t) yields

L[v] = 1 +
∞∑

k=1

1

k!
∫ ∞

0
· · ·

∫ ∞

0
fk(t1, . . . , tk)

×v(t1) · · · v(tk) dt1 · · · dtk, (55)

i.e., the functions fk are the expansion coefficients of the gen-
erating functional. Therefore, the joint distribution functions
fk can be uniquely generated by functional differentiation of
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L[v]. In analogy to the cumulants of a random variable that
are generated from the logarithm of the moment generating
function, the correlation functions gk can be obtained from
ln L as follows:

gk(t1, . . . , tk) = δk ln L[v(t)]
δv(t1) · · · δv(tk)

∣∣∣∣
v(t)≡0

(56)

In particular, the first two correlation functions read

g1(t) = f1(t), (57)

g2(t1, t2) = f2(t1, t2) − f1(t1) f1(t2). (58)

By means of the correlation functions, the survivor func-
tion S(t), i.e., the probability for having no upcrossing in the
interval [0, t), can be expressed as Eq. (12).

Moments and correlation functions of the Gaussian
process

In contrast to the vanishing first moments 〈x〉 = 〈y〉 =
0 and the stationary variance σ 2

y = 〈y2(t)〉, the second
moments σ 2

x (t) = 〈x2(t)〉 and σxy(t) = 〈x(t)y(t)〉 are time-
dependent. They obey the differential equation (Risken 1984)

d(σ 2
x )

dt
= −2

(
γ σ 2

x − σxy

)
, (59)

dσxy
dt

= −τ̃−1σxy + σ 2
y . (60)

with σ 2
y = D/τy , τ̃−1 = γ + τ−1

y and σ 2
x (0) = σxy(0) = 0.

The explicit solution is

σxy(t) = τ̃ σ 2
y

(
1 − e−t/τ̃

)
, (61a)

σ 2
x (t) = τ̃ σ 2

y

γ

(
1 − e−2γ t

)

+ 2τ̃ σ 2
y

2γ − τ̃−1

(
e−2γ t − e− t

τ̃

)
(61b)

For large t , the process [x(t), y(t)] becomes stationary
with the following constant moments

σ 2
x = 1

γ
σxy = τ̃

γ
σ 2
y . (62)

Joint distribution functions for upcrossings

Let us denote the point process of the upcrossings by
{t̂i }i=1,2,.... Using the properties of the Dirac-delta function
with respect to a change of variable, the corresponding spike

train can be written as

s(t) =
∞∑

i=1

δ(t − t̂i ),

= [
ẋ(t) − ḃ(t)

]
δ
(
x(t) − b(t)

)
θ

(
ẋ(t) − ḃ(t)

)
. (63)

here the Heaviside function θ
(
ẋ(t) − ḃ(t)

)
accounts for the

fact that the velocity of the process x(t) must be larger than
the velocity of the boundary b(t) at an upcrossing, i.e., it
ensures that x(t) crosses the moving boundary b(t) from
below. Note that Eq. (63) can be seen as an extension of the
Kac–Rice formula (Azaïs and Wschebor 2009) to moving
boundaries. The joint distribution function is defined as

fk(t1, . . . , tk) = 〈s(t1) · · · s(tk)〉 (64)

(for ti �= t j for i, j = 1, . . . , k, i �= j). Substituting Eq. (63)
into Eq. (64) and taking the average yields

fk(t1, . . . , tk) =
∫ ∞

ḃ1
· · ·

∫ ∞

ḃk
dẋ1 · · · dẋk

× (
ẋ1 − ḃ1

) · · · (
ẋk − ḃk

)
p(x,ẋ)
2k (b1, . . . , bk, ẋ1, . . . , ẋk),

(65)

where bi and ḃi is short-hand for b(ti ) and ḃ(ti ), respectively.
Furthermore, p(x,ẋ)

2k (x1, . . . , xk, ẋ1, . . . , ẋk) is the joint prob-
ability density for the variables xi = x(ti ) and ẋi = ẋ(ti ). In
our case of the two-dimensional Ornstein–Uhlenbeck pro-
cess, Eq. (5), p(x,ẋ)

2k can be simply expressed by the joint
probability density p2k(x1, . . . , xk, y1, . . . , yk) of the vari-
ables xi = x(ti ) and yi = y(ti ):

p(x,ẋ)
2k (b1, . . . , bk, ẋ1, . . . , ẋk)

s = p2k(b1, . . . , bk, γ b1 + ẋ1, . . . , γ bk + ẋk). (66)

Inserting this expression into Eq. (65) yields

fk(t1, . . . , tk) =
∫ ∞

0
· · ·

∫ ∞

0
dw1 · · · dwk w1 · · · wk

×p2k(b1, . . . , bk, γ b1 + ḃ1 + w1, . . . , γ bk + ḃk + wk),

(67)

where we made the substitution ẋi = ḃi + wi with
new integration variables wi . We note, however, that for
higher-dimensional models, it is generally more convenient
to directly compute the density p(x,ẋ)

2k and use Eq. (65).
For example, for a (n + 1)-dimensional Gaussian process
x(t) = [x(t), y1(t), . . . , yn(t)]T , this density is determined
by the time-dependent correlation functions 〈x(t)x(t + τ)〉,
〈x(t)ẋ(t + τ)〉, 〈ẋ(t)x(t + τ)〉 and 〈ẋ(t)ẋ(t + τ)〉, which can
be obtained from the time-dependent covariance matrix of
x(t) in a straightforward manner.

123



558 Biological Cybernetics (2021) 115:539–562

Upcrossing rate f1(t)

Using the moments σ 2
x (t), σxy(t) and σ 2

y derived in Sect. 2,
the joint probability density of x and y is given by the bivari-
ate Gaussian distribution

p2(x, y, t) = 1

2π
√|C2| exp

(

−σ 2
y x

2 − 2σxyxy + σ 2
x y

2

2|C2|

)

(68)

with |C2| = σ 2
x σ 2

y − σ 2
xy . This allows us to calculate the

upcrossing rate f1(t) from Eq. (67). The integration can be
performed analytically resulting in the formula Eq. (14).

Correlations between upcrossings for small time lag

Here,we are interested in the probability that twoupcrossings
occur very close to each other. More precisely, we want to
calculate the probability density f2(t, t+τ) in the limit when
the distance τ between upcrossings goes to zero.

Time-dependent boundary

To this end, we need the probability density of the four-
dimensional vector z = [x(t), x(t + τ), y(t), y(t + τ)]T ,
which is given by the multivariate Gaussian distribution

p4(z) = 1

4π2
√|C4| exp

(
−1

2
zT C−1

4 z

)
. (69)

This distribution is determined by the correlation matrix C4

with elements (C4)i j = 〈
zi z j

〉
:

C4=

⎛

⎜⎜
⎝

σ 2
x (t) Cxx (t, τ ) σxy(t) Cxy(t, τ )

Cxx (t, τ ) σ 2
x (t + τ) Cyx (t, τ ) σxy(t + τ)

σxy(t) Cyx (t, τ ) σ 2
y Cyy(τ )

Cxy(t, τ ) σxy(t + τ) Cyy(τ ) σ 2
y

⎞

⎟⎟
⎠ ,

(70)

where we used the notations Cxx (t, τ ) ≡ 〈x(t)x(t + τ)〉,
Cxy(t, τ ) ≡ 〈x(t)y(t + τ)〉 andCyx (t, τ ) ≡ 〈y(t)x(t + τ)〉.
Furthermore, note that σ 2

y = 〈
y2(t)

〉
and Cyy(τ ) ≡

〈y(t)y(t + τ)〉 do not depend on time because of the sta-
tionarity of y(t). The correlation functions for τ > 0 can be
computed from the regression theorem (Risken 1984):

Cxx (t, τ ) = Gxx (τ )σ 2
x (t) + Gxy(τ )σxy(t), (71)

Cxy(t, τ ) = Gyx (τ )σ 2
x (t) + Gyy(τ )σxy(t), (72)

Cyx (t, τ ) = Gxx (τ )σxy(t) + Gxy(τ )σ 2
y (t), (73)

Cyy(τ ) = Gyy(τ )σ 2
y (t), (74)

where we used the elements of the Green’s function

G(τ ) =
(
Gxx (τ ) Gxy(τ )

0 Gyy(τ )

)
(75)

of the Ornstein–Uhlenbeck process Eq. (5). Using the neg-
ative drift matrix of the Ornstein–Uhlenbeck process A =( γ −1
0 1/τy

)
, the Green’s function is obtained from G(τ ) =

e−Aτ :

Gxx (τ ) = e−γ τ , Gyy(τ ) = e−τ/τy , (76)

Gxy(τ ) = τy

1 − γ τy

(
e−γ τ − e−τ/τy

)
. (77)

In Eq. (70), we also need the time-shiftedmoments σ 2
x (t+

τ) and σxy(t + τ). These can be obtained from σ 2
x (t) and

σxy(t) by propagating Eq. (59). This yields

σxy(t + τ) = e− τ
τ̃ σxy + τ̃

(
1 − e− τ

τ̃

)
σ 2
y (78)

σ 2
x (t + τ) = e− 2τ

τm σ 2
x + σ 2

y τ̃

γ

(
1 − e−2γ τ

)

+ 2τ̃ (σxy − σ 2
y τ̃ )

1 − 2γ τ̃

(
e−2γ τ − e−τ/τ̃

)
. (79)

Because we are interested in the limit τ → 0, we can
expand the moving threshold at time t to linear order such
that

b(t + τ) = b(t) + ḃ(t)τ + O(τ 2). (80)

The two-point joint density follows from Eq. (67) and (69):

f2(t, t + τ) = 1

4π2
√|C4|

∫∫ ∞

0
dw1dw2 w1w2

× exp

(
−1

2
zT C−1

4 z

)
(81)

with z = [b, b+ ḃτ, γ b+ ḃ+w1, γ (b+ ḃτ)+ ḃ+w2]T . A
straightforward but lengthy series expansion of the exponent
B̃ = − 1

2 z
T C−1

4 z for small τ yields

B̃ = −w2
1 + w1w2 + w2

2

(σ 2
y /τy)τ

− B̃0(b, ḃ, w1, w2) + O(τ ),

(82)
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where

B̃0(b, ḃ, w1, w2) = 1

4σ 2
y |C2|

{ (
γ 2σ 2

x − 2γ σxy + σ 2
y

)
b2

+2[γ
(
σ 2
xy + σ 2

x σ 2
y

)
− 2σxyσ

2
y ]b(ḃ + w1)

−2γ
(
σ 2
xy − σ 2

x σ 2
y

)
b

(
ḃ + w2

)

+
[(
1 − γ τy

)
σ 2
x σ 2

y + (
1 + γ τy

)
σ 2
xy

]
(ḃ + w1)

2

−(1 + γ τy)(σ
2
xy − σ 2

x σ 2
y )(ḃ + w2)

2
}

(83)

is anO(1) term. The first term of B̃ is of order 1/τ and has a
maximum at the lower integration boundary w1 = w2 = 0.
Therefore, the neighborhood of the point w1 = w2 = 0
dominates the integral in the limit τ → 0. At this point the
term B̃0(b, ḃ, w1, w2) coincides with B(b, ḃ) in Eq. (15).
Thus, we can write

f2(t, t + τ) ∼ 1

4π2
√|C4|e

−B(b,ḃ) I (τ ), τ → 0 (84)

with the Gaussian integral

I (τ ) =
∫∫ ∞

0
dw1dw2 w1w2 exp

(

−w2
1 + w1w2 + w2

2

(σ 2
y /τy)τ

)

= 9 − √
3π

27

σ 4
y

τ 2y
τ 2. (85)

As a last step, we expand the determinant |C4| to lowest order
in τ :

|C4| =
(
σ 2
x σ 2

y − σ 2
xy

)
σ 4
y

3τ 2y
τ 4 + O(τ 5).

Combining all factors yields the two-point upcrossing den-
sity in the limit of zero lag given by Eq. (23).

In the stationary case, ḃ = 0 and t → ∞, the formula for
f2(t, t) reduces to

f (s)
2 (t, t) =

(
3
√
3 − π

)
τy

18π
(
1 + γ τy

) f1 (86)

with the stationary upcrossing rate

f1 = 1

2π

√
γ

τy
exp

(
− b2

2σ 2
x

)
. (87)

This expression results in the pair correlation function
Eq. (25).

Auto-correlation function of up-crossings for stationary,
differentiable Gaussian processes

In the stationary case, the rate of upcrossings f1 is constant
and the second order distribution function as well as the auto-
correlation function of x only depend on the time difference,
hence f2(t, t + τ) = f2(τ ) and Cxx (t, t + τ) = Cxx (τ ). A
classical result for the upcrossing rate is (Rice 1945)

f1 =
√|C ′′

xx (0)|/σ 2
x

2π
exp

(
− b2

2σ 2
x

)
. (88)

Here, we derive the asymptotic behavior of f2(τ ) for small
time lag τ . To this end, we expand Cxx (τ )

Cxx (τ ) = c0 +
∞∑

k=2

ck
k! |τ |k . (89)

where ck = C (k)
xx (0) denotes the k-th right-sided derivative

of the correlation function at zero time lag. Here, we have
taken into account that the auto-correlation function is an
even function. Furthermore, we have not included the first-
order term c1|τ | because the derivative C ′

xx (0) = Cxẋ (0)
must be zero for differentiable processes x(t), i.e., for veloc-
ities ẋ with finite variance. For example, the one-dimensional
Ornstein–Uhlenbeck process is excluded because it exhibits
a kink in its auto-correlation function Cxx (τ ) ∼ e−|τ |/τcor
at zero lag (i.e., c1 < 0) implying an infinite variance of the
velocity, σ 2

ẋ = −c2 = ∞, and hence a diverging up-crossing
rate, Eq. (88). This divergence arises for any one-dimensional
Langevin dynamics, for which the velocity ẋ exhibits a white
noise component, and reflects the fractal nature of Marko-
vian diffusion processes (Jung 1994). In the following, we
distinguish three cases, all of which have occurred in pre-
vious studies: (i) c3 �= 0 corresponding to a kink in the
velocity correlation function Cẋ ẋ (τ ) = C ′′

xx (τ ). This case
is considered in the present work as well as in previous mod-
els (Verechtchaguina et al. 2006; Tchumatchenko and Wolf
2011;Badel 2011; PuelmaTouzel andWolf 2016). (ii) c3 = 0
and c5 �= 0 corresponding to a kink in the correlation func-
tion of the acceleration ẍ(t), as in (Verechtchaguina et al.
2006). And (iii), c3 = 0 and c5 = 0 which occurs, e.g.,
for smooth correlation functions as used in (Tchumatchenko
et al. 2010b, a).

In the first case, c3 �= 0, i.e., when C ′′
xx (τ ) has a kink at

zero lag and thus the acceleration ẍ has infinite variance as
in our model Eq. (1), we find in lowest order in τ

f2(τ ) ∼ 3
√
3 − π

18π
f1

∣∣
∣∣
c3
c2

∣∣
∣∣ , τ → 0. (90)

This expression recovers a previous result obtained in (Burak
et al. 2009). Furthermore, the case c3 = 0, c5 �= 0, yields the
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following lowest-order behavior

f2(τ ) ∼
c3/25 exp

(
− b2

2
(
c0−c22/c4

)

)

90
√
15π2

√|c2|3 + c0c2c4
τ

5
2 , τ → 0. (91)

To the best of our knowledge, this expression is a novel result.
Finally, the third case c3 = 0 and c5 = 0, yields in lowest
order

f2(τ ) ∼
∣∣c24 − c2c6

∣∣ exp
(

− b2

2
(
c0−c22/c4

)

)

1296π2
√
c22 − c0c4

τ 4, τ → 0,

(92)

which has been reported before (Burak et al. 2009). In the
derivation of Eqs. (90)–(92), we have used the Gaussian inte-
gral

∫∫ ∞

0
dẋ1dẋ2 ẋ1 ẋ2 exp

(
− (ẋ1 + ẋ2)2

β

)
= β2

12
. (93)

Chizhov–Graham theory

An elegant approximation for the FPT problem has been
put forward by Chizhov and Graham (2007, 2008), which
we will state here without proof. The idea is to construct
the hazard function from two limit cases: First, for an exci-
tatory current that is much faster than the diffusion time,
the probability flux across the threshold is dominated by the
deterministic positive drift, whereas the noise can be treated
as frozen. For a monotonic movement of the mean mem-
brane potential toward the threshold (u̇(t) > 0), one can
simply shift the Gaussian probability density along its time-
dependent center and calculate the survival probability as the
total probability mass that is below the threshold at time t :

Sdrift(t) =
∫ b(t)

−∞
dx√

2πσx (t)
exp

(
− x2(t)

2σ 2
x (t)

)
, (94)

= 1

2

[
1 + erf

(
b(t)√
2σx (t)

)]
(95)

In contrast, for negative movement of the center of mass,
i.e., downward and away from the threshold, the survival
probability is kept constant. The hazard rate corresponding
to the deterministic drift is given by − d

dt ln(Sdrift) resulting
in

Φdrift(b, ḃ, t) = 2√
π

[−Ṫ
]
+
exp(−T 2)

erfc(T )
. (96)

Following (Chizhov andGraham2007, 2008),we introduced
the dimensionless quantity

T (t) = b(t)√
2σx (t)

, (97)

the temporal derivative of which is given by

Ṫ (t) = 1√
2σx

(

ḃ + b
(
σ 2
x − τmσxy

)

τmσ 2
x

)

. (98)

The moments σ 2
x (t) and σxy(t) have been derived above

(Sect. 2) and τm = 1/γ . Note that the second term in Eq. (98)
accounts for the non-stationarity of the variance σ 2

x (t). This
term is absent in the original formula in (Chizhov andGraham
2007, 2008), which assumed stationary fluctuations with
σx (t) = const.. This version with stationary fluctuations has
also been derived in (Goedeke and Diesmann 2008).

Second, the effect of diffusion canbe captured in the quasi-
stationary limit case of slow driving. In this case, the survival
probability can be calculated analytically, resulting in the
corresponding hazard rate

Φdiff(b) = Φwn
diff(T )

[

1 −
(
1 + τm

τs

)−0.71+0.0825(T+3)
]

,

(99)

Φwn
diff(T ) = τ−1

m exp
(
6.1 · 10−3 − 1.12T − 0.25T 2

− 0.072T 3 − 0.0117T 4)
. (100)

here the numerical coefficients have been fitted to the exact
solution (Chizhov and Graham 2008). The total hazard rate
is simply given by the sum of the two limit cases:

λ(t) = Φdrift(b, ḃ, t) + Φdiff(b, t). (101)

Thus, we obtain for the hazard rate of the LIF neuron with
absolute refractory period tref and given last spike time t̂

λ(t |t̂) ≈ ΨCG
(
u(t |t̂), u̇(t |t̂), t − t̂

)
(102)

with the Chizhov–Graham link function

ΨCG
(
u, u̇, τ

) = θ(τ − tref)
[
Φdrift(VT − u,−u̇, τ − tref)

+Φdiff(VT − u, τ − tref)
]
. (103)
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