
A Robust PTAS for Machine Covering and Packing?

Martin Skutella and José Verschae

Institute of Mathematics, TU Berlin, Germany,
{skutella,verschae}@math.tu-berlin.de

Abstract. Scheduling a set of n jobs on m identical parallel machines so as
to minimize the makespan or maximize the minimum machine load are two of
the most important and fundamental scheduling problems studied in the litera-
ture. We consider the general online scenario where jobs are consecutively added
to and/or deleted from an instance. The goal is to always maintain a (close to)
optimal assignment of the current set of jobs to the m machines. This goal is
essentially doomed to failure unless, upon arrival or departure of a job, we allow
to reassign some other jobs. Considering that the reassignment of a job induces a
cost proportional to its size, the total cost for reassigning jobs must preferably be
bounded by a constant r times the total size of added or deleted jobs.
Our main result is that, for any ε > 0, one can always maintain a (1 + ε)-
competitive solution for some constant reassignment factor r(ε). For the mini-
mum makespan problem this is the first improvement of the (2 + ε)-competitive
algorithm with constant reassignment factor published in 1996 by Andrews, Goe-
mans, and Zhang. The crucial factor for obtaining this result is a novel insight into
the structure of robust, almost optimal schedules. Here, the term robust refers to
the fact that, upon arrival or departure of a job, reoptimization requires only slight
changes of the current schedule.

KEY WORDS: scheduling, approximation, online, reassignment costs, robustness,
ILP in constant dimension

1 Introduction

We consider two basic scheduling problems where n jobs need to be assigned to
m identical parallel machines. Each job j has a non-negative processing time pj

and the load of a machine is the total processing time of jobs assigned to it.
The machine covering problem asks for an assignment of jobs to machines that
maximizes the minimum machine load. In the minimum makespan problem (or
machine packing problem), we wish to find a schedule minimizing the maxi-
mum machine load.

Both problems are well known to be strongly NP-hard and both allow for a
polynomial-time approximation scheme (PTAS); see, e. g., [2,9,17]. They have

? This work was partially supported by Berlin Mathematical School and by DFG research center
MATHEON in Berlin.

also been studied extensively in the online setting where jobs arrive one by one
and must immediately be assigned to a machine at their arrival; see, e. g., [1,15].
The best known online algorithm for the minimum makespan problem is a
1.9201-competitive algorithm due to Fleischer and Wahl [8]. The best lower
bound 1.88 on the competitive ratio of any deterministic online algorithm cur-
rently known is due to Rudin and Chandrasekaran [11]. For randomized online
algorithms there is a lower bound of e/(e − 1) ≈ 1.58; see Chen, Vliet, and
Woeginger [6] and Sgall [14].

The online variant of the machine covering problem turns out to be less
tractable and there is no online algorithm with constant competitive ratio. The
best possible deterministic algorithm greedily assigns jobs to the least loaded
machine, and has competitive ratiom; see Woeginger [17]. Azar and Epstein [4]
show a lower bound of Ω(

√
m) for the competitive ratio of any randomized

online algorithm, and give an almost matching Õ(
√
m)-competitive algorithm.

Proportional reassignment cost. We study a relaxed online scenario known
as online load balancing with proportional reassignment cost. In this setting,
jobs may arrive or depart at any time, and when a new job enters the system
it must immediately be assigned to a machine. Again, the objective is either to
minimize the makespan or to maximize the minimum machine load. Further-
more, upon arrival or departure of a job, one is allowed to reassign other jobs
by paying an associated cost: reassigning job j incurs a cost of c · pj for some
given constant c > 0. By scaling we can assume that c = 1.

The cost due to reassignments is controlled by the reassignment factor which
is defined as follows. Let J be the set of jobs that have so far appeared in the
system, and let JL ⊆ J be the set of jobs that have left the system. We de-
fine the reassignment factor r of an algorithm as the worst case ratio between∑

j∈J pj +
∑

j∈JL
pj and the total cost due to reassignments. Alternatively, we

can interpret this framework in the following way: given a parameter r > 0,
the arrival or departure of a job j adds an amount of r · pj to the total budget
available to spend on reassignments. We call r · pj the reassignment potential
induced by job j.

Note that r = 0 means that no reassignment is allowed, and thus we are
in the classical online setting. On the other hand, r = ∞ implies that we are
allowed to reassign all jobs at each arrival/departure, and thus we fall back to the
offline case. We are interested in developing α-competitive algorithms where the
migration factor r is bounded by a constant. Furthermore, we study the trade-off
between α and r. Arguably, the best that we can hope for under this framework
is a robust PTAS (also known as dynamic PTAS), that is, a family of polynomial-

time (1+ε)-competitive algorithms with constant reassignment factor r = r(ε),
for all ε > 0.

For the minimum makespan problem with proportional reassignment cost,
Westbrook [16] gives a 6-competitive algorithm with reassignment factor 1 (ac-
cording to our definition1). Andrews, Goemans, and Zhang [3] improve upon
this result, obtaining a 3.5981-competitive algorithm with reassignment factor 1.
Furthermore, they give a (2 + ε)-competitive algorithm with constant reassign-
ment factor r(ε) ∈ O(1/ε).

Related work. Sanders, Sivadasan, and Skutella [12] consider a somewhat
tighter online model, known as the bounded migration framework. This model
can be interpreted as the reassignment model with the following modification:
after the arrival or departure of a job j, its reassignment potential r · pj must be
immediately spent or is otherwise lost. In the bounded migration scenario, the
value r is called the migration factor of the algorithm, and is a measure of the
robustness of the constructed solutions.

Sanders et al. study the bounded migration model for the special case when
jobs are not allowed to depart. For the minimum makespan problem, they give
a 3/2-competitive algorithm with migration factor 4/3. Moreover, using well
known rounding techniques, they formulate the problem as an integer linear pro-
gramming (ILP) feasibility problem in constant dimension. Combining this with
an ILP sensitivity analysis result, they obtain a robust PTAS for the bounded
migration model with job arrivals only. An important consequence of their anal-
ysis is that no special structure of the solutions is needed to achieve robustness.
More precisely, it is possible to take an arbitrary (1 + ε)-approximate solution
and, at the arrival of a new job, turn it into a (1 + ε)-approximate solution to the
augmented instance while keeping the migration factor constant. This feature
prevents their technique from working in the job departure case.

Sanders et al. [12] also consider the machine covering problem, showing a
2-competitive algorithm with migration factor 1. Moreover, they give a coun-
terexample showing that it is not possible to start with an arbitrary (1/2 + ε)-
approximate solution, and then maintain the approximation guarantee while
keeping the migration factor constant. This implies that the ideas developed
in [12] for the minimum makespan problem cannot be applied directly to de-
rive a robust PTAS for the machine covering problem. Based on ideas in [12],
Epstein and Levin [7] develop a robust APTAS for the Bin-Packing problem.

1 Our definition differs slightly from the one given in [16]: they do not consider the departure of
jobs to add any reassignment potential, and the first assignment of a job also induces cost in
their case. However, the concept of constant reassignment factors is the same in both models.

The work of Sanders et al. is motivated by an important practical online ap-
plication. A Storage Area Network (SAN) commonly manages several disks of
different capacities. For the system to be fault-tolerant, the information is usu-
ally replicated several times. We can model a SAN by considering a partition of
the storage devices into several subservers, each containing copies of the same
information. Therefore, the capacity of the SAN is the minimum capacity of
all subservers. In scheduling notation, the subservers corresponds to machines,
while the disks correspond to jobs. Our objective is to maximize the capacity of
the SAN, i.e., the minimum load of the machines. Moreover, we might want to
increase the capacity of the SAN by attaching new disks. This corresponds to
jobs that enter the system in our online model. On the other hand, job departure
models disks that fail and must be removed from the network. We would like to
maintain solutions that are close to optimal, by reassigning a limited amount of
hard disks. However, the more hard disks that arrive or fail, the more reassign-
ments we are be willing to perform. Notice that this problem fits the reassign-
ment and the bounded migration models. Nonetheless, the latter unrealistically
asks the reassignment potential to be spent immediately after is generated. This
may be undesirable in practice since it may provoke down-time of the system
each time a new disk is inserted, instead of collecting work until it is worthy to
make a larger change of configuration.

Our Contribution. Using several novel ideas and techniques, we develop a
general framework for obtaining robust PTASes in the reassignment model. Our
results can be considered from various different angles and have interesting in-
terpretations in several different contexts:

(i) We make a significant contribution to the understanding of two fundamen-
tal online scheduling problems on identical parallel machines that are also
relevant building blocks for many more complex real-world problems.

(ii) We advance the understanding of robustness of parallel machine schedules
under job arrival and departure, and give valuable insights related to the
sensitivity analysis of parallel machine schedules.

(iii) We achieve the best possible performance bound for machine balancing
with proportional reassignment costs, improving upon earlier work by
Westbrook [16] and Andrews, Goemans, and Zhang [3].

Our techniques for deriving the robust PTAS take the ideas in [2] and [12]
one step further. We first prove that it is not possible to start with an arbitrary
(1 + ε)-approximate solution and, at the arrival of a new job, maintain the com-
petitive ratio with constant migration factor. One of our main contributions is to
overcome this limitation by giving extra structure to the constructed solutions.

Roughly speaking, we do this by asking for solutions such that the sorted vector
of machine load values is lexicographically optimal. It turns out that a solution
with this property is not only optimal but also robust. In the analysis we for-
mulate a rounded scheduling problem as an ILP in constant dimension, exploit
the structure of the coefficient matrix, and apply sensitivity analysis for ILPs to
derive the result. This, plus other techniques, allows us to obtain a robust PTAS
with constant reassignment factor for the case where jobs are allowed to arrive
and depart.

Our techniques can be further improved and extended. Our robust PTAS can
be refined so that we only accumulate a small amount of reassignment poten-
tial, being at most ε ·OPT . Note that if we do not accumulate any reassignment
potential, we fall back to the bounded migration case. This implies that our tech-
niques are best possible, since we will show that there is no robust PTAS with
bounded migration. On the other hand, all our techniques can be extended to
a very broad class of problems, first consider by Alon, Azar, Woeginger and
Yadid [2], where the objective functions solely depend on the load of each ma-
chine.

Organization of the paper. To keep the presentation short and clear, we mainly
focus on the machine covering problem and present a robust PTAS for the gen-
eral case of jobs leaving and entering the system. In the end we show how to
obtain this result for the minimum makespan problem and other objective func-
tions.

In Section 2 we give a lower bound on the best possible competitive guar-
antee that we can obtain in the constant migration model. We also discuss how
to deal with small arriving/departing jobs. Section 3 shows how to compute a
lower bound on the minimum load that is stable against arrival or departure of
jobs. Section 4 is devoted to show our main structural insights. There we de-
scribe, for a particular case, an important property that guarantees robustness of
solutions. Afterwards, in Section 5, we generalize these ideas to derive a robust
PTAS with constant reassignment factor for the machine covering problem. In
Section 6 we refine our techniques so that our algorithm does not accumulate
more than ε ·OPT reassignment potential. Finally, Section 7 explains how our
techniques can be applied to derive robust PTASes for a broad class of objec-
tive functions. In particular, we show this result for the minimum makespan
problem, improving upon the (2 + ε)-competitive algorithm with constant reas-
signment factor by Andrews, Goemans, and Zhang [3]

p1 p2 p3

p5 p6

p7 p4

(a) Unique optimal solution
to original instance.

p5 p2 p3

p6 p1 p4

p7

(b) Unique optimal solution
to instance with new jobs.

Fig. 1: There is no (19/20 + ε)-competitive algorithm with constant migration
factor.

2 A lower bound on the best approximation with constant
migration factor

We start by showing that it is not possible to maintain near-optimal solutions to
the machine covering problem with constant migration factor in the model of
Sanders et al. [12], if arriving jobs are arbitrarily small.

Lemma 1. For any ε > 0, there is no (19/20+ε)-competitive algorithm for the
machine covering problem with constant migration factor, even for the special
case without job departures.

Proof. Consider an instance consisting of 3 machines and 7 jobs of sizes p1 =
p2 = p3 = p4 = 2, p5 = p6 = 3 and p7 = 5.7. It is easy to see that the
optimal solution is given by Figure 1a. Moreover, this is, up to symmetry, the
only solution within a factor 19/20 + ε to the optimum for any ε > 0.

Let us assume by contradiction that we can obtain a (19/20+ε)-competitive
algorithm with constant migration factor C. Then, we must start with the solu-
tion given by Figure 1a. Consider now that jobs of size less than 1/C arrive,
whose total processing time sum up to 1.3. Since the migration factor is at most
C, non of the seven original jobs can change machines, and thus the best possi-
ble solution we can achieve has value 6.65, while the optimum, shown in Fig-
ure 1b, is 7. We conclude by noting that 6.65/7 = 19/20. ut

As mentioned before, this lemma justifies the use of the reassignment cost
model instead of the bounded migration framework. Moreover, we see in the
proof of the lemma that the limitation of the bounded migration model is caused
by arbitrarily small jobs, whose reassignment potential do not allow any other
job to be migrated. Nonetheless, in the reassignment model we can deal with
small jobs by accumulating them as follows.

LetOPT denote the value of an optimum solution for the current set of jobs.
If a new job j with pj ≤ ε · OPT arrives, we do not schedule it immediately2.
Instead, we accumulate several small jobs, until their total processing time sur-
passes ε ·OPT . We can then incorporate them as one larger job with processing
time at least ε ·OPT . This can only decrease the value of the solution by a 1−ε
factor.

The situation for the departure of small jobs is slightly more complicated.
We ignore the fact that certain small jobs are gone as long as the following
property holds: There is no machine which has lost jobs of total processing time
at least ε ·OPT . Under this condition, the objective function is affected by less
than a factor 1−ε. If, on the other hand, there is such a machine, we can treat the
set of jobs that have left the machine as one single job of size at least ε·OPT and
act accordingly. Notice that the property above has to be checked dynamically
after each reassignment of jobs caused by newly arriving or departing jobs.

Assumption 1 We assume, without loss of generality, that all arriving/departing
jobs are larger than ε ·OPT .

3 A stable estimate of the optimum value

In this section we show how to compute an upperbound on the machine covering
problem, that is within a factor 2 of the optimum. We use here the same upper-
bound as in [2]. Nonetheless, for it to be useful for the robust PTAS, we need
this upperbound to be stable: at the arrival/departure of a new job, its value must
not change by more than a constant factor. We first describe the lower bound
when the instance satisfies a special property. We show later how to generalize
this to arbitrary instances.

Let I = (J,M) be an instance of our problem, where J is a set of n jobs
and M a set of m machines. Given a subset of jobs L, we denote by p(L) the
total processing time of jobs in L, i. e., p(L) :=

∑
j∈L pj .

The most natural upperbound to use for our problem is just the average
load of the instance, p(J)/m. However, this estimate is clearly not within a
constant factor of the optimum (consider, e. g., an instance with two machines
and two jobs with processing times 1 and K � 1, respectively). Throughout
this section we say that instance I satisfies property (∗) if pj ≤ p(J)/m, for
all j ∈ J . Under condition (∗), the average load is always within a factor 2
of OPT ; see [2]. For completness, we also give the proof of this of this fact.

2 In order to still satisfy the strict requirements of the considered online scheduling problem, we
can assume that job j is temporarily assigned to an arbitrary machine, say machine 1. Notice
that this causes an increase of the reassignment factor by at most 1.

Lemma 2. If instance I satisfies (∗), then p(J)
2m ≤ OPT ≤

p(J)
m .

Proof. The upperbound is clear. Assume by contradiction thatOPT < p(J)/2m,
and consider an optimal solution minimizing the number of jobs whose starting
time is larger than OPT .

Our contradiction hypothesis implies that there must exist some machine i
whose load is strictly larger than the average load p(J)/m. Since the process-
ing time of every job is at most p(J)/m, machine i must contain at least two
jobs, j 6= j′. We assume without loss of generality that pj ≤ pj′ , and that j is
the last job processed on i.

Note that by our choice of optimal solutions, the starting time of all jobs
must be smaller or equal than OPT . Thus, if Sj and Cj denote the starting and
completion time of job j respectively, we get that

Sj ≤ OPT <
p(J)
m

< Cj .

We conclude that pj = Cj −Sj > p(J)/m−OPT > p(J)/2m, where the last
inequality follows from our contradiction hypothesis. Thus, pj′ ≥ pj >

p(J)
2m ,

and therefore Sj > pj′ ≥ p(J)
2m > OPT . Hence, moving job j to the machine

with minimum load yields a schedule that has one job less whose starting time
is larger than OPT . This contradicts out initial assumption on the considered
optimal solution. ut

Now we show how to transform arbitrary instances to instances satisfy-
ing (∗) without changing the optimal solution value. If pj > p(J)/m ≥ OPT ,
then we can assume that j is being processed on a machine of its own. Thus,
removing j plus its corresponding machine does not change the optimal solu-
tion value, but it does reduce the average load. Iterating this idea we get the
following simple algorithm.

STABLE-AVERAGE

1. Initialize w ← m and L← J .
2. Order the processing times so that pj1 ≥ pj2 ≥ . . . ≥ pjn .
3. For each k = 1, . . . , n, define

A← p(L)
w

,

and check whether pjk
≤ A. If this holds, then return A together with w

and L. Otherwise, redefine w ← (w − 1) and L ← (L \ {pjk
}) and keep

iterating.

We call value A the stable average of instance I. Also, we obtain that solv-
ing the instance with job set L and w identical machines is equivalent to solv-
ing I. This, together with Lemma 2, implies the following.

Lemma 3. The upperboundA computed above satisfiesOPT ≤ A ≤ 2·OPT .

It is easy to see that, in general, the factor by which the upperbound changes
at the arrival/departure of a job is not bounded (consider two machines and two
jobs of sizes 1 and K � 1, respectively; then one job of size K − 1 arrives).
However, we can show that if A is increased by more than a factor 2, then the
instance was trivial to solve in the first place. We first show that, if the value A
is increased by more than a factor of 2, then a significant amount of jobs must
have arrived to the system.

Lemma 4. Consider an arbitrary instance I ′ = (J ′,M), and let A′, L′ and
w′ be the returned values when applying Algorithm STABLE-AVERAGE to it.
If A′ > 2A, then |J4J ′| > w/2 (here 4 denotes the symmetric difference
between the two sets).

Proof. Let δ be an arbitrary positive number. We assume, without loss of gener-
ality, that jobs in instances I and I ′ have processing times bounded byA′(1+δ).
Indeed, if there is some job j with pj > A′, reducing its processing time
to A′(1 + δ), for any δ > 0, leaves the values of A, A′, and w unchanged.
Let k := |J ′ \ J | ≤ |J ′4J |, then

A′ ≤ wA+ (m− w)A′(1 + δ) + kA′(1 + δ)
m

.

Simple algebraic manipulation yields that

k ≥
w
(
1− A

A′

)
+ δ(m+ w)

(1 + δ)
.

Notice that the limit of the right hand side when δ → 0+ equals w(1−A/A′) >
w/2. The result then follows by choosing δ small enough. ut

Moreover, we say that an instance is trivial if Algorithm STABLE-AVERAGE

returns w = 1. If this is the case, then the optimal solution to the instance can be
constructed by processing them−1 largest jobs each on a machine of their own,
and the remaining jobs on the remaining machine. Moreover, the optimal value
OPT equals A. With this definition, we obtain the following easy consequence
of Lemma 4.

Corollary 1. Assume that I is nontrivial and that instance I ′ is obtained from I
by adding one job. Then, it must hold that A ≤ A′ ≤ 2 ·A.

4 The structure of robust solutions

In the following, we show a sufficient condition to guarantee that we can achieve
near optimal solutions when jobs arrive or depart. For clarity, we first consider a
static case: Given an instance I, we construct a (1−O(ε))-approximate solution
having enough structure so that at the arrival or departure of a job larger than
ε·OPT , we can maintain the approximation guarantee using constant migration
factor. Note that since we are using constant migration factor, we only use the
reassignment potential induced by the arriving or departing job. Nonetheless,
we do not take care of maintaining the structure so that this procedure can be
iterated when further jobs arrive (or depart). We deal with this more complicated
scenario in Section 5.

In the remainder of this section we concentrate on the case of a newly ar-
riving job. The presented ideas and techniques can be easily adapted to the case
of a departing job. Let I = (J,M) be an arbitrary instance with optimal value
OPT . If there is no possible confusion, we will also use OPT to refer to some
optimal schedule for I. We call I ′ = (J ′,M) the instance with the additional
arriving job pj∗ , and OPT ′ the new optimal value.

The case that I is trivial is treated separately. As discussed before, in this
case we can easily compute an optimal solution to I.

Lemma 5. Assume that I is trivial. Then, starting from an optimal solution, it
is possible to construct a (1− ε)-approximate solution to I ′ by using migration
factor at most 2/ε.

Proof. Construct an arbitrary (1 − ε)-approximate solution S′ to I ′, by using
for example, the procedure that will be derived in Section 4.1, or the PTASes
in [2,17]. Recall that by applying Algorithm STABLE-AVERAGE to instance I,
we obtain its stable average A, as well as a subset of jobs L and a number of
machines w so that A = p(L)/w. Moreover, all jobs j ∈ L satisfy pj ≤ A. We
can assume that in solution S′ no two jobs in J ′\L can be processed on the same
machine. Indeed, consider two jobs j, j′ ∈ J ′ \ L. Since |J ′ \ L| = m, there
must be a machine processing only jobs in L. Since p(L) = A, interchanging all
jobs in L with j cannot decrease the minimum load. Iterating this argument we
obtain a schedule S′ where all jobs in J ′\L are processed on different machines.

With this, up to permutation of machines, schedules S and S′ differ only
with respect to the new job j∗ and jobs in L. Since we are assuming that pj∗ ≥
ε ·OPT ≥ ε ·A/2, and we have that p(L) = A, we conclude that the migration
factor needed is at most 2/ε. ut

In the rest of this section we take care of the nontrivial case.

4.1 Compact description of a schedule

As usual in PTASes, we first simplify our instance by rounding. In this section
we briefly show how to do this for our problem. The techniques are similar to
the ones found, e. g., in [2,12,17]. Nonetheless, we must be careful to ensure that
the resulting compact description of schedules is also compatible with schedules
containing any new job that may arrive.

It is a well known fact that by only loosing a 1/(1+ε) factor in the objective
function, we can round down all processing times to the nearest power of 1 + ε.
Thus, in the rest of this paper we will assume that, for every job j, it holds that
pj = (1 + ε)k for some k ∈ Z. Moreover, we need to compute an upperbound,
UB, which is within a constant factor γ > 1 of the optimal value:

OPT ≤ UB ≤ γ ·OPT .

Throughout this section we use UB = A, so that γ = 2. For the general case
in Section 5 we will have to choose this upperbound more carefully. In what
follows, we will round our instance such that the number of different processing
times is constant. To this end, let σ,Σ ≥ 1 be two constant parameters that will
be chosen appropriately later. Our rounding will ensure that all processing times
belong to the interval [ε · UB/σ,Σ · UB]. The value σ will be chosen big enough
so that every job that is smaller than ε·UB/σ is also smaller than ε·OPT . On the
other hand, since Σ ≥ 1, every job that is larger than Σ · UB will also be larger
thanOPT , and thus will be processed on a machine of its own. Moreover, since
we are assuming that I is non-trivial, Corollary 1 implies that UB′ ≤ 2 · UB. We
can therefore choose Σ ≥ 2 to ensure that a job that is larger than Σ · UB is
also larger than OPT ′, and thus will also be processed on a machine of its own
in optimal solutions to I ′. This will help us to simultaneously round I and I ′,
having the same approximation guarantee for both instances. More importantly,
we note that since the lower and upper bounds are within a constant factor, the
rounded instances only have O(log1+ε(1/ε)) = O(1/ε log(1/ε)) different job
sizes.

Consider the index set

I(UB) :=
{
i ∈ Z : ε · UB/σ ≤ (1 + ε)i ≤ Σ · UB

}
= {`, . . . , u} .

The new rounded instance derived from I is described by defining a vector
N = (ni)i∈I , whose entry ni denotes the number of jobs of size (1 + ε)i. More
precisely, vector N is defined as follows. For each i = `+ 1, . . . , u− 1, we let

ni :=
∣∣{j ∈ {1, . . . , n− 1} : pj = (1 + ε)i

}∣∣ , (1)

i. e., ni is the number of jobs of size (1 + ε)i in the original instance, and thus
these jobs are not rounded. From now on we will call such jobs big with respect
to UB. To get rid of jobs that are even larger, we just round them down to (1+ε)u

and define
nu := |{j ∈ {1, . . . , n− 1} : pj ≥ (1 + ε)u}| . (2)

We call these jobs huge with respect to UB. Finally, jobs that are smaller than
or equal to (1 + ε)` are said to be small with respect to UB. To dispose of these
jobs, we replace them by jobs of size (1 + ε)` by defining

n` :=

⌊∑
j:pj≤(1+ε)` pj

(1 + ε)`

⌋
. (3)

Notice that with definition (3) we make sure that the total processing time of
small jobs in N and I is roughly equal. By slightly abusing notation, in what
follows we also use the symbol N to refer to the scheduling instance defined by
the vector N .

Lemma 6. The value of an optimal solution to N is within a 1 − O(ε) factor
of OPT .

Proof. Let us consider an optimal schedule S for I with objective value OPT .
We modify this solution to construct a schedule for N . First, replace all jobs
with processing times larger than (1 + ε)u with a job of size (1 + ε)u. By
taking Σ ≥ 1 + ε, the load of each affected machine is still at least (1 + ε)u ≥
Σ · UB/(1 + ε) ≥ OPT . Then, remove all jobs j with pj ≤ (1 + ε)`, and apply
a list scheduling algorithm to the n` jobs with size (1 + ε)` of instance N , i. e.,
greedily assign each job to the least loaded machine in an arbitrary order.

Call j the last job scheduled doing this procedure, and let Sj be its starting
time. It is clear that the value of the schedule is at least Sj . Assume by contra-
diction that Sj < OPT − 2(1 + ε)`. Since we are using a greedy algorithm, all
jobs of size (1+ε)` have completion time strictly smaller thanOPT − (1+ε)`.
Also note that, by the definition of n`,∑

j:pj≤(1+ε)`

pj − n`(1 + ε)` ≤ (1 + ε)` .

This yields a contradiction since small jobs in I can be used to cover all ma-
chines up to OPT . We conclude that the value of the constructed schedule is at
least

OPT − 2(1 + ε)` ≥ OPT − 2UB
ε(1 + ε)

σ

≥ OPT − 2OPT
γε(1 + ε)

σ
= (1−O(ε))OPT ,

where the last computations follow from the definition of UB and `. ut

Notice that a solution to the rounded instance can be turned into a schedule
for the original instance I by simply removing all jobs of size (1 + ε)` from
the schedule of N , and then applying a list scheduling algorithm to process the
original small jobs. By the same argument as in the proof of Lemma 6, we can
conclude that doing this only costs a factor 1 − O(ε) in the objective function.
We can thus restrict to work with instance N , whose jobs take only a constant
number of different sizes. To describe a schedule of N in a compact way, we
consider the following definition.

Definition 1 (Machine configuration and its load). For a given schedule, a
machine is said to obey configuration k : I(UB) → N0, if k(i) equals the
number of jobs of size (1 + ε)i being processed on that machine, for all i ∈
I(UB). Also, the load of a configuration k, denoted as load(k), is the load of a
machine that obeys that configuration, i. e., load(k) =

∑
i∈I(UB) k(i)(1 + ε)i.

Let us now consider the set of configurations

K := {k : I(UB)→ N0|k(i) ≤ σΣ/ε+ 1 for all i ∈ I} .

In the next lemma we show that these are all necessary configurations that we
need to consider, and thus we can restrict to only a constant number of configu-
rations: |K| ≤ (σΣ/ε+ 1)|I(UB)| ∈ 2O(1

ε
log2 1

ε
).

Lemma 7. There exists an optimal solution to N , such that all machines obey
a configuration in K.

Proof. It is enough to show that there can be at most σΣ/ε+1 jobs processed on
any machine in an optimal schedule. It is easy to see that there exists an optimum
solution where no job starts later than UB. Therefore, since all jobs are larger
than εUB/σ, the number of jobs per machine is at most σ/ε+ 1 ≤ σΣ/ε+ 1.

ut

Note that in the proof we showed that the number of jobs per machine in
an optimal solution is upper bounded by σ/ε + 1. Thus, the set K contains
more configurations than are really needed for our instance. Nonetheless, the
overestimation of the number of jobs is necessary so that, when a new job arrives
and the upperbound is increased (by at most a factor of 2), the set K will still
contain all necessary configurations.

We can now describe a schedule of N as a vector (xk)k∈K , such that xk

denotes the number of machines that obey configuration k in the schedule. Then,

it is easy to see that the optimal solution to N found in Lemma 7 corresponds
to a vector x that belongs to the solution set of the following set of constrains:∑

k∈K

xk = m, (4)∑
k∈K

k(i)xk = ni for all i ∈ I(UB), (5)

xk ∈ Z≥0 for all k ∈ K.

We denote by A = A(K, I) the matrix defining the set of equations (4)
and (5); its corresponding right-hand-side is denoted by b(N,m). Then, the non-
negative integral solutions to equations (4) and (5) correspond to the set S ={
x ∈ NK

0 |Ax = b(N,m)
}

. A key point in the following argument is that the
set S is embedded in a constant dimensional space, i. e., S ⊆ ZK , where |K| ∈
2O(1

ε
log2 1

ε
).

4.2 Constructing stable solutions

In the following we present the main structural contribution of this paper: We
show how to obtain a robust optimal solution to N such that, upon arrival (or
departure) of a new job of size at least ε ·OPT , we need to migrate jobs of total
processing time at most f(ε) · OPT in order to maintain optimality. This im-
plies that the migration factor needed for this case is upper bounded by f(ε)/ε.
Let us order and relabel the set of configurations K = {k1, . . . , k|K|} in non-
decreasing order of their load, i. e., load(k1) ≤ load(k2) ≤ . . . ≤ load

(
k|K|

)
.

Definition 2. Let x, x′ ∈ S. We say that x′ is lexicographically smaller than x,
denoted x′ ≺lex x, if xk = x′k for all k ∈ {k1, . . . , kq}, and x′kq+1

< xkq+1 , for
some q ∈ {0, 1, . . . , |K| − 1}.

It is easy to see that≺lex defines a total order on the solution set S, and thus
there exists a unique lexicographically minimum vector, which we call x∗. We
will soon see that x∗ has the proper structure that we need for our purposes. In
particular, it maximizes the minimum machine load of instance N .

Lemma 8. Let x∗ be the lexicographically minimum vector in S. Then x∗ rep-
resents an optimal schedule for instance N .

Proof. Consider an optimum schedule as in Lemma 7. We can describe such a
solution by variables xOPT

k denoting the number of machines that obey config-
uration k ∈ K. Clearly, xOPT

k = 0 for all k such that load(k) < OPT . Thus,
since x∗ is lexicographically minimum, x∗k = 0 for all k ∈ K with load(k) <
OPT (since otherwise xOPT ≺lex x

∗). The result follows. ut

Moreover, x∗ can be computed in polynomial time by solving a sequence of
integer linear programs in constant dimension. For this consider the following
algorithm.
ALGORITHM MINLEX

1. Solve min {xk1 |x ∈ S} using Lenstra’s algorithm [10] and call the optimum
objective value x∗k1

.
2. For each q = 2, . . . , |K|, fix (xk1 , . . . , xkq−1) to (x∗k1

, . . . , x∗kq−1
) and com-

pute x∗kq
by minimizing xkq over S, i.e., compute

x∗kq
:= min

{
xkq

∣∣x ∈ S and xkr = x∗kr
for all r = 1, . . . , q − 1

}
.

3. Return x∗.

By a simple inductive argument, we can show that this greedy algorithm finds
the lexicographically minimum element in S. Alternatively, we can find x∗ by
solving a single ILP in constant dimension. This can be achieved by minimizing
a carefully chosen linear function over the set S. Let λ := 1/(m+1), and define
cq := λq for all q ∈ {1, . . . , |K|}. Consider the following problem, which we
denote by [LEX].

min

|K|∑
q=1

cqxkq : A · x = b(N,m) and xk ∈ Z≥0 for all k ∈ K

 .

Lemma 9. Let z be an optimal solution to [LEX]. Then, z is the lexicographi-
cally minimal solution in S.

Proof. We use the following claim which is obtained by standard calculus tech-
niques.
Claim. For each ` ∈ {1, . . . , |K| − 1}, it holds that m ·

∑|K|
q=`+1 cq < c`.

Let z be an optimum solution to [LEX] and xlex the lexicographically min-
imum solution in S. We proceed by contradiction, and call ` the smallest index
such that zk`

6= xlex
k`

. Since xlex is the lexicographically minimum solution, we
know that xlex

k`
≤ zk`

− 1. Then,

|K|∑
q=`

cqx
lex
kq
≤ c`(zk`

− 1) +
|K|∑

q=`+1

cqx
lex
kq

≤ c`(zk`
− 1) +

|K|∑
q=`+1

cq(zkq +m) <
|K|∑
q=`

cqzkq ,

where the last inequality follows from the claim above. Finally, adding

`−1∑
q=1

cqx
lex
kq

=
`−1∑
q=1

cqzkq

on both sides yields a contradiction to the optimality of z. ut

With this last result we can already describe an offline PTAS for our prob-
lem: compute an upper bound UB; define vectorN by equations (1), (2), and (3);
and solve [LEX] with Lenstra’s algorithm. Since we can compute UB in linear
time (see Appendix A for details), the running time of this algorithm is inO(n).

Let S be the schedule constructed from z. We next show that S is robust.
Indeed, we can see that if we slightly change the right-hand-side of [LEX],
the new job j∗ can be incorporated into the ILP, allowing us to solve this new
instance. Indeed, as discussed before, we can assume that pj∗ is a power of (1 +
ε) and is larger than ε ·OPT ≥ εUB/σ (by taking σ ≥ γ). Then, we can round
the new instance I ′ by defining a vector N ′ = (n′i)i∈I as follows:

n′i =

{
ni if pj∗ 6= (1 + ε)i

ni + 1 if pj∗ = (1 + ε)i,
for i = `, . . . , u− 1,

n′u =

{
nu + 1 if pj∗ ≥ (1 + ε)u

nu otherwise.

In other words, if pj∗ ≥ (1+ε)u ≥ 4A ≥ A′ ≥ OPT ′, then job j∗ is processed
on a machine of its own, and thus we can assume that its size is just (1 + ε)u.
Otherwise, we increase the number of jobs of size pj∗ by one. Also, note that
all jobs whose size was rounded down to (1 + ε)u in the original instance I are
still larger than Σ · UB ≥ UB′, and thus get a machine of their own in OPT ′.
Moreover, jobs that are smaller than ε · UB/σ are also smaller than ε ·OPT ′/σ.
Thus, using the same argument as in Lemma 6, solving instance N ′ yields a
(1 − O(ε))-approximate solution to I ′. Also, analogously to Lemmas 7 and 9,
we can solve this instance by optimizing the following modification of [LEX],
which we call [LEX]’:

min

|K|∑
q=1

cqxkq : Ax = b(N ′,m) and xk ∈ Z≥0 for all k ∈ K

 .

Let z′ be an optimum solution to this problem. Note that this ILP is the same as
[LEX] except that one of the entries of the right-hand-side is modified by one.
With the last observation plus a sensitivity analysis result, we are able to bound
the difference between z and z′, and thus conclude our claim.

Theorem 1. There exists a static robust PTAS if the arriving job is larger than
ε ·OPT .

Proof. It follows from a sensitivity analysis result3, and the fact that lexico-
graphically minimal solutions are unique, that

‖z − z′‖∞ ≤ |K|∆
(∥∥b(N,m)− b(N ′,m)

∥∥
∞ + 2

)
≤ 3|K|∆ ,

where ∆ is the maximum over all the subdeterminants of A in absolute values.
Using the same argument as in [12], we can easily check that ∆ ∈ 2O(1

ε
log2 1

ε
),

and therefore

‖z − z′‖1 ≤ 3|K|2∆ ∈ 2O(1
ε

log2 1
ε

) .

We thus need to touch at most 2O(1
ε

log2 1
ε

) machines to get from the solution
given by z to the one given by z′. Also, all jobs that are migrated have (un-
rounded) processing times at most (1 + ε)u, and must start processing before
(1 + ε)u. Thus, the total processing time on each of these machines is at most
2Σ · UB, and since pj∗ ≥ ε · OPT ≥ ε · UB/γ, the migration factor is upper
bounded by 6Σγ|K|2∆/ε ∈ 2O(1

ε
log2 1

ε
). ut

Running time. By the last theorem, given z we can compute z′ by an ex-
haustive search through all vectors feasible to [LEX]’, and whose components
differ from z by at most 2O(1

ε
log2 1

ε
). Therefore, the running time needed to

compute z′, and thus the solution to I ′, is 22O(1
ε log2 1

ε)
.

Job departure. We can adjust the techniques presented in this section for the
job departure case. Indeed, if instance I ′ contains one less job than I, we can
assume that I ′ is nontrivial since the trivial case can be dealt separately as in
Lemma 5. Therefore UB′ ≥ UB/2, and thus taking σ larger than 2, implies that
I(UB) contains all jobs sizes between ε · OPT ′ and OPT ′. This implies that
rounding instance I ′ within this range decreases the optimum value by at most
a factor (1 − O(ε)). Moreover, the right hand side of [LEX] and [LEX]’ differ
in only one entry, where [LEX]’ has one component decreased by one. Then,
the same sensitivity analysis result can be used to conclude that the migration
factor needed to construct the solution given by [LEX]’ is at most 2O(1

ε
log2 1

ε
).

3 Lemma. (from [13]) Let A be an integral m × n-matrix, such that each subdeterminant is
at most ∆ in absolute value, let b and b′ be column m-vectors, and let c be a row n-vector.
Suppose min{cx|Ax ≤ b;x ∈ Zn} and min{cx|Ax ≤ b′;x ∈ Zn} are finite. Then, for each
optimum solution z for the first problem there exists an optimum solution z′ of the second
problem such that ‖z − z′‖∞ ≤ n∆(‖b− b′‖∞ + 2).

5 Maintaining robust solutions dynamically

In the previous section we showed how to construct a robust (1−O(ε))-approximate
solution, so that we can maintain the approximation guarantee at the arrival (de-
parture) of an arbitrary new big job and keep the migration factor bounded.
Nonetheless, we cannot further iterate this method when more jobs arrive or
depart. Notice that in the last section, we chose the range on which we round
our jobs (i. e., set I(UB)) large enough so to ensure that the optimum of the
rounded instances N and N ′ are close to the optimum of the original instances.
Nonetheless, as more jobs arrive (depart), the optimal value of the new instances
may become arbitrarily large (small), and thus the range I(UB) will not be large
enough to guarantee the approximation ratios of the rounded instances. On the
other hand, we cannot make the index set I(UB) larger so as to simultaneously
round all possible instances and maintain the number of job sizes constant.

We deal with this difficulty by dynamically adjusting the set I(UB), defin-
ing it appropriately for the current instance. In doing so, we must be extremely
careful not to destroy the structure of the constructed solutions and maintain the
reassignment cost bounded. In particular, notice that each time that set I(UB)
is shifted to the right (left), we must regroup small jobs into larger (smaller)
groups. Then, we should avoid changing I(UB) too often: it should be changed
only when we can guarantee that there is enough reassignment potential accu-
mulated to regroup all small jobs and simultaneously maintain the structure of
optimal solutions. To this end we propose the following algorithm. Let I be the
instance after the t-th job arrival/departure. We run the following algorithm on
instance I for every t:

ROBUST PTAS

1. Run algorithm STABLE-AVERAGE over I to compute A and w.
2. If variable A0 has not yet been defined or A 6∈ [A0/2, 2A0], then (re)define
I0 ← I and A0 ← A.

3. Using as an upperbound UB = 2A0, define sets I(UB), K, and the ILP
[LEX] as in the previous section. Compute the optimal solution z to [LEX],
and construct a schedule S using z as a template.

Notice that throughout the algorithm, OPT ≤ A ≤ 2A0 = UB, and thus
UB is indeed an upperbound on OPT . Moreover, OPT ≥ A/2 ≥ A0/4 =
UB/8, and thus UB is within a factor 8 of OPT (i.e., γ = 8 with the no-
tation of the previous section). By the discussion in Section 4.2, an appro-
priate choice of values σ and Σ guarantees that all constructed solutions are
(1 − O(ε))-approximate. We just have to show that the needed reassignment
factor is bounded by a constant.

For the analysis we separate the iterations of the algorithm into blocks. Each
block B consists of a consecutive sequence of instances, so that the value of A0

in the algorithm is kept constant within B. Thus, for each instance I occurring
in B, its stable average A belongs to the interval [A0/2, 2A0]. Consider two
consecutive instances I and I ′ that belong to the same block. In what follows
we add a symbol prime to denote the variables corresponding to I ′. So, for
example, A′ denotes the stable average of I ′. Since I and I ′ belong to the same
blockB, we have that UB = 2A0 = UB′, and thus the sets I(UB) andK coincide
with I(UB′) and K ′, respectively. Therefore, the ILPs [LEX] and [LEX]’ only
differ in their right-hand-side, where one entry is changed by at most a value of
one. With this observation we can use the same reasoning as in Theorem 1 to
prove the following lemma.

Lemma 10. If two consecutive instances I and I ′ belong to the same block
of iterations, then the migration factor used to obtained S′ from S is at most
2O(1

ε
log2 1

ε
).

It remains to consider the limit case where instance I and the next in-
stance I ′ belong to different blocks. For this, we assume that I ′ contains one
more job than I and that A′ > 2A0. The case where A′ < A0/2 can be dealt in
an analogous way.

If I is trivial, it is easy to see that the constructed schedule S is the optimal
solution to the instance. Moreover, by the same reasoning as in Lemma 5, sched-
ules S and S′ will not process two jobs larger than Σ · UB on the same machine.
Then, up to permutation of machines, S and S′ only differ by jobs smaller than
A. Since the processing time of all such jobs is A and the arriving job is larger
than ε · OPT ≥ ε · A/2, we conclude that the migration factor needed for this
iteration is at most 2/ε.

We now take care of the case where I is nontrivial. Assume that I belongs
to a block B, and consider the value of A0 corresponding to this block. It holds
that A0 ≤ A ≤ 2A0. Also, since I is nontrivial, Lemma 1 ensures that A ≤
A′ ≤ 2A, and therefore UB ≤ UB′ ≤ 4UB.

To be able to compare solutions z ∈ NK
0 and z′ ∈ NK′

0 , we first need to
interpret them in a common euclidian space containing them. For this purpose,
notice that huge jobs of I have processing time larger than Σ · UB ≥ UB′,
assuming that Σ is chosen larger than 4(1 + ε). Thus, these jobs take a machine
of their own in solutions OPT , OPT ′, S, and S′, and thus we do not need to
consider them. We can then assume that all jobs of I and I ′ have processing time
upper-bounded by Σ · UB. In particular, the entries of vector N ′ = (n′i)i∈I(UB′)

are zero if (1 + ε)i > Σ · UB. We can then interpret N ′ as a vector in NI
0 by

setting to zero the entries n′i with (1 + ε)i < ε · UB′/σ.

With this simplification, we note that the configurations k′ ∈ K ′ that will be
used by our solution z, must satisfy k′(i) = 0, for all i ∈ I ′ \ I . Also, arguing
as in Lemma 7, if Σ is large enough, configurations in K contain enough jobs
to describe optimal solutions to N ′. Thus, configurations k′ ∈ K ′ with z′k′ 6= 0
can be interpreted as configurations in K. We conclude that vector z′ can be
regarded as a vector in NK

0 . Moreover, this vector must be the solution to [LEX]
when the right-hand-side is changed from N to N ′ (when N ′ is interpreted as
a vector in NI

0). In what follows we bound the difference between N ′ and N in
terms of the number of jobs that have arrived in block B. This will then let us
bound the reassignment factor needed by our algorithm.

Lemma 11. Let q be the number of jobs that have arrived in blockB, including
the job that made the algorithm change to the next block. Then, ‖N − N ′‖1 ∈
O(q/ε).

For simplicity, we brake the proof into several lemmas. Recall that I(UB) :=
{`, . . . , u}, and also I(UB′) := {`′, . . . , u′}. As discussed before, for our pur-
poses we can assume that u = u′, and that ` < `′. We must then upper-
bound

∑u
i=`|ni − n′i|. We brake this sum into parts and bound them separately.

Lemma 12. Vectors N and N ′ satisfy
∑u

i=`′+1|ni − n′i| ≤ 1.

Proof. Note that no jobs of processing time (1 + ε)i, with i ∈ {`′ + 1, . . . , u},
were ever rounded or grouped, and thus the only difference between ni and n′i
can be due to the newly arriving job. ut

It remains to bound
∑`′

i=`|ni − n′i|. For this, note that n`′ and n′`′ can only
differ due to the newly arrived job, or the jobs that were smaller than (1+ε)`′ and
were grouped into jobs of size (1+ε)`′ . Moreover, the number of the regrouped
jobs can be no more than the number of jobs before grouping. Therefore,

|n`′ − n′`′ | ≤
`′−1∑
i=`

ni + 1,

and thus,
`′∑

i=`

|ni − n′i| ≤ 2 ·
`′−1∑
i=`

ni + 1.

Lemma 13. The expression
∑`′−1

i=` ni is in O(q/ε).

Proof. Recall that blockB is the block containing instance I. Let I0 be the first
instance of block B (as it was also defined in the algorithm), and let N0 be its

corresponding rounded instance. Also, let A0 and w0 be the values returned by
Algorithm STABLE-AVERAGE when applied to I0.

Recall that q is the number of jobs arriving between I0 and I ′. If x is the
number of jobs smaller than (1+ε)`′ inN0, then

∑`′−1
i=` ni ≤ x+q. We can find

an upperbound on x by noting that Lemma 4 implies w0/2 < q. On the other
hand, in any optimal solution to instance I0, each job smaller than A0 must be
processed on one of the w0 machines not containing huge jobs. Therefore, the
volume of such jobs is bounded by 2A0w0. Since all (grouped) jobs are larger
than ε · UB/σ = 2ε · A0/σ, it holds that x ≤ σw0/ε ≤ 2σq/ε. We finally
conclude that

∑`′−1
i=` ni ≤ x+ q ≤ q(2σ/ε+ 1). ut

Proof (Lemma 11). Collecting the inequalities from the last two lemmas, we
obtain that

u∑
i∈`

|ni − n′i| ≤ 2 ·
`′−1∑
i=`

ni + 2 ≤ 2q(2σ/ε+ 1) + 2 ∈ O(q/ε) .

This concludes the proof. ut

Applying Lemma 11 and the same proof technique as in Theorem 1, we
obtain the following lemma.

Lemma 14. The reassignment potential used to construct S′ bounded from above
by q ·A0 · 2O(1

ε
log2 1

ε
).

Collecting all our results, we can conclude the main result of this paper.

Theorem 2. For the machine covering problem with jobs arriving and depart-
ing online, there exists a (1+ε)-competitive polynomial algorithm with constant
reassignment factor at most 2O(1

ε
log2 1

ε
).

Proof. Consider a fixed block of iterations, and let κ be the number of arriv-
ing/departing jobs in this block, including the job that made the algorithm switch
to the next block. Lemmas 10 and 11 assure that the total reassignment potential
used during this block and to change to the next block is at mostA0κ2O(1

ε
log2 1

ε
),

because q ≤ κ. Since all arriving jobs are larger than ε·OPT ≥ ε·A0/4, we con-
clude that the reassignment factor needed in this block is at most 2O(1

ε
log2 1

ε
).

Moreover, we did not use any reassignment potential accumulated from pre-
vious blocks. We conclude that the reassignment factor of the algorithm is at
most 2O(1

ε
log2 1

ε
). ut

6 Reducing the accumulated reassignment potential

We will devote this chapter to reduce the reassignment potential needed in the
algorithm, so that is always bounded by O(ε) · OPT . This is, as justified by
Lemma 1, best possible. Notice that in the Algorithm ROBUST PTAS, an it-
eration that produces a change of blocks may use the reassignment potential
accumulated during the whole previous block. Thus, the migration factor of this
iteration is not bounded. We can refine the algorithm so that the migration fac-
tor is always bounded by a constant if arriving/departing jobs are larger than
ε · OPT . Therefore, we only need to accumulate reassignment potential due to
the small jobs as explained in Section 2. It is easy to see that the reassignment
potential accumulated due to small arriving jobs is at most O(ε) · OPT . This,
however, does not hold for small jobs that leave the system, since we may need
to accumulate the reassignment potential of jobs with total processing time up
to O(εm) · OPT . Thus, we deal with departing small jobs similarly as to the
job arriving case. We ignore the fact that jobs smaller than ε · OPT leave until
their total size has surpassed ε · OPT . Only then we remove this set of jobs all
at once. For presentation issues, we will first assume that all arriving/departing
jobs are larger than ε · OPT . We will clarify at the end of this section how to
deal with the case of small leaving jobs.

Recall that Lemma 14 shows that the accumulation of the reassignment po-
tential on the interface between block B and the following block is in O(κ) ·
OPT , where κ is the number of iterations in B. Moreover, the reassignment
potential is only needed for regrouping jobs that were smaller than εUB′/σ. The
refinement of our algorithm works by regrouping small jobs along all the κ iter-
ations corresponding to B.

Consider an instance I and, as before, let N be its corresponding rounded
instance, defined over the set of job size indeces I(UB) = {`, . . . , u}. We will
construct N in a slightly different way as before: small jobs are not necessarily
grouped into jobs of size (1 + ε)`, but possibly into larger groups. To this end
we will additionally maintain a vector Ngr = (ngr

i)i∈I(UB), where ngr
i denotes

the number of jobs of size (1 + ε)i in N that correspond to grouped small jobs.
We will do so such that ngr

i = 0 if (1 + ε)i > (1 + ε)`∗ , where (1 + ε)`∗ ∈
O(ε · OPT). This fact is enough to show that the rounding make us loose at
most a 1−O(ε) factor in the objective function.

The following algorithm runs over instance I whenever a big job arrives or
departs. During the algorithm we will use a (big enough) parameterC ∈ O(1/ε)
that we will choose appropriately later.

ROBUST PTAS II

1. Run algorithm STABLE-AVERAGE over I to compute A and w.
2. If variable A0 has not yet been defined or A 6∈ [A0/2, 2A0], then (re)define
I0 ← I and A0 ← A.

3. Using as an upperbound UB = 2A0, define set I(UB) = {`, . . . , u}.
4. If A ≥ A0:

(a) Define `∗ :=
⌈

log1+ε

4εUB

σ

⌉
.

(b) Let N̂ be the rounded instance of the previous iteration. Construct N by
first taking N̂ and adding (removing) the newly arriving (departing) job.

(c) Let T be the number of jobs with size less than (1 + ε)`∗ in N . Remove
min{C, T} (where C is a constant that will be chosen later) many of
these jobs, and regroup them into jobs of size (1 + ε)`∗ . Adjust n`∗ so
that

0 ≤
∑

j:pj≤(1+ε)`∗

pj −
`∗∑
i=`

ni(1 + ε)i ≤ (1 + ε)`∗ . (6)

5. If A < A0:

(a) Let N̂ be the rounded instance of the previous iteration, and N̂gr its
corresponding subinstance of grouped jobs. Construct N by taking N̂
and adding (removing) the newly arriving (departing) job.

(b) Let T be the number of jobs in N̂gr of size strictly larger than (1 + ε)`.
Regroup min{C, T} many of these jobs into jobs of size (1 + ε)`, and
adjust n` so that Equation (6) holds.

6. Define the configuration set K and the ILP [LEX] with right-hand-side
b(N,m). Compute the optimal solution to [LEX], z, and construct it as-
sociated vector N .

As before, note that within a block (i. e., a sequence of iterations where
A0 remains constant) instance N is changed by adding or removing a constant
number of jobs. Thus, we can observe that iteratively applying C times the ar-
gument of Theorem 1 we obtain that we need at most a migration factor of
C · 2O(1

ε
log2 1

ε
). Let us consider now the case where I is the last instance of

some block B and that A > A0. As before, we can assume without loss of
generality that I is nontrivial.

Lemma 15. Let I be the last instance of a block. Assume that I is nontrivial
and that A > A0. Then, we can choose parameter C ∈ O(1/ε) large enough
so that instance N only contains jobs larger or equal than (1 + ε)`∗ .

Proof. Let Ī be the last instance in B so that its stable average Ā satisfies Ā ≤
A0. Also, let q be the number of jobs arriving between instances Ī and I. By
Lemma 4 we know that q + 1 ≥ 2w̄. Let N̄ be the rounded instance of Ī given
by the algorithm, and consider all jobs smaller than (1 + ε)`∗ in N̄ . It is clear
that the total volume of these jobs can be at most 2Āw̄ ≤ 2A0w̄, and thus there
are at most 2A0w̄/(1 + ε)`∗ ∈ O(q/ε). Thus, if we choose C ∈ O(1/ε) large
enough, after q iterations of the algorithm we can remove all jobs smaller than
(1 + ε)`∗ and transform them into jobs of size (1 + ε)`∗ . ut

Then, if I ′ is the instance after I, we can interpret N and N ′ in the same
euclidian space as in last section. The previous lemma ensures that instance
N only contains jobs of size (1 + ε)i where i ∈ I(UB), and that N and N ′

differ in at most a constant number of jobs. Therefore, since all jobs in N are
larger than (1 + ε)`∗ ≥ εUB′/σ, the migration factor necessary to transform
their corresponding optimal solutions must be bounded by 2O(1

ε
log2 1

ε
). We can

similarly deal with the case A < A0. Note that in this case the next instance
after I, instance I ′, must contain one job less than I.

Lemma 16. Assume that I is nontrivial, is the last instance of its block and that
A < A0. Then, we can choose parameter C ∈ O(1/ε) large enough so that all
grouped jobs in N have size (1 + ε)`, i.e., ngr

i = 0 for all i ∈ {`+ 1, . . . , u}.

Proof. Let Ī be the last instance in B so that its stable average Ā satisfies Ā ≥
A0. Also, let q be the number of jobs leaving between instances Ī and I. By
Lemma 4 we know that q + 1 ≥ 2w̄. Moreover, consider all jobs smaller than
(1 + ε)`∗ in N̄ . Recall that all jobs that are grouped in N̄ are smaller than
(1 + ε)`∗ . It is clear that the total volume of these jobs can be at most 2A0w̄,
and thus there are at most 2A0w̄/(1 + ε)`∗ ∈ O(q/ε) such jobs. If we choose
C ∈ O(1/ε) large enough, then q iterations are enough to remove all jobs larger
than (1 + ε)` in N̄gr and transformed them into jobs of size (1 + ε)`. ut

With these two lemmas we directly conclude the following theorem.

Theorem 3. If all arriving and departing jobs are larger than ε · OPT , then
there exists a robust PTAS with constant migration factor. In particular, no re-
assignment factor is ever accumulated.

It remains to discuss how to adapt our algorithm for the case of small depart-
ing jobs. As said before, we only remove jobs smaller than ε ·OPT when their
total processing time surpasses ε · OPT . We can easily modify our algorithm
to work for the case when a set of jobs smaller than ε · OPT leaves the system
together. Indeed, we just need to make sure that in steps 4.b and 5.a we remove

all large jobs from instance N̄ (which can only be constantly many), and then
adjust N so that Equation (6) still holds for the new instance. It is easy to see
that with these modifications instance N is within a (1−O(ε)) factor of OPT ,
and that the reassignment factor is also bounded as before.

Theorem 4. There exists a robust PTAS for the machine covering problem that
accumulates at most O(ε) ·OPT reassignment potential.

7 The minimum makespan problem and beyond

We now briefly discuss how to use our ideas to derive a robust PTAS for the min-
imum makespan problem in the constant reassignment factor scenario. Most of
the techniques derived for the machine covering problem directly carry over,
and therefore we only point out the main differences. Notice that we can also
use the stable average A of the instance as a lower bound on the minimum
makespan. Although A will not be within a constant factor of OPT , it still
holds that removing jobs that are larger than A preserves optimal solutions.
Then, we can define UB := A (which in this case is a lower bound), the set
of indices I(UB) as in Section 4.2, and round jobs so that the processing times
equal (1 + ε)i for some i ∈ I(UB). Computing a (1 + ε)-approximate so-
lution to the rounded instance yields a nearly optimal solution for the origi-
nal problem. Analogously, the set of configurations K can be considered in
the same way. To construct robust solutions, we can also consider the lexico-
graphically minimal vector z = (zk)K∈K , where zk denotes the number of
machines following configuration k. However, we must revert the order given
to the configuration set: we relabel the elements of K := {k1, . . . , k|K|} so that
load(k1) ≥ load(k2) ≥ . . . ≥ load(k|K|) and consider the lexicographically
minimum solution with respect to this order. It is not hard to see that this so-
lution minimizes as much as possible the number of used configurations with
large loads, and therefore it also minimizes the makespan. The same analysis
as in Section 4.2 holds for this case, and thus the constructed solution is indeed
robust. All techniques of Section 5 also carry over without modifications, since
they are mostly based on properties of the stable average A.

Similarly, all our techniques work for a very broad class of problems, where
the objective functions solely depend on the load of each machine. This set
of problems was first considered by Alon, Azar, Woeginger and Yadid [2].
For some function f : R+

0 → R+
0 , we consider the problem of minimizing∑

i∈M f(`i), where `i denotes the load of machine i in the corresponding sched-
ule. In the same way we can define a corresponding maximization problems.

For minimization (resp. maximization) problems, we require that f (resp.
−f) satisfies the following properties:

(i) Function f must be convex: for all 0 ≤ x ≤ y and 0 ≤ ∆ ≤ y − x, it must
hold that f(x+∆) + f(y +∆) ≤ f(x) + f(y).

(ii) For all ε > 0 there exists δ = δ(ε) > 0 so that

∀x, y ≥ 0, |x− y| ≤ x · δ implies |f(x)− f(y)| ≤ ε · |f(x)|.

Let us remark that, for any p > 1, the problem of minimizing the Lp norm of
the machine loads falls into this framework.

Notice that the first property assures that in an optimal solution a job cannot
have starting time Sj if there is a machine with load less than Sj . This ensures
that jobs that are larger than the stable average A will have a machine of their
own in optimal solutions. Then we can remove them with their corresponding
machines and obtain an equivalent instance. Moreover, this property also im-
plies that the load of all the machines in an optimal solution are within a factor
2 of A (see proof of Lemma 2).

On the other hand, for any given ε > 0, the second property ensures that if
we round our instances so that the loads of the machines do not change in more
than a 1 + δ(ε) factor, then the objective function will be within a 1 + ε factor
of the original optimal solution. Notice that all our rounding techniques satisfy
this property.

With this observations it is easy to apply the techniques derive before to
obtain a robust PTAS. The only difference is how to model the objective function
of [LEX]. However, this is trivial since the form of the objective functions that
we consider depends uniquely on the loads of the configurations we use.

Theorem 5. For a given function f : R+
0 → R+

0 , there exists a robust PTAS
with constant reassignment factor for the problem of minimizing (resp. maxi-
mizing)

∑
i∈M f(`i) on parallel machines if f (resp.−f) satisfies properties (i)

and (ii).

References

1. S. Albers. Online algorithms: a survey. Mathematical Programming, 97:3–26, July 2003.
2. N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling on

parallel machines. Journal of Scheduling, 1:55–66, 1998.
3. M. Andrews, M. Goemans, and L. Zhang. Improved bounds for on-line load balancing.

Algorithmica, 23:278–301, 1999.
4. Y. Azar, B. Kalyanasundaram, S. Plotkin, K. R. Pruhs, and O. Waarts. On-Line load balanc-

ing of temporary tasks. Journal of Algorithms, 22:93–110, 1997.
5. M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection.

Journal of Computer and System Sciences, 7:448–461, Aug. 1973.
6. B. Chen, A. van Vliet, and G. J. Woeginger. Lower bounds for randomized online scheduling.

Information Processing Letters, 51:219–222, 1994.

7. L. Epstein and A. Levin. A robust APTAS for the classical bin packing problem. In Au-
tomata, Languages and Programming, pages 214–225. 2006.

8. R. Fleischer and M. Wahl. Online scheduling revisited. Journal of Scheduling, 3:343–353,
2000.

9. D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling
problems theoretical and practical results. Journal of the ACM, 34:144–162, 1987.

10. H. W. Lenstra. Integer programming with a fixed number of variables. Mathematics of
Operations Research, 8:538–548, Nov. 1983.

11. J. F. Rudin III and R. Chandrasekaran. Improved bounds for the online scheduling problem.
SIAM Journal on Computing, 32:717–735, 2003.

12. P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with bounded migration.
Mathematics of Operations Research, 34:481–498, May 2009.

13. A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Chichester,
June 1998.

14. J. Sgall. A lower bound for randomized on-line multiprocessor scheduling. Information
Processing Letters, 63:51–55, 1997.

15. J. Sgall. On-line scheduling — a survey. In A. Fiat and G. J. Woeginger, editors, Online
Algorithms: The State of the Art, volume 1442 of Lecture Notes in Computer Science, pages
196–231. Springer, Berlin, 1998.

16. J. Westbrook. Load balancing for response time. Journal of Algorithms, 35:1–16, Apr. 2000.
17. G. J. Woeginger. A polynomial-time approximation scheme for maximizing the minimum

machine completion time. Operations Research Letters, 20:149–154, May 1997.

A Computing lower bounds in linear time

In this section we refine the algorithm STABLE-AVERAGE to run in linear time.
The general idea is to use a binary search approach. For the description of the
algorithm we use the following notation. Let Q := {q1, . . . , qr} the set of all
different processing times, and for each q ∈ Q, we denote J≤q := {j ∈ J :
pj ≤ q}. Also, we define,

f(q) :=
p(J≤q)

m− |J \ J≤q|
.

Notice that f(q) can be equal to∞ if m = |J \ J≤q|. Nonetheless we are only
interested in values of f(q) when |J \ J≤q| < m. With the notation previously
introduced, algorithm Stable-Average can be implemented as follows.

1. Order the processing times so that qi1 ≤ qi2 ≤ . . . ≤ qir .
2. For each k = r, . . . , 1, check whether qik ≤ f(qik). If it does, define p∗ :=
qik and return f(p∗). Otherwise, keep iterating.

It is not hard to see that this algorithm return the same value A as algorithm
Stable-Average, i.e., A = f(p∗). To avoid ordering the processing times, and
therefore reduce the runnining time of the algorithm, we instead use a binary
search approach. Notice that alternatively to this algorithm, we can define p∗ as
the largest processing time of a job so that p∗ ≤ f(p∗) and q > f(q) for all
q ∈ Q with q ≥ p∗. This already suggests the following algorithm.
FAST-STABLE-AVERAGE

1. Initilize ` ∈ Q and u ∈ Q as the smallest and largest values in Q respec-
tively.

2. While ` 6= u:
(a) Compute the median q̄ of the set {q : ` ≤ q ≤ u}. Note: For a given

set of n numbers, we say that its median is the b(n + 1)/2c-th largest
number in the set.

(b) If q̄ = ` then go to Step (3).
(c) Compute f(q̄).
(d) If q̄ > f(q̄) > 0, then redefine u← q̄. Else, `← q̄.

3. Define p′ ← `, and return f(p′).

We first discuss the correctness of the algorithm, i.e., that p′ = p∗, and
afterward we prove that it can be implemented to run in linear time. For the
analisys we assume that q1 < q2 < . . . < qr. Notice that we have not used this
fact during the algorithm itself. The crucial observation is to note that if qi = p∗

or qi = p′, the following three properties are satisfied:

(i) qi ≤ f(qi),

(ii) qi+1 > f(qi+1),

(iii) f(qi) ≥ 0.

Therefore, the correctness of the algorithm follows from the next lemma.

Lemma 17. There exists a unique value q ∈ Q satisfying Properties (i), (ii)
and (iii).

To show this lemma we first need the following technical result. Figure 2
shows the claims of this next lemma.

q

f(q)
f(q) = q

qrqr−1. . .p∗

{q : J≤q < m}

Fig. 2: Behaviour of function f .

Lemma 18. For each qi ∈ Q so that |J \J≤qi−1 | < m, we have that qi ≤ f(qi)
if and only if f(qi) ≤ f(qi−1).

Proof. To simplify the computations we introduce the following notation. Let
Ji := {j ∈ J : pj = qi}, si := |Ji|, and mi := m − |J \ J≤qi |. Notice that
mi − si > 0, since mi − si = m − |J \ J≤qi−1 |. We then have the following

sequence of equivalences

f(qi−1) ≥ f(qi)
p(J≤qi−1)
mi − si

≥ p(J≤qi)
mi

p(J≤qi)
mi − si

≥ p(J≤qi)
mi

+
p(Ji)
mi − si

p(J≤qi)
(

1
mi − si

− 1
mi

)
≥ p(Ji)
mi − si

p(J≤qi)
si

mi
≥ p(Ji) = si · qi

f(qi) ≥ qi.

ut

Proof (Proof of Lemma 17). Consider by contradiction that there exists qs, qt ∈
Q satisfying Properties (i), (ii) and (iii) with qs < qt. Notice that by Property (i),
we have that qt ≤ f(qt), and thus by the previous lemma, f(qt−1) ≥ f(qt) ≥
qt > qt−1. Applying Lemma 18 once again for qt−1, we obtain that f(qt−2) ≥
f(qt−1) ≥ qt−1 > qt−2. Iterating this argument, we obtain that f(qs+1) > qs+1,
which contradicts Property (ii) for qs. ut

We have proved the following theorem.

Theorem 6. Algorithms STABLE-AVERAGE and FAST-STABLE-AVERAGE re-
turns the same output.

Finally, we must show that LOWERBOUND finishes in linear time

Theorem 7. The running time of Algorithm LOWERBOUND is O(n).

Proof. We show that the k-th iteration of Step (2) of the algorithm can be im-
plemented to run in O(n/2k). By summing over all iterations this proves the
claim. Indeed, since in every iteration we reduce the set {q : ` ≤ q ≤ u} at
least by half, then this set has at most n/2k elements in the k-th iteration. We
conclude that Step (2.a) takes time O(n/2k) since it is possible to compute the
median in linear time [5]. For computing Step (2.b), notice that we have already
computed f(`) in previous iterations, and thus we assume that we store its val-
ues. Moreover, it is clear than computing P := p({q : ` < q ≤ p̄}) takes time
O(n/2k). We thus conclude by noting that

f(p̄) :=
f(`)(m− |J \ J≤`|) + P

m− |J \ J≤p̄|
.

ut

	A Robust PTAS for Machine Covering and Packing
	Martin Skutella and José Verschae

