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Abstract

Conformal mesh refinement has gained much attention as a necessary preprocessing step for
the finite element method in the computer-aided design of machines, vehicles, and many
other technical devices. For many applications, such as torsion problems and crash sim-
ulations, it is important to have mesh refinements into quadrilaterals. In this paper, we
consider the problem of constructing a minimum-cardinality conformal mesh refinement into
quadrilaterals. However, this problem is NP-hard, which motivates the search for good
approximations. The previously best known performance guarantee has been achieved by a
linear-time algorithm with a factor of 4. We give improved approximation algorithms. In
particular, for meshes without so-called folding edges, we now present a 1.867—approximation
algorithm. This algorithm requires O(n mlogn) time, where n is the number of polygons
and m the number of edges in the mesh. The asymptotic complexity of the latter algorithm is
dominated by solving a T-join, or equivalently, a minimum—cost perfect b—matching problem
in a certain variant of the dual graph of the mesh. If a mesh without foldings corresponds to
a planar graph, the running time can be further reduced to O(n®/?logn) by an application
of the planar separator theorem.

1 Introduction

In recent years, the conformal refinement of finite element meshes has gained much attention as
a necessary preprocessing step for the finite element method in the computer-aided design of ma-
chines, vehicles, and many other technical devices. Much work has been done on decompositions
into triangles; see [Ho88] for a survey. However, for many applications, such as torsion problems
and crash simulations, it is important to have mesh refinements into quadrilaterals [ZT89]. See
also [Tou95] for a systematic survey on quadrangulations.

A polygon is a closed and connected region in the plane or, more generally, of a smooth
surface in the three-dimensional space, bounded by a finite, closed sequence of straight line
segments (edges). The endpoints of the line segments or curves are the vertices. A polygon is
convex if the internal angle at each vertex is at most m. A mesh is a set of openly disjoint,
convex polygons (Fig. 1). A mesh may contain folding edges, that is, edges incident to more
than two polygons (Fig. 5). We call a mesh homogeneous if it does not contain folding edges.

tA preliminary, extended abstract appears in Proceedings of the 5th Annual European Symposium on Algo-
rithms, ESA’97, with only a 2-approximation instead of the 1.867-approximation for meshes without foldings.
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Figure 1: A coarse mesh modeling a chassis Figure 2: The conformal refinement pro-
of a car. This mesh has been constructed by duced by the algorithm in [MMW95,
a German car company. MMW96].

In a conformal refinement of a mesh, each polygon is decomposed into strictly convex quadri-
laterals, and if two quadrilaterals share more than a corner, they share exactly one edge as a
whole (Fig. 2).

Workpieces are modeled interactively as meshes; see Fig. 1 for an example of an instance
taken from practice. However, such meshes are usually very coarse and not conformal. To be
suitable for the finite element method, the mesh has to be refined into a conformal mesh in
a preprocessing step. Previous work puts emphasis on the shape of the quadrilaterals (angles
should neither be too small nor too large; the aspect ratio, i.e. the ratio between the largest
and the smallest side of a quadrilateral, should be small). This is important for the numerical
accuracy in the later iterations of the cyclic design process, when the model has become mature
and exact results are required for fine-tuning.

In this paper now, we focus on the early stages of this process, where the model is designed
only roughly, and the numerical accuracy must only suffice to indicate the general tendency.
Hence, the development time is crucial, which in turn is determined by the run time of the finite
element method. This raises the following problem: Given a mesh, find a conformal refinement
with a minimum number of quadrilaterals.

Until recently, work on this problem (cf. [MMW95, MMW96] and [TA93]) has considered the
number of quadrilaterals only heuristically or not at all. Usually, a template model is used, which
restricts the possibilities of decomposing a single polygon to a few classes of templates. These
templates are designed to achieve good angles and aspect ratios heuristically. For example,
the most important template for quadrangular polygons is a (p x ¢)—grid, where p and ¢ are
variable. However, this template uses p - ¢ quadrilaterals, which is quadratic in size compared
with minimal quadrangulations of size O(p + q) (easy to see). Therefore, algorithms often refine
workpieces into too many quadrilaterals, which makes the finite element method very costly or
even infeasible.

Unfortunately, it is hard to find conformal decompositions into a minimum number of quadri-
laterals:

Theorem 1.1 [MW96] The minimum cardinality conformal mesh refinement problem is NP
hard even for homogeneous meshes.

For single polygons, however, this problem is efficiently solvable. More precisely, two variants
of the problem can be solved in linear time, namely the case which allows to insert additional
vertices to arbitrary positions and the case which allows additional vertices only into the interior
of the polygon, but not on its boundary, i.e. it forbids to subdivide edges.

In the mesh refinement problem, the polygons cannot be refined independently since we
have to ensure that the mesh is conformal. Hence, we carefully distinguish between conformal
refinements, where vertices can be inserted at arbitrary positions, and conformal decompositions
(see Fig. 3 for an example). By a conformal decomposition of a single polygon we will always
mean the variant which does not allow to subdivide edges but to place vertices into the interior
of the polygon (see Fig. 4). The following theorem holds:



Figure 3: A triangular-shaped convex polygon with four vertices (left); an optimal refinement,
which places two extra vertices on the boundary (middle); and an optimal decomposition, where
no additional vertices on the boundary are allowed (right).

Theorem 1.2 [MW96] There is a linear—time algorithm which constructs a minimal conformal
decomposition of a polygon into strictly convezr quadrilaterals.

In Section 3 we extend the work of [MW96] and give a characterization of the structure of
minimal conformal refinements. Insight into this structure enables us to design also a linear—time
algorithm for minimal conformal refinements of single polygons. This is not only interesting from
the structural point of view, it also allows us to compute lower bounds for the mesh refinement
problem in an efficient way.

There is also a well-known (see, for example [Joe95]), but important characterization of those
polygons which can be decomposed into strictly convex quadrilaterals:

Lemma 1.3 A simple, not necessarily convexr polygon P admits a conformal decomposition if
and only if the number of vertices of P is even.

Lemma 1.3 and Theorem 1.2 give rise to the following two-stage approach: First, subdivide
a couple of edges such that each polygon achieves an even number of vertices; second, refine
each polygon separately according to the algorithm mentioned in Theorem 1.2. Clearly, the
first stage determines the approximation factor. In [MW96], each edge of the mesh is subdi-
vided exactly once, which trivially makes all polygons even. It is also proved in [MW96] that
this simple strategy already yields a 4—approximation. The analysis of this simple strategy is
tight: for a conformal mesh of quadrilaterals, this algorithm obviously takes four times as many
quadrilaterals as the optimum. To improve upon this performance guarantee, we apply a more
sophisticated strategy.

A few related problems have found some attention. Note, for example, that it is important
that polygons are by definition convex polygons, as Lubiw [Lub85] has shown that both problems,
minimum refinement and minimum decomposition, are N'P-hard for single, but non-convex
polygons with holes. To the best of our knowledge, the complexity status of the refinement
problem for non-convex polygons without holes is still open. Everett et al. [ELOSU92] give
lower and upper bounds on the number of quadrilaterals in a conformal refinement of simple, not
necessarily convex polygons (with and without holes), but not on decompositions. Refs. [Sac82,
ST81] investigate perfect decompositions of (star-shaped) rectilinear polygons into non—strictly
convex quadrilaterals, and [Lub85] considers perfect decompositions of non-convex polygons but
even allows overlapping internal edges. See [Tou95] for a systematic survey.

In Sect. 5, we will present the main results of this paper:

e There is a linear—time approximation algorithm which exceeds ratio 2 by an additive term
of at most A(M). This parameter A(M) (to be defined below in Def. 2.1) depends on
the mesh structure, but for all practical instances that we know of, A(M) is significantly
smaller than the minimal number of quadrilaterals in a conformal refinement. Hence,
for such instances, this yields a 3—approximation. (For general instances, this algorithm
always guarantees a 4-approximation.)



e As an immediate consequence, this yields a linear-time 3—approximation for homogeneous
meshes. (This is not true for the algorithm in [MW96].)

e For homogeneous meshes, we can even do better, namely, we get a 1.867—-approximation
algorithm which runs in O(nmlogn) time, where n (m) is the number of polygons (edges)
in the mesh. If a homogeneous mesh corresponds to a planar graph, the running time can
be further reduced to C’)(n3/2 logn) by an application of the planar separator theorem.

The asymptotic complexity of the algorithm for homogeneous meshes is dominated by solving
a T—join problem, or equivalently, a minimum-cost perfect b-matching problem (see the mono-
graph by Derigs [Der88] or the survey by Gerards [Ger95] for matching problems) in a certain
variant on the dual graph of the mesh. In our application, the algorithm from [Gab83] requires
O(nmlogn) time. Usually, (homogeneous) meshes are sparse, i.e. they have only m = O(n)
edges.

All our results also carry directly over to the following, slightly more general variant on
the minimum mesh refinement problem. Suppose that the given mesh is too coarse to expect
reasonable results from the finite element method, but a finite element error estimation gives
lower bounds on the mesh density which should be achieved. More precisely, suppose that these
lower bounds on the mesh density are expressed as lower bounds on the number of vertices which
have to be placed on the original edges in a feasible refinement. (There are CAD packages which
pursue this strategy.) The general problem is to find a conformal refinement which respects
these lower bounds, but minimizes the number of quadrilaterals.

The rest of the paper is organized as follows. In Section 2, we start with some prelimi-
naries and introduce further terminology. Then, in Section 3 we review a characterization of
minimal decompositions of polygons. Based on that, as mentioned above, we also give a new
characterization of the structure of minimal refinements of polygons.

In Section 4 we present two combinatorial results (cf. Lemma 4.1 and Lemma 4.3). Roughly
speaking, these results mean that the minimum number of quadrilaterals needed for a decom-
position of a polygon does not increase exorbitantly, if each edge is subdivided at most once.
The proofs of Lemmas 4.1 and 4.3 are quite involved and somewhat technical. In Section 5, we
present the new approximation algorithms and prove their performance guarantees. Finally, we
conclude with further remarks.

2 Preliminaries and Further Definitions

Let P = {Py, P,,...,P,} be the set of polygons forming the mesh. These polygons are convex,
but not necessarily strictly convex. Two polygons are neighbored if they have an interval of
the boundary in common which has strictly positive length. These neighborhood relationships
induce an undirected graph G = (V, E), which is embedded on the surface approximated by
the mesh and whose faces are the polygons. More precisely, V' consists of the corners of the
polygons. If a corner of a polygon also belongs to the interior of a side of another polygon, it
subdivides this side. Hence, we may identify common intervals of neighbored sides of polygons
with each other, and E consists of these intervals after identification.

Note that the graph G of a mesh need not be planar; for example, a mesh approximating
the surface of a torus has genus one. The set of all folding edges that are incident to exactly the
same homogeneous components is called a folding.

For an edge e; € F, let E; be the set of all those polygons which are incident to e;. A combina-
torial description of a mesh consists of the graph G and the hypergraph H = (P,{E1,...,En})
with vertex set P and edge set {E1,..., E,;,}. We will often identify a mesh with its combina-
torial description.



Figure 4: A convex polygon with 7 corners Figure 5: A small mesh with three homo-
and 16 vertices and a conformal decomposi- geneous components and one folding, which
tion with 7 additional, internal vertices. (The consists of five folding edges. The corre-
decomposition is not minimal.) sponding hypergraph has 13 edges of degree

one (boundary edges), 4 hyperedges of de-
gree 2, and 5 hyperedges of degree 3.

A non-folding path in H is a path between two polygons P, P, € P which contains only
hyperedges of cardinality two, i.e. only such hyperedges which belong to exactly two polygons.
Being connected by a non-folding path is an equivalence relation on the set of polygons. Its
equivalence classes are exactly the homogeneous components of a mesh. For a mesh G = (V| E)
let Gi,...,G.p) denote the homogeneous components, and ¢(P) the number of components.
The degree of an edge in E is the number of incident polygons. The boundary of a mesh is the
set of all hyperedges with degree one (the boundary edges).

Since all folding edges within a folding are incident to exactly the same homogeneous com-
ponents, the degree of a folding is well defined. Let D(M) denote the total sum of the degrees
of all foldings that consist of an odd number of folding edges each. This allows us to define the
parameter A(M) which appears in the performance guarantee we can achieve for meshes, in
general:

Definition 2.1 A(M) := D(M) + |P| — ¢(P).

Empirically, the mesh parameter A(M) is fairly small. In a whole bunch of real-world ex-
amples, which stem from the German car industry, the average number of odd foldings per
homogeneous component is less than three, and always smaller than the minimum number of
quadrilaterals needed for that component. (This means that we guarantee a 3—approximation
for such instances from practice.) In fact, it seems hard to imagine a non-pathological instance,
where A(M) is larger than the minimum number of quadrilaterals in an optimal mesh refine-
ment.

A vertex of a convex polygon is a corner if its internal angle is strictly less than 7. An
interval of a polygon P is a path of edges on its boundary. A segment S is an interval between
two successive corners of P.

A conformal decomposition of P is usually identified with the planar, embedded graph Gp =
(V, E) whose outer face is P and whose internal faces are the quadrilaterals. Let ¢(G) denote
the number of internal, quadrangular faces. Let G* = (V*, E*) be the variant on the dual graph
which arises by removing the vertex corresponding to the outer face of Gp. We call a conformal
decomposition of a convex polygon P perfect if it has no vertices other than P.

We will denote a polygon by the counterclockwise sequence of the lengths of its segments. For
example, (1,1,1,1) denotes the strictly convex quadrilateral, (1,1,2) = (1,2,1) = (2,1,1) the
quadrilateral degenerated to a triangle (see Fig. 3), and (4,1,2,3,2,2,2) = (1,2,3,2,2,2,4) =

- the polygon in Fig. 4. This is justified by the following observation (cf. Lemma 3.4 in



[MW96]): If two polygons P; and P, have the same such sequence (up to cyclic shifts), then every
graph of a conformal decomposition for P; is also the graph of some conformal decomposition
for P, and vice versa. For brevity, we say that a polygon is even (odd) if it has an even (odd)
number of edges.

For a convex polygon P with an even number of vertices, min(P) denotes the minimum
number of quadrilaterals required by any conformal decomposition of P. For an arbitrary
convex polygon P with edge set Ep, a mapping Xp : Ep — Ny is called feasible if ) . Xp(e)
has the same parity as Fp. In particular, if | Ep| is even, Xp = 0 is possible, too. For simplicity,
we will usually write X instead of Xp, as the dependence from the polygon P should be clear
from the context.

The polygon Px is constructed from P by subdividing each edge e € Ep exactly X(e)
times. Hence, X feasible means that Px admits a conformal decomposition. Moreover, Min(P)
denotes the minimum number of quadrilaterals in any conformal decomposition of any polygon
Px, Min(P) := min{q(G) | G conformal decomposition of Px, X : Ep — Ny feasible} . In other
words, Min(P) is the minimum number of quadrilaterals in any conformal refinement of the
polygon P. For a (feasible) mapping X, we denote |X| =3 .p X(e).

3 The Structure of Minimal Decompositions and Refinements
of Polygons

This section first briefly reviews a characterization of the structure of minimal decompositions
of polygons, given in [MW96]. Based on these results we can also characterize the structure of
minimal refinements. Finally, the knowledge of this structure enables us to design a linear—time
algorithm for minimal refinements.

We need some additional terminology. For a conformal decomposition G = Gp = (V, E) of
polygon P, recall the definition of G* from Section 2. FKach degree—one vertex v* of G* points
to a trivial segment of P. We will sometimes identify such a vertex with this trivial segment.

Let i(G) denote the number of internal vertices, that is, the members of V' that do not lie
on P. With the help of Euler’s formula it is easy to see, that ¢(G) and i(G) are related via

9(G) =i(G) + [Ep[/2 - 1, (1)

where |Ep| is the number of edges of P.

The graph K 3 is the complete bipartite graph on 143 vertices. We use the term subdivision
of K3 when each edge of the K 3 is replaced by a path of arbitrary length.

An interval on a polygon P is a path on its boundary. An interval is trivial if it consists of
exactly one edge of P. A segment S is an interval between two successive corners of P. Let e;
and e be two different edges of P. Then I[e, es] denotes the interval counterclockwise from e;
to e9, including neither ey nor es. The length L(I) of an interval I is the number of its edges.
Moreover, K(I) denotes the maximum size of a choice of strictly convex internal vertices of I
such that no two of them are neighbored on P. We often denote (L —2K)(I) := L(I)—2- K(I).
Note that (L —2K)(I) is always nonnegative.

Lemmas 3.1 and 3.3 first characterize minimal decompositions of perfect polygons, whereas
Lemma 3.6 treats the general case. Recall that we call a polygon perfect if it has a decomposition
without additional vertices. This implies that the polygon is even.

Lemma 3.1 [MW96] Let P be an even polygon with exactly two trivial segments e; and ea,
and let Iy := I[e1,es] and Iy := I[es,e1]. Without loss of generality we have L(I1) > L(I2).
Then P is perfectly decomposable if and only if (L —2K)(I1) < L(I3). The dual graph G* of a
perfect decomposition is a path with leaves e1 and es.



In Lemma 3.3, we assume the following scenario.

Scenario 3.2 Let P be an even polygon with at least three trivial segments. Let e1, eo, and eg
be three trivial segments such that the counterclockwise order around P is e; < es < e3 < ej.
Let I := Iley, eq], Iy := I[ea, e3], I3 := Iles,e1], and w.l.o.g. L(I1) > L(I3) and L(I1) > L(I3).
Assume that L(Iy) is minimum subject to all these conditions.

Lemma 3.3 [MW96] In Scenario 3.2, P is perfectly decomposable if and only if (L—2K)(I;) <
L(Iy) + L(I3) + 1. In this case, there is a perfect decomposition such that either G* is a path
from ey to ez, or G* is a subdivision of K3 with leaves ey, ez, and e3.

Remark 3.4 If all conditions of Scenario 3.2 are fulfilled, with the only exception that L(Iy) is
not minimum, but (L —2K)(I;) < L(I3)+ L(I3)+1 holds, then P is perfectly decomposable and
has a decomposition of the structure in Lemma 3.3. For that purpose, it is not necessary that
L(L) is minimum.

It is useful to extend the notion of perfectness also to odd polygons: If |Ep| is odd, the
polygon P is said to be perfect if one additional vertex on the boundary suffices to allow for a
perfect decomposition of the resulting polygon P’.

Lemma 3.5 There is a linear—time algorithm that tests whether a given polygon P is perfect.
Moreover, if the polygon is odd, we can determine in the same time complexity all those edges
for which a single subdivision allows a perfect decomposition.

Proof: Lemma 3.1 immediately translates into a linear—time algorithm for polygons with exactly
two trivial segments. (If the polygon is odd, one additional point is placed on the shorter interval
between the two trivial segments.)

So consider the case that P has more than two trivial segments, and first the case that P
is even. Because of Lemma 3.3, we have to find trivial segments e, es and e3 as described in
Scenario 3.2. In [MW96] it is shown how this can be done in linear time. Moreover, the proof
of Lemma 3.3 also shows how to construct the perfect decomposition if P is even and if the
precondition (L — 2K)(I1) < L(Iy) + L(I3) + 1 is fulfilled.

This establishes the lemma if P is even. Hence, assume now that P is odd, and that we have
determined e, ey and ez according to Scenario 3.2. As the polygon P = (1,1,1) is obviously
not perfect, we may assume that |Ep| > 4.

First we check whether subdividing one of ey, es or e3 allows for a perfect decomposition.
Certainly this can be done in linear time. To check the other edges, we apply a case distinction.

Case I: L(Il) = L(IQ) or L(Il) = L(I3)
Assume without loss of generality that L(I;) = L(I3). If we place one additional point on
I, to get the interval I] in P’, then L(I{) > L(I3) and L(I{) > L(I3). In addition, we certainly
have
(L —2K)(I) < L(I}) = L(I1) + 1 < L(I) + L(I3) + 1.

Hence, by Lemma 3.3 and the following remark, P’ is perfect. A similar argument holds if one
additional point is placed either on Iy or on I3. In any case, the resulting polygon is perfect
(even if L(I5) > L(Iy) or L(I3) > L(I;) afterwards).

Case II: L(I;) > L(Iy) and L(Iy) > L(I3).
In this case, we test whether (L —2K)(I;) < L(I2)+ L(I3) +2 holds. In the affirmative case,
we may place one additional point on any edge of Is or I3 and the resulting polygon is perfect.



Figure 6: The first class of cut components in
Lemma 3.6(2). The solid lines belong to P,

and the dashed lines are internal edges. Only Figure 7: The five smallest cut components of
the structure of the graph matters; the con- the second class. The definition of the whole
crete lengths and angles are only exemplary. (infinite) class might be obvious.

Otherwise, the resulting polygon is certainly not perfect if one edge of I5 or I3 is subdivided.
(Note that the triple e, es, and e3 according to Scenario 3.2 would be the same and still
L(I1) > L(I,), L(I3).) In particular, we have that L(I;) > L(I2) + L(I3) + 2. This implies that
there is no trivial segment e4 C I, as otherwise the choice e, e4 and es would lead to a strictly
shorter largest interval and therefore to a contradiction to the choice of our triple of segments.
Hence, any placement of an additional point on I to get I} would not change the choice of our
triple e1, eo and ez, and L(I}) is still minimal for P'. As K(I}) < K(I;) + 1, we have

(L —2K)(I!) > (L — 2K)(I1) — 1 > L(Iy) + L(I3) + 1.

This implies that P’ is not perfect either if we subdivide an edge of I.

It remains to consider the possibilities to subdivide an edge of Iy if (L — 2K)([1) < L(I2) +
L(I3) + 2 holds. In a single pass along I; we have to check for each edge of I; individually
whether we have (L —2K)(I{) < L(I2) + L(I3) + 1 if I] is obtained from I; by subdividing this
edge. (Note that we can evaluate K(I]) in constant time after a linear time preprocessing for
K(I1).) In the affirmative case, we know that this subdivision makes the polygon perfect. In
the negative case, the same arguments as in the previous paragraph show that this edge cannot
be subdivided to yield a perfect decomposition. This completes the case distinction. O

Let G = (V,E) be an undirected planar, embedded graph. An area component of G is
a subgraph G’ induced by a connected component of G*. More precisely, G’ consists of all
vertices and edges incident to the polygons that correspond to this component of G*. An area
decomposition of G is a collection of area components such that the inducing components of G*
partition all vertices in V*. Intuitively, this means that the internal faces of G are partitioned
and covered by closed, but openly disjoint, connected areas.

Lemma 3.6 [MW96] For even P ¢ {(2,1,1), (4,2,2), (4,3,3), (3,3,3,3)}, there is a confor-
mal decomposition G with minimum q(G) such that there is an area decomposition of G with
the following properties:

1. The area decomposition consists of at most four area components.

2. All area components except one are isomorphic to one of the components depicted in Figs. 6
and 7. These area components are henceforth called the cut components.

3. The remaining area component is outerplanar. This area component is henceforth called
the core component.

4. No two cut components share an edge.
5. All cut components except at most one are of type (c), (d), or (e) in Fig. 6.
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Figure 8: How to remove cut components of type (a) and (b) in Fig. 6 or Fig. 7 by insertion of
additional vertices on the boundary.

6. If a cut component of type (a) or (b) in Fig. 6 or a cut component in Fig. 7 occurs, the
core component admits a path decomposition.

7. If a cut component of the type in Fig. 7 occurs, the area decomposition contains at most
two cut components; if a cut component of type (a) or (b) in Fig. 6 occurs, this is the only
cut component.

The structure of minimal refinements is quite similar to that of minimal decompositions:

Lemma 3.7 For P ¢ {(1,1,1), (2,1,1), (4,2,2), (4,3,3), (3,3,3,3)}, there is a conformal re-
finement G with minimum q(G) such that there is an area decomposition of G with the following
properties:

1. The area decomposition consists of at most four area components.

2. All area components except one are isomorphic to one of type (c), (d), or (e) as depicted
in Fig. 6. These area components are henceforth called the cut components.

3. The remaining area component is outerplanar. This area component is henceforth called
the core component.

4. No two cut components share an edge.

5. If more than one additional vertex is placed on the boundary of P, then the core component
admits a path decomposition.

6. If the core component admits a path decomposition with leaves ey and ea, then the additional
vertices which are placed on the core component either all belong to the interval I} =
I[e1, es] or they belong all to Iy := I[eq, e1].

Remark 3.8 Note that four area components are sometimes necessary, consider for example
P = (8,2,8,2,8,2), which uses three components of type (c) in both its optimal decomposition
and refinement.

Proof of Lemma 3.7: Let Y : Ep — Ny be optimal, that is, Min(P) = min(Py), and
let |Y| be maximal among all minimal refinements. It is easily checked that Py = P, for
Py € {(4,2,2), (4,3,3), (3,3,3,3)}. Moreover, P = (1,1,1) or P = (2,1,1) have optimal
decompositions with Py = (2,2,2), and are explicitly mentioned as exceptions. Hence, in the
following, we can assume that none of the exceptions in Lemma 3.6 occurs. In particular, there
is an optimal decomposition G of Py which has an area decomposition of the form claimed in
Lemma 3.6. This immediately establishes the properties (1), (3) and (4).

Property (2): If G has an area component of type (a), (b) or as depicted in Fig. 7, this
either contradicts optimality or the choice of Y, as the following modifications will show (see
also Fig. 8).



Obviously, G has no area component of type (a), as otherwise we may place the two internal
vertices on the boundary of P and get a strictly better solution. Next consider an area component
of type (b). By Lemmas B.8 and B.9 in [MW96], the internal vertex of such a component can
be assumed to have degree three. But with the help of two additional vertices on the boundary,
we can always avoid the internal vertex, and thereby get an optimal solution with |Y'| = |Y|+2,
unless Py = (2,2,1,1). But note that for the optimal solution to Py = (2,2,1,1), there is
an area decomposition with a single cut component of type (c). Similarly, a cut component as
depicted in Fig. 7 can be converted into a cut component of type (d) and a path using 2k — 2
additional vertices for some k > 1. Altogether, these arguments yield property (2).

Property (5): Suppose that |Y| > 1 and the core component, denoted by G', with outer
face P’ does not allow for a path decomposition. Hence, G'* must be a subdivision of K 3.
We may assume that the trivial segments e, eo and e3 are the leaves in counterclockwise order
around P', and I := I[e1,es], Iy := I[es, e3], I3 := I[eg, e1] on P', fulfilling Scenario 3.2. Hence,
we have L(I;) > L(I3) and L(I;) > L(I3). Lemma 3.3 implies (L —2K)(Iy) < L(I3)+ L(I3) + 1.
Moreover, we even have L(Iy) < L(I2) + L(I3) + 1, as otherwise a path solution with leaves e;
and eq exists. Clearly, G'* being a subdivision of K; 3 and our assumption that there is no path
solution for P' implies that L(Iy), L(I2), L(I3) > 2.

Note that an additional vertex can never be a corner of Py. Moreover, it would be strictly
suboptimal if an additional vertex creates the segment of length 2 (i.e. the horizontal segment in
Fig. 6) for a cut component of type (c), or the segment of length 3 (i.e. the horizontal segment
in Fig. 6) for a cut component of type (e). (Here we use again, that by Lemmas B.8 and B.9
in [MW96], the internal vertex of such components can be assumed to have degree three.) We
claim that we may assume that at least two additional vertices belong to P’, call them v; and
V9.

To see this claim, observe that we can avoid to place an additional vertex adjacent to a
corner which is cut away be a component of type (c) or (d). This can be done by an exchange
with a vertex from P’ of the same segment, unless all other vertices of this segment are already
additional vertices. Both possibilities yield the claim.

So consider now the polygon P” which we had obtained if neither v nor v, had been inserted.
Let I7, I} and Ij be the intervals of P” corresponding to I, I and I3, respectively. If we show
that P” is still perfect, this contradicts optimality of the refinement Py, and property (5) follows.

We consider three different cases separately.

Case I: v1 and v9 belong to ;.
We have L(I!) = L(I\) — 2, L(I}) = L(L) and L(I}) = L(I3). If L(I!) > L(I}) and
L(I{) > L(I}), then
(L-2K)(I}) < L(I}) < L(I,) < L(Iy) + L(I3) + 1 = L(I}) + L(I}) + 1
implies that P" is perfect by Lemma 3.3.
Otherwise, we may assume that L(I}) > L(I}) and L(I}) > L(I}). But then
(L = 2K)(I) < L(Iy) = L(Iy) < L(L) = L(I}) + 2 < L([1) + L(I3) + 2.

As L(I1) + L(I}) + L(I}) is odd, the inequality can be strengthened to (L — 2K)(I}) < L(I}) +
L(I) + 1. Hence, P" is perfect.

Case II: vy but not vy belongs to I.

Now we may assume that L(I{) = L(I1) — 1, L(I}) = L(Iy) — 1 and L(I}) = L(I3). Then
we have L(I{) > L(I}). If we also have L(I]) > L(I}), then P" is perfect because of L(I]) <
L(IY) + L(I,) + 1.
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Otherwise, we have L(I}) = L(I4) — 1. But then L(I}) < L(I}) + L(I}) + 2. As L(I}) +
L(I5) + L(I3) is odd, we even obtain L(I3) < L(I5) + L(I{) + 1. This implies that P" is perfect.

Case III: Neither vy nor v9 belong to I.

In this case, we have L(I}) = L(I;) and L(I}) + L(I}) = L(I3) + L(I3) — 2.

Thus we have L(I{) = L(I;) < L(Iy) + L(I3) + 1 = L(I}) + L(I}) + 3. The same parity
argument as above yields L(I{) < L(I}) + L(I}) + 1, and so P" is perfect. This finishes the case
distinction.

Property (6): The statement is trivially fulfilled if |Y| < 2. Assume without loss of
generality that L(I;) > L(Iz). By Lemma 3.1, we have (L — 2K)(I;) < L(ls).

Let |Y1| be the number of additional points on I;. We are done if |Y;| = 0. Again, we apply
a case distinction:

Case I: |Y1| 2 L(Il) - L(IQ)

Let k := L(I;) — L(I3). Delete k of the additional vertices from I to get I{. Then
L(I}) = L(I3), which means that there is a path solution with a strictly smaller number of
quadrilaterals. This contradicts optimality of Py-.

Case II: 2-1Y1| > L(I) — L(I3) > |Y1]-

Define k := L(I1) — |Y1| — L(I2) > 0. In this case, delete all |Y;| additional vertices from I
to get I7. As k < |Y1|, we may reinsert k of these vertices into Iy to get I}. By the choice of
k, we now have L(I{) = L(I}). Hence, the modified core polygon has a path solution with not

more quadrilaterals than the original one, but has no additional vertex placed on the interval
I.

Case III: 2-|Y1| < L(I;) — L(I3).

In this case, we also delete all |Y;| additional vertices from Iy to get I7, and reinsert all of
them into I to get I,. Hence, we have L(I) = L(I;) — |Yi1| and L(I}) = L(I2) + |Y1]. The
inequality defining Case III yields that L(I]) > L(I}). Furthermore, we have

L(I) -2 -K(I) = L(h)-MW|-2-K(I)
< L(L)+2-K(I) —|vi| - 2- K(I})
< L) +2-K(I) —2- V1| —2- K(I})
< L(Iy).

The last inequality follows from the fact that K(I;) < K(I}) + |Y1|. By Lemma 3.1, the
modified core polygon admits a path solution. This establishes property (6). O

The characterization of the structure of minimal refinements enables us to give an algorithm
for this problem with linear running time. Hence, this algorithm has asymptotically optimal
running time.

Theorem 3.9 There is a linear—time algorithm that constructs a conformal refinement G that
minimizes q(Q).

Proof: The algorithm is a slight variation of that for minimal decompositions given in [MW96].
a
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4 Subdivisions of Polygons

In this section, we present two combinatorial results which relate the optimal conformal refine-
ments of a polygon P to optimal refinements of those polygons, which arise if some of the edges
of P are subdivided by one additional vertex. This result will be useful for conformal refine-
ments of meshes in Sect. 5. In fact, Lemma 4.1 and Lemma 4.3 are the most difficult parts of
the proofs of Theorems 5.3 and 5.5, respectively.

Lemma 4.1 For a polygon P and X : Ep — {0,1} we have min(Px) < 2 - Min(P) + |X| — 1,
and we even have min(Px) < 2 -Min(P) + | X | — 2 except for the following cases:

1. P=(1,1,1,1) and Px = (1,1,1,1);
= (1,1,1,1) and Px = (2,2,1,1)
=(2,1,1,1) and Px = (3,1,1,1);
=(2,1,2,1) and Px = (4,1,2,1);
= (
= (

’

2,1,1,1,1) and Py = (4,1,1,1,1);

2. P
3. P
4. P
5 P
6. P=(2,1,1) and Px = (2,1,1).

Obviously, Min(P) is a lower bound for min(Px). However, the gap between this trivial
lower bound and the number of quadrilaterals in an optimal decomposition for Px can be quite
large. Therefore, we introduce penalty functions, which give improved lower bounds.

For a polygon P, the map Wp : {X} — Rar, defined on the set of feasible mappings X :
Ep — {0,1}, is a penalty function for the subdivision of the polygon P if

Min(P) + Wp(X) < min(Px) (2)

for all X’ > X, where X' : Ep — Ny is a feasible mapping. (X’ > X means component-wise
greater or equal, i.e. X'(e) > X(e) for all e € Ep.) In particular, Min(P) + Wp(X) is a lower
bound for the number of quadrilaterals in an optimal decomposition for Px.

Note that in some cases min(Pys) < min(Pyx), for X’ > X. Examples are Px = (2,1,1)
and Py = (2,2,2), or Px = (3,1,1,1) and Px = (3,1,3,1). Therefore, the weaker requirement
Min(P) + Wp(X) < min(Px) instead of Inequality (2) would not suffice to yield a valid lower
bound for our approximation algorithms.

The next lemma gives a penalty function for perfect polygons.

Lemma 4.2 Let P be a perfect polygon. Then Wp(X) 1= Xl if |Ep| is even, and Wp(X) =

2
‘X‘;l, if |Ep| is odd, is a penalty function for P.

Proof: Let P be a perfect polygon where |Ep| is even. For some given X, consider a feasible
subdivision X’ with X’ > X, and denote by G x+ some optimal decomposition of Py with i(G x)
internal vertices. Then we have (by Equation (1))

_ |Epl+[X| S |Bpl+ X

min(Py) —1+i(Gx) — 1 = Min(P) + Wp(X),

because Min(P) = @ — 1. The case where Ep is odd, is proved analogously. O

For polygons of certain types (see Fig. 9) we introduce special penalty functions Wp which
are encoded by means of an associated auxiliary graph GI . = (VI ., EL ) with edge weights.
In particular, these graphs contain a unique dual edge for each edge of P. To evaluate Wp(X)

for a given X, we have to select edges according to the following rules:
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1. an even number of edges has to be chosen for each vertex of G ., except those indicated

by an arrow in Fig. 9, for which we have to select an odd number of edges.
2. a dual edge has to be chosen if and only if X (e) = 1 for the corresponding edge of P.
3. the sum of the edge weights should be minimal subject to the first two conditions.

The function value of WP(X ) is exactly the sum of the chosen edge weights. Obviously, we
can evaluate WP(X ) in linear time. It is tedious but easy to verify that for all types of polygons
given in Fig. 9 the functions are indeed penalty functions.

In the next lemma we use the following penalty functions: For all types of polygons given in
Fig. 9, we use the penalty function defined in that figure. If a polygon is perfect but not among
those listed in Fig. 9, we take the weight function as defined in Lemma 4.2. For all other types
of polygons, we simply take Wp = 0. With respect to these penalty functions, we can show the
following;:

Lemma 4.3 For a polygon P and the penalty function Wp {X} = RS (as defined in the
previous paragraph) the following holds:

min(Py) < g (Min(P) + Wp(X)) + |X| =2 if |X| >0, (3)
min(Py) < g Min(P) — § if x| =0, (4)

except for the following cases:
1. P=(1,1,1) and Px = (2,1,1).
2. P=(2,1,1) and Px = (2,1,1).

The proofs of Lemma 4.1 and 4.3 are divided into several steps. We first use the characteri-
zations from Lemma 3.1 and prove in Lemmas 4.5, 4.6, 4.7 and 4.8 the correctness of Lemma 4.1
and Lemma 4.3 for the case that a minimal refinement of the polygon admits a perfect decom-
position such that G* is a path or a subdivision of K3, respectively. Finally, we treat the
non-perfect case in Lemma 4.9. We even show slightly stronger inequalities than those required
for Lemma 4.3, if the minimal refinement has no perfect path decomposition.

Assumption 4.4 Let Y : Ep — Ny be optimal, that is, Min(P) = min(Py).

As a warm-up for the stronger inequalities to come, we first prove the following lemma;
Lemma 4.5 If Py admits a perfect decomposition such that G* is a path then Lemma 4.1 holds.
Proof: Lemma 4.1 is easy to see for the exceptional cases. Hence, we have to show

min(Pyx) < 2-min(Py) + | X| — 2. (5)

for all other situations.

Let G’ be such a decomposition of Py, and let e; and ey be the leaves of the corresponding
variant G* on the dual graph where the vertex corresponding to the outer face is removed.
Clearly, e; and es are trivial segments of P, too, but not necessarily of Px.
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k=1 k=2 k>2

Figure 10: Tllustration of optimal conformal decompositions of (2, 1,1).

For P, let I := I[e1,es] and Iy = I]es, e1]. Let I} and I, denote the corresponding intervals
of Py and I{ and I the corresponding intervals of Px. Let |Y|:= " Y (e). As G’ is perfect,
we have

BEEP

2(G) = L(I) + L(Iy) _ L(h) + L) + Y]

5 5 (6)

The decomposition we construct for Px is denoted by G”. To prove Ineq. (5), it suffices to show

q(G") < L(I) + L(L) + |Y| + | X| - 2. (7)
W.l.o.g., we have L(I{') > L(I}). Let

g o= min {11, | 1oy - | |

Fig. 11 shows the different cases for G" provided § = 0 (explanations below).

For § > 0, we modify the procedure as follows. Let I be an arbitrary set of internal corners
of I} such that || = § and no two vertices in K are neighbored on Px. Then we construct P}
from Px by shrinking each edge that is incident to a vertex in C; in other words, each vertex in
K is identified with its two neighbors. Each such “supervertex” is treated as a non—corner, so
that it is incident to an internal edge in any conformal decomposition of P%.

Let G" = (V" E") be the conformal decomposition of P} according to Fig. 11. Then the
decomposition G” for Py is constructed from G’ as follows: Let v € K and let v; and vs be the
neighbors of v on I{. Then we choose an arbitrary internal edge {v,w} € E" and replace it by
{v1,w} and {ve, w}. This yields § additional quadrilaterals.

Let X;:= XN, Xo:=XNIand X := X N{ep,ea}. Then we have X = X; U Xo U X
and 0 < |X| < 2. Now we are going to consider the individual cases in Fig. 11.

Case I: (L — 2K)(I}') — L(I¥) < 0.
The following equation is easy to see for |X|=0,1,2:

s LD+ L) +1X

Therefore, we have to show

L(I}) + L(I) + | X|
2

+|X| < L(I) + L(IY) + | X| -2 . (9)
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Figure 11: G" in the different cases in the proof of Lemma 4.1 for § = 0. In each case, I} is
the horizontal line below. The grey triangles in Case III indicate decompositions according to
Fig. 10, respectively.

However, since L(I{')+ L(IY)+|X| = L(I)+L(I3)+|X| and L(I})+L(I}) = L(I)+ L(I5) +|Y],
this is fulfilled whenever

[ X|+4 < L(I) + L(D) + | Xi| + | Xo| +2[Y]. (10)

We next consider all cases for which Ineq. (10) is not immediate. (In particular, this means
L(I) + L(Iy) <6.)

The case L(I1)+ L(I3) = 2 (i.e., P = (1,1,1,1)) is easily checked “by hand.” (Note that this
includes the first and second exceptions of Lemma 4.1). Next consider the case L(I;)+ L(I3) = 3,
that is, P € {(2,1,1,1), (1,1,1,1,1)}. Then we have |Y| = 1, so Ineq. (10) reduces to | X|+2 <
L(I) + L(I3) + | X1| + | X32|. This is fulfilled if | X| < 2. However, |X| is odd. Hence, |X| = 2
implies | X1| + | X2| > 0, and Ineq. (10) is fulfilled again.

Now assume L(I;) + L(I;) = 4. Then Ineq. (10) is true unless |X;| = | X3 = |Y| = 0,
because | X| < 2, and | X| has the same parity as |X| + | Xs|. If L(I;) = 3 and L(I3) = 1 or vice
versa, the dual path G* does not end with e; and ey. However, the case L(I;) = L(Iy) = 2 and
(X1 =|X3| =|Y]| =0 is easily checked by hand again.

Finally assume L(I;) + L(I3) = 5. Then |Y] is odd, and Ineq. (10) is fulfilled.

Case II: 1 < (L —2K)(I{) — L(I}) < 2.
Let A := (L —2K)(I}') — L(I). Now we easily obtain for |X| = 0,1, 2:

_ LU+ L) +IX]

a(G") - A, (1)

Therefore, Ineq. (7) is fulfilled whenever

(12)

At2< <L(11)+L(12) L) Y| X]

2 2 2 2 2
Recall that ¢(G') = [L(I1) + L(I3) +|Y|]/2. As A <2 in Case II, Ineq. (12) is fulfilled whenever
§G) > 4. (13

If one of | X| or |Y| is strictly positive, we have (|X| + |Y|)/2 > 1, because |X| = 1 implies
Y| > 0 and vice versa. Hence, Ineq. (13) can be strengthened to ¢(G’") > 3 except for the trivial
case | X|=1Y|=0.
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Obviously, ¢(G') = 1 is impossible in Case II. The remaining case ¢(G') = 2 is easily checked
by hand. (Note that this includes the exceptions 3. - 5. of Lemma 4.1.)

Case III: (L — 2K)(I') — L(IY) > 3 and P # (2,1,1,1,1).

In the third row of Fig. 11, the number of quadrilaterals in the white area is L(IY) for
| X| < 1and L(I¥) + 2 for |X| = 2. On the other hand, the grey area is decomposed according
to Fig. 10. Like in Fig. 10, let 2k denote the number of horizontal edges below the grey area.
Then we have 2k = L(I}') — L(I¥), if | X| is even, and 2k = L(I{) — L(I}) + 1, if |X| is odd.
So the number of quadrilaterals in the grey area is L(I]) — L(I)) + 1 and L(I{') — L(I}) + 2,
respectively. Recall that § = 0 is assumed in Fig. 11. If § > 0, restoring the shrunken edges
yields K(I{') additional quadrilaterals, but now we have 2k = L(I}) — L(I}) — 2K(I{') and
2k = L(I) — L(I})) — 2K (I}) + 1, respectively. In any case, we obtain for |X|=0,1,2:

q(G") = L(I}) - K(I}) + |X| + 1. (14)

Hence, Ineq. (7) is fulfilled whenever

3<L(L) + Y]+ | Xa| + K(I7). (15)

So assume L(I5)+|Y|+|X2|+ K (I]) < 2 in the remainder. Note that K (I}') > K(I;). Hence,
we have K (I;) < 1, because otherwise we had L(I3) = 0, and the dual path G* would not point
to e; and ep. From the proof of Lemma 3.1, it is easy to see that (L — 2K)(I1) < L(Iy) + |Y|.
Therefore, K (I;) = 0 implies L([;) < 2, which is impossible in Case III.

So consider the case K(I1) = 1. Then we also have L(I3) + |Y| = 1, that is, L(l3) = 1
and |Y| = 0. Therefore, L(I;) is odd. Since L(I;) = 1 is impossible in Case III, this means
L(I) = 3. However, this means P = (2,1,1,1,1), and again G* would not point to e; and es.

a

For Lemma 4.6, we need some more terminology. Note that constructing Py from P may be
seen as replacing each edge e € Ep by a segment S(e) of length Y (e) + 1. We extend X from P
to Py as follows: For e € Ep, we choose an arbitrary ¢’ € S(e) and define X (¢') := X (e). For
all other ¢’ € S(e), we set X (e') = 0.

Lemma 4.6 Lemma 4.1 is true if Py is perfect.

Proof: Because of Lemmas 3.1, 3.3, and 4.5, it suffices to consider the case that Py admits a
perfect decomposition G such that G* is a subdivision of K 3. Let v* be the branching vertex
of G*, let e}, €5, and let e5 be the edges of G* incident to v*. Note that removing one of the
edges e, e3, and e5 decomposes G* into two paths. The basic idea of the proof is to apply
Lemma 4.5 to both paths.

For j = 1,2,3, let e; be the primal edge of G corresponding to e;. The primal operation
corresponding to the removal of e;f is cutting G' along e; and inserting e; in both connected
components. Moreover, let X; be the subset of edges in X that are incident to quadrilaterals in
the jth branch. Next we apply a case distinction.

Case I: at least one |X| is even.

Let G' and G” denote the subgraphs of G resulting from cutting the jth branch as described
above. In particular, let G’ correspond to this branch and G” to the rest. Let P’ and P” denote
the outer faces of G’ and G”, respectively. Tt is easy to see that min(Py) = min(P’)+min(P") =
Min(P’) + Min(P"). By Lemma 4.5, we further have min(P)’(j) < 2-Min(P') + |X;| — 1 and
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min(PSé\Xj) < 2-Min(P") 4+ |X \ X;| — 1. In summary, we obtain min(Px) < min(P%) +
min(P%) < 2-Min(P') + 2 - Min(P") +|X| — 2 =2 - Min(P) + |X| — 2.

Case II: all | X;| are odd.

Now we choose j € {1,2,3} arbitrarily and construct G', G, Py, and P" by cutting the
jth branch as described above. Let X' := X; U {v;, W]} and X" := X \ X; U {v;, W]} From
Lemma 4.5, we conclude min(P¥,) < 2-Min(P")+|X"| -2, because the trivial segment {v;, W]}
of P" belongs to X" and hence none of the exceptions in Lemma 4.1 applies to P and X" (not
even the second one, since obviously P” # (1,1,1,1)). Analogously, the second exception in
Lemma 4.1 is the only one that may apply to P’ and X’. Hence, if the second exception does
not apply either, we further conclude min(P%,) < 2-Min(P’') 4+ |X'| — 2 from Lemma 4.5, which
gives min(Py) < 2-Min(P) + | X'| + | X"| =4 = 2- Min(P) + |X| — 2.

Now assume that the second exception of Lemma 4.1 does apply. Then we can only conclude
min(Pyx) < 2-Min(P) + |X| — 1 at this point of the argumentation. Let w} be the (unique)

quadrilateral in the jth branch, and for some optimal decomposition of P", let wj,... , w; be
the quadrilaterals incident to the vertex between the two copies of e; in P”. Let P" be the
polygon comprising wj,... ,w}. It is easy to see that the current decomposition of P can be
replaced by another decomposition such that at least one quadrilateral is saved by that. This
proves the claim for Case II, too. O

The following lemma holds only for polygons with more than 9 edges. However, an easy
although quite extensive case analysis for all types of polygons with up to 9 edges shows the
correctness of Lemma 4.3 for such polygons. The corresponding details are omitted.

Lemma 4.7 If Py admits a perfect decomposition such that G* is a path, then the following
holds for all feasible X and for all polygons P with |Ep| > 10:

min(Pyx) < = - (Min(P) + Wp(X)) + |X| =2 if |X|>0, (16)

LW Tt ot

min(Px) < - - Min(P) — 1 if | X|=0. (17)
Proof: The general idea of this proof follows that of Lemma 4.5. Let G' be a decomposition
of Py such that G* is a path, and let e; and es be the leaves of the corresponding variant G*
on the dual graph where the vertex corresponding to the outer face is removed. Clearly, e; and
ey are trivial segments of P, too, but not necessarily of Px.

Note that the case X =Y is trivial, hence we assume in the following X # Y.

For P, let I := I[e1,es] and Iy = I[es, e1]. Let I} and I, denote the corresponding intervals
of Py and Ii and Iy the corresponding intervals of Px. Let [Y|:= > . Y(e). As G'is perfect,
we have

L(I] L(I} L(I L(I Y
Gy DD+ D) _ L) + (1) + 1Y »
2 2
The decomposition we construct for Px is denoted by G”. Denote by i(G") the number of

internal vertices in G”. Then we have

L(I) + L(I2) + | X|
2

q(G") = +4(G"). (19)

To prove Inegs. (16) and (17), it suffices to show
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L(I L(Iy) — X o

i(G") < (1)+3( 2) =6 +2Y+7|+§WP(X) if [X|>0, (20)
L(I L(Iy) —

i(G") < () +3( 2) =3, %\Y\ if | X|=0. (21)

Note that |Ep| > 10 implies L(I) + L(I3) > 8.
Without loss of generality, we have L(I{') > L(I}). Let

g o= min { e (rt), | o) - | |

See again Fig. 11 for the different cases for G" provided § = 0. )
Let X1 :=XNI, Xo:=XNIand X := XN {e1,e2}. Then we have X = X; UXo U X
and 0 < |X| < 2. Now we are going to consider the individual cases in Fig. 11.

Case I: (L — 2K)(I{") — L(I}) < 0.

If |X| = 0, we have i(G") = 0, and Inegs. (20) and (21) are immediate. If | X| = 1, then
i(G") < 1. As either | X| > 2 or |X| =1 and |Y]| > 1, the Ineq. (20) is fulfilled again. Now
assume | X| = 2. This implies i(G") < 2. If |Y| = 0, then P is perfect, which means Wp(X) > 1
and |X| > 2. If |Y| = 1, then |X| > 3. Otherwise, |Y| > 2 and |X| > 2. In all these cases,
Ineq. (20) is fulfilled.

Case II: 1 < (L —2K)(I]) — L(I}) < 2.
Let A= (L — 2K)(IV) — L(I}).

Subcase Ila: | X| =0 or | X| = 2.
As L(I]) + L(IY) is even in this case, we have that A = 0 by parity arguments, and i(G") = 2
(cf. Figure 11). If |Y| = 0, then |X| > 2 and Wp(X) > 1, which implies Ineq. (20). Assume
now that |Y| = 1. If |X| > 3, the Ineq. (20) is immediate. So let |X| = 1. As Ep is odd, we
have L(I1) + L(Iy) > 9. This suffices to yield Ineq. (20).

Assume next that |Y| = 2. If | X| = 0, then Ineq. (21) is fulfilled, because L(I)+ L(I3) > 6.
Otherwise we have | X| > 2, and Ineq. (20) is certainly fulfilled.

Finally, Inegs. (20) and (21) are immediate, if |Y| > 3.

Subcase IIb: |X| = 1.
Now we have A =1 and i(G") =1 (cf. Figure 11). If |Y| = 0, then | X| > 2. Otherwise |Y| > 1
and |X| > 1. In both cases, Ineq. (20) is immediate.

Case ITI: (I — 2K)(I") — L(I}) > 3.

In the third row of Fig. 11, the number of quadrilaterals in the white area is L(IY) for | X| < 1
and L(I}) +2 for | X| = 2. On the other hand, the grey area is decomposed according to Fig. 10.
Recall that 6 = 0 is assumed in Fig. 11. Let 2k denote the number of horizontal edges below
the grey area, after restoring the shrunken edges, if § > 0. Then we have

2k = (L — 2K) (1)) — L(I}), if |X| is even, and (22)
2k = (L —2K)(I}) — L(IY) + 1, if |X| isodd. (23)
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Assume first that L(I;) < L(Iy). Combining L(I]) = L(I1) + | X1| and L(I}) = L(I) + | X2|
with Eq. (22) and (23), respectively, yields 2k < |X1|—1, if | X| is even, and 2k < | X;| otherwise.
Assume now that L(I;) > L(I). By Lemma 3.7 (6), we can further assume that all additional
vertices in Y (if any) are placed on Iy. This implies L(I1) — 2K (I;) < L(I3) + |Y|. Therefore,
we get
2k <|Y|+[X1| — [Xo| + 2K () — 2K (I]) < Y] + [ X1],

if | X| even, and 2k < |Y|+|X1|+ 1, otherwise. (The last two inequalities are weaker than those
for the case L(I1) < L(I3), hence, we use them in the following.)

Subcase IIla: | X| = 0.
In this case, we have i(G"”) < k + 1 since k > 2 (otherwise we were in Case I or IT). Hence, to
prove Inegs. (20) and (21) it suffices to show

L(I;)+ L(Iy) — 6
3

5 1X| 5~
Y|+ S SWp(X
+ Y+ 5+ 3Wp(X)

E+1<

(the last two terms vanish if | X| =0). As k < m, we only need to show

L(I}) + L(I,) — 6

1<
- 3

1 5~
+ S |Y] + S W (X). (24)

If Y| = 0, then P is perfect and WP(X) > 1. If Y| = 1, then Ep is odd, and hence
L(Iy) + L(I3) > 9. Otherwise, |Y| > 2. As L(I;) + L(Iy) > 8, these facts imply Ineq. (24) in
any case.

Subcase IIIb: | X| = 1.
Now we have i(G") < k+ 1, and k < W Therefore, it suffices to show

L(I)) + L(I5) — 6 g

g < ; + %|Y| + gWP(X) +5 (25)
Exactly the same case distinction as in Subcase I1Ia shows the validity of Ineq. (25).
Subcase IIlc: | X| = 2.
In this subcase, we have i(G") < k + 2. Hence, it suffices to show
2 < L(Il)+§(b)_6+%|Y|+§WP(X)+§ (26)

As § = 1, the latter inequality reduces to Ineq. (24), and so holds for the same reasons as
those given in Subcase IIla. O

For a decomposition G of the polygon P, we have introduced in Sec. 3 the notion of an area
decomposition of GG into cut and core components. If the decomposition of P is not completed,
we take a different view on the cut components. We say that a cut-operation is applied to the
polygon P, if one of the subgraphs illustrated in Fig. 6 and 7 is used to reduce the given polygon
P to a polygon P’. In particular, operation (c) is called a 1-cut, whereas operations (d) and (e)
are 2-cuts. Finally, the cuts described in Fig. 7 are called (2k, 1,1)-cuts.
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Lemma 4.8 If Py is perfect, but does not admit a perfect decomposition such that G* is a path,
then the following holds for all feasible X :

min(Py) < gmin(Py) +|X|—2. (27)

Proof: Because of Lemma 3.3, Py has a perfect decomposition G such that G* is a subdivision
of Ki3. Lemma 3.7 (item 5) implies that |Y| < 1. We only need to consider that |Ep| > 15,
as otherwise Py would also admit a perfect decomposition such that G* is a path or P =
(4,1,4,1,3,1) or P = (3,1,3,1,3,1). The latter two cases are easily checked by hand.

Denote by G’ the graph of an optimal decomposition for Px. As ¢(G') = W —1+i(G")
and ¢(G) = ‘Epgﬁ — 1, it suffices to show
. Ep| —10 X 3
i(G') < [Bpl =10 | 1X], Y. (28)

- 4 2 4

If | X| = 0, then also |Y| = 0, as otherwise |Y/| > 2. This implies Py = Py, and i(G') = 0.
Therefore, Ineq. (28) holds in this case.

So assume that |X| > 0. The idea of the remaining part of this proof is constructive and
works as follows: We start from Py and its perfect decomposition G and insert step by step an
even number of additional points from X. Denote the polygon in step ¢ by P;. We continue
until we end up with Py = Px, for some f. (If |Y| = 1, we possibly remove the corresponding
vertex of Py in the very first step and select only one vertex from X.) In each step, we rebuild
a decomposition for the intermediate polygon P; and call it G;. The final decomposition Gy for
Px might be suboptimal, but will satisfy i(G ;) < w + % + 3|Y|, which clearly suffices.

Let ey, es, and e3 be the three trivial segments which correspond to the leaves of the sub-
division of K3 such that the counterclockwise order around Py is e; < ez < e3 < e;. Let
I1 = I[el, 62], .[2 = I[€2,63], I3 = 1[63, 61].

Note that we may assume that each vertex of Py which is not incident to one of the leaves
e1, e2, and ez has a degree of three or four in G.

Let us first consider the case, that one of the leaves, say ey, is subdivided by X, i.e. X (e1) = 1.
If Y| =1, then we take as P; the polygon P plus one additional point on e;. Obviously, P; is
an even polygon. We build a decomposition for P; as follows. A cut operation of type (c¢) in
Fig. 6 is applied to the segment of length two which arises from the trivial segment e; by the
insertion of the additional point. This reduces P; to the polygon P{. Using the decomposition
of Py into a subdivision of K 3, it is now easy to see that Pj is perfect and allows for a perfect
decomposition with leaves among es, e3 and one of the newly inserted internal edges. This perfect
decomposition may either be a subdivision of K 3 or a path, but it maintains the property, that
each vertex which is not incident to one of the corresponding leaves has a degree of at least
three.

If Y| = 0, then there must be another edge which is subdivided by X. If another leaf, say
€2, is subdivided, then we take as P; the polygon P plus one additional point on e; and one on
e2. In this case, we apply two cut operations of type (c) in Fig. 6, one for each segment of length
two created by the insertion of the additional points at e; and es. Similarly as in the previous
case, this reduces P; to the polygon P|, and P] is perfect. It allows for a perfect decomposition
with leaves among e3 and the newly created internal edges.

If no other leaf is subdivided, we just choose one additional point of X placed on Iy, Is or
I5. This again gives us a polygon P;. One cut operation of type (c¢) in Fig. 6 suffices in this
case, and the reduced polygon P| is perfect.

It might be the case that there are still one, say ez, or two leaves, say eo and ez, which are
subdivided by X. Then the analogous cases of step one are repeated in the second step.
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Now we may assume that all points of X corresponding to leaves in G have been inserted.
If Y| = 1 but no leaf has been subdivided by X, then we are still in step one. Then we may
select any additional point from X to create P;. It is easy to see that P; is still perfect and has
a decomposition with leaves among e1,es and es.

Otherwise, we select, if existing, a pair of additional points from X, one from I; and one from
I;, for i # j. This gives a new polygon Pj1. It obviously has a decomposition G} with just
one more quadrilateral than G, and its core component has the same leaves as before. Hence,
we can continue in this way until all additional points from X which have not been introduced
so far belong to the same interval, say to I.

The number of remaining points must be even, say 2c. In the final step, we introduce these
2¢ points all at once. But now we can apply a (2¢, 1, 1)-cut operation as depicted in Fig. 7, to
reduce the interval I} U X; by the same length as it was enlarged by the insertion of additional
points. Thus, we get a decomposition for Gy which uses ¢+ 1 more internal vertices than Gy_;.

In summary, we have built a decomposition for Px which uses exactly these ¢ + 1 internal
vertices plus as many internal vertices as cut operations of type (c). If a cut operation of type
(c) and a (2¢, 1,1)-cut are applied to the same segment of Px, this is clearly suboptimal. Hence,
we can save one internal vertex in these cases. This means that there is always a decomposition
for Px with no more than ¢ + 2 internal vertices, if ¢ > 0, and no more than three internal
vertices, otherwise. As |Ep| > 15 and 2c¢ < |X], this clearly suffices to prove Ineq. (28). O

Lemma 4.9 If Py is not perfect, then the following holds for all feasible X :
min(Py) < ;min(Py) +IX] -2, (29)
unless P € {(1,1,1), (2,1,1), (2,2,1), (4,2,1,1)}.

Proof: The cases Py € {(4,2,2), (4,3,3), (3,3,3,3)} can be checked by hand. For all other
cases, we can apply Lemma 3.7.

Denote by G the graph of an optimal decomposition of Py, and by G’ the graph of an optimal
decomposition for Py. As ¢(G') = W —1+i(G’) and ¢(G) = M —144(Q) it suffices
to show

Ep|—10 |X| 3 3.
<l =1 4+ .
< 1 + 5 +4\ |+2z(G) (30)

i(G)

The general idea of the proof is very similar to that of Lemma 4.8. The main difference is
that now |Y| > 1 is possible. If |Y| > 1, we first construct a decomposition for P with a new
Y’ for which |Y’| < 1 holds, and min(Py+) = min(Py). Then, we proceed as in the proof of
Lemma, 4.8, i.e. we insert in several steps points from X and rebuild a decomposition each time.

So assume first that |Y| > 2. Denote by P’ the outer face of the core component of G.
By Lemma 3.7, items (5) and (6), the core component of the decomposition is a path in G*
with leaves e; and eg, say, and all vertices in Y N P’ belong to the same interval of P’, say to
I := I[e1,es]. Note that Y\ P’ can only be non-empty if there is a cut component of type
(d). But then an original vertex from I; and such an additional one can exchange their roles (as
being original and additional, respectively) unless I contains only additional vertices. In the
latter case all additional vertices belong to the same segment of P.

Let K be the set of corners of Iy := I[ea, e1] which has degree 2 in the path decomposition.
We construct P” from P by shrinking each edge that is incident to a vertex in K. This shrinking
operation may be necessary for one reason: in some cases, we later want to apply a 2k—cut
operation with a base segment on I5. Without shrinking we possibly reduce by that operation
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the available set of corners on Is which are not neighbored. Hence, in such cases it might be
impossible to reconstruct a decomposition with the same number of quadrilaterals.

Furthermore, we build a decomposition for P"” as follows. Let k = L‘—?J Select a cut
operation which has been applied in the decomposition for Py-. It must be of type (c), (d) or
(e) in Fig. 6. With respect to P”, this cut operation is replaced (at the corresponding corner)
by a 2k—cut if it was of type (¢), and by a (2k + 2, 1, 1)—cut otherwise. If a second cut operation
has been applied to Py, it is also applied to P”. If |Y] is odd, we place one additional point
arbitrarily on some edge of I;. This defines Y'. If |Y] is even, we choose Y’ = 0. In any case,
we have |Y'| < 1.

Clearly, the remaining part of P’ has a path decomposition, and reversing the shrinking
process from Py, back to Py yields a decomposition for Py with no more quadrilaterals than
in the decomposition for Py (we have only exchanged 2k vertices on the boundary of Py by k
more internal vertices in Py).

Hence, it suffices to show Ineq. (30) for the case that [Y| < 1. If the core component of G
only has a decomposition as a subdivision of K 3, then Ineq. (30) has already been proven in
Lemma 4.8.

However, the case that the core component of G has a path decomposition can be handled
in just the same way as in Lemma 4.8. The only slight difference is that we first apply the same
shrinking operation to P as above in the case for |Y| > 1 (and for the reasons given there), and
reverse this operation in the very end. All further details are easy to see. O

5 Approximation of Minimal Conformal Mesh Refinements

In this section, we describe the improved approximation algorithms. In the following, we will
need a certain variant G¢ = (V¢ E?) on the dual graph of the graph G = (V, E) of a homogeneous
mesh M.

Definition 5.1 For a homogeneous mesh M and its corresponding graph G = (V, E), the graph
G? = (V¢ EY) (multiple edges allowed) has a vertex for each polygon of M. If the homogeneous
mesh M has a non-empty boundary, exactly one more vertez is added to V4. Two dual vertices
that correspond to polygons of M are connected by an edge of E® if and only if they share an
edge in E. For each boundary edge (if existing) the additional vertex is connected with the dual
vertex whose corresponding polygon is incident to the boundary.

We will need the next fact, Lemma 5.2, for all algorithmic results to follow. Let G = (V. E) be
an undirected graph, and let each vertex be either labeled odd or labeled even. This odd/even
labeling is called feasible if the number of vertices labeled odd is even. A subgraph G’ of a
graph G is called feasible if the following holds: The degree of a vertex is odd in G’ if and
only if its label is “odd.” In the literature, such a subgraph is often called a T—join (see, for
example [Ger95]).

Lemma 5.2 There is a linear—time algorithm that produces a feasible acyclic subgraph F of a
connected graph G with respect to a feasible odd/even labeling.

Proof: Let T be a spanning tree of G and let F' be the forest comprising all edges e of T' that
divide T' — e into two subtrees, each with an odd number of vertices labeled odd. It is easy to
see that F' is feasible. O

Theorem 5.3 There is a linear—time algorithm that constructs a conformal refinement of a
mesh G such that the number of quadrilaterals exceeds twice the optimum by at most A(M).
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Proof: First we describe the algorithm and prove that it constructs a conformal refinement.
Recall from Lemma 1.3 that we have to ensure that every polygon becomes even. For each folding
that consists of an odd number of folding edges, we select one of these edges and subdivide it
once. We will see that this suffices to refine all homogeneous components separately. So let
G; = (Vi, E;) be a homogeneous component. First consider the edges in F; that have degree one
but are not folding edges of the original mesh. In other words, consider the the boundary edges
of G which belong to G;. If the number of these edges is odd, we select exactly one of these
edges and subdivide it once, too. After this procedure, the number of edges of degree one in E;
is even. (Note that all other edges have degree 2, because G; is homogeneous.)

Let G¢ = (V4 E?) denote the variant on the dual graph of G; as in Definition 5.1. Then the
vertex of Gf added for the boundary edges has even degree in Gf. Therefore, the number of odd
vertices of Gg that correspond to polygons (and hence the number of odd polygons themselves)
in G; is even. Consequently, we may apply the algorithm of Lemma 5.2 to construct a feasible
acyclic subgraph F; of G;i, where a vertex is labeled odd/even according to the parity of its
degree. Next each edge of E; that corresponds to an edge in F; is subdivided exactly once.
Obviously, every polygon is now even, and we apply the algorithm from [MW96] to decompose
each polygon separately.

It remains to show that this construction leads to a refinement that exceeds twice the opti-
mum by at most A(M).

For a polygon P of the homogeneous component G;, i = 1,... .k, let Xp : Ep — {0,1} be
defined such that Xp(e) = 1 means that e corresponds to a dual edge of F;. Analogously, let
Yp : Ep — {0,1} attain 1 exactly on the edges of P that are selected in the algorithm to make
all foldings even. Moreover, let Zp : Ep — {0, 1} attain 1 on an edge if and only if this edge is
selected to make the number of boundary edges of G; even. Let P’ := Pixp4vp+2zp)- Of course,
we have Xp(e) + Yp(e) + Zp(e) < 1 for each edge e. Therefore, Lemma 4.1 gives

min(P') S2-Min(P)+‘Xp|+‘Yp|+|Zp|—1 . (31)

Let P; denote the set of polygons in G;. Since the feasible subgraph F; of G¢ constructed by the
algorithm is acyclic, we have } pcp [Xp| < 2- (|Pi — 1), and since Y pep |Zp| < 1, Ineq. (31)
sums up to

" min(P') < 3 [2- Min(P) + V! | + [Py — 1. (32)

PcP; PeP;

Note that Zle Y pep, |YP| = D(M). Hence, Ineq. (32) sums up to

Y min(P) < 2- ) Min(P)+DM)+|P|—k = 2 Min(P)+AM) .
PeP PeP PcP
O

As an immediate consequence, we obtain for the special cases of meshes without foldings of
odd degree, i.e. where D(M) vanishes, the following corollary:

Corollary 5.4 There is a linear-time algorithm that yields o 3—approzimation for the mini-
mum conformal refinement problem for the special cases where D(M) = 0. This includes, in
particular, the homogeneous meshes.

For meshes without foldings, we can even find significantly better approximations using a
nice application of matching techniques:
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Figure 12: A class of instances where the feasible subgraph with the minimum number of edges
(top, left) only yields a 2-approximation (top, right). The optimal solution (bottom, right)
corresponds to a larger feasible subgraph (bottom, left).

Theorem 5.5 For homogeneous meshes, there is an O(nmlogn) algorithm that constructs a
conformal refinement with a performance guarantee of 1.867.

Like in the proof of Theorem 5.3, we construct a feasible acyclic subgraph F', but now we
use penalty functions to find subgraphs which allow for a better analysis. The idea is to choose
edge weights in such a way that we get an improved lower bound if some of the expensive edges
are chosen in a feasible subgraph of minimum weight. Note that, in general, it is not true that a
feasible subgraph with a smaller number of edges gives a better result. Fig. 12 shows an example
where the feasible subgraph with the minimum number of edges only yields a 2—approximation.

We determine F' in an auxiliary graph G¢,, = (V4. , E4 ). The graph GY , is constructed
from G? as follows. Each polygon v¢ € V% of one of the types in Fig. 9 is replaced by a
couple of vertices and edges, which respectively form subgraphs as shown in Fig. 9. Each edge
e € EZ  is assigned a weight w(e?), derived from the penalty functions introduced in Sec. 4.
If an edge e? € EY . corresponds to an edge e which belongs to two polygons Py and Py, then
the penalty functions for both polygons contribute to the weight w(e?): we just take the sum
of the corresponding weights. The contribution to the weights w(e?) of the edges in Fig. 9 are
introduced there, too. If a polygon P is perfect, then all edges e?, for which e belongs to P,
have a contribution of 1/2 to the weight of w(e?). For all polygons P which are perfect, |Ep| is
odd and which are not contained in Fig. 9, the G& _ is slightly modified. For each such polygon

aux
with corresponding dual vertex v¢, we add a new vertex v? and an edge e = (v¢,v%) with
weight w(ed) = —1

a
2) = —5. Observe that this realizes the penalty functions for perfect polygons as
defined in Sec. 4. (Recall that we can test for perfectness of a polygon in linear time.) All other
edges e? € B¢ have weight w(e?) = 0.

We say that a subgraph Fjx of Ggux is feasible if the degree of every vertex outside these four
kinds of subgraphs has the same parity in G%_, and Fayuy, and all vertices inside these subgraphs
have even degree in F,,x except for the vertex indicated by an arrow in Fig. 9, which must have
odd degree in F,,,. The vertices v¢ introduced for perfect polygons with |Ep| odd must have
odd degree, whereas v must have even degree.

So far, this leads only to a performance guarantee with a factor of 2:
Lemma 5.6 Let F,y, be a feasible subgraph of G, , such that the sum of all weights w(-) of edges

aur
in Fayug is minimum. Let F be a feasible acyclic subgraph of G* such that F is constructed from
Fouz by shrinking all subgraphs in Fig. 9 and removing all cycles from the shrunken Fay,. Then

subdividing once all edges of G that correspond to dual edges in F yields a 2—approximation.
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Proof: First observe that there are no negative cycles in G§,

w(+). This is easy to see from Fig. 9.

Denote by w(Faux) the total weight of an optimal Fau. We claim that ) p.p Min(P) +
w(Faux) is a lower on the number of quadrilaterals in any feasible mesh refinement.

To see this, take an optimal conformal refinement. For e € E, let Y (e) denote how often e is
subdivided in this refinement. Let Y’(e) € {0, 1} be the remainder of Y (¢)/2. Then subdividing
each edge e € F exactly Y’'(e) times makes all polygons even.

Hence, Y’ corresponds to a feasible subgraph F!, . in G%,.. As w(Fauy) is minimum, we have
w(Faux) < w(F) ). The edge weights are derived from penalty functions. Thus, we have for

with respect to the edge weights

each polygon Min(P) + Wp(Y’) < min(Py), because Y’ < Y. Summing up over all polygons,
establishes the lower bound low := ) pcp Min(P) + w(Faux)-

For a polygon P € P, let Xp : Ep — {0,1} denote which edges are subdivided in the
refinement induced by F'. Now it suffices to show

> min(Py,) <2- Y (Min(P) + Wp(Xp)) .
PeP PeP

We distinguish between two cases: If | Xp| = 0, then we have min(Px) < 2 - Min(P), by
Lemma 4.3. Otherwise, we have min(Pyx) < 2- (Min(P) + Wp(Xp)) + |Xp| — 2.
Hence, we get

> min(Py,) <2- Y (Min(P) + Wp(Xp))+ Y. (Xp|—2).

PeP PeP PEP,|Xp|>0

As F is a forest on [{P € P, [Xp| > 0}| vertices, the sum > pcp x50 |Xp| cannot exceed
twice that number.
This implies the 2-approximation. O

With a slight modification of the procedure which led to the 2-approximation, we can further
improve our approximation guarantee. The key observation is that we could not fully exploit
what we have showed in Lemma 4.3 because of polygons of type P = (1,1,1). If the mesh has
no such triangles then Lemma 4.3 would imply a g—approximation. The idea, therefore, is to
treat triangles in a special way, namely, we glue single triangles which are neighbored to larger
components. More precisely, two triangles belong to the same triangle component if there is a
path in G? which contains only vertices which correspond to triangles or to the special boundary
vertex. Roughly speaking, such triangle components are treated as if they were single polygons.
The notion of a feasible mapping X, defined on the edge set of a polygon, is extended in the
obvious way to the boundary edges of a triangle component.

For our algorithm, the modification is very simple: In the auxiliary graph G¢ . which has

aux:?

been built up as before, we repeatedly identify vertices by contraction of edges in G¢ .. An
edge is contracted if and only if both its endpoints are among the vertices which correspond
to triangles, the special vertex corresponding to the boundary and those which have previously
been identified in the process of repeated contractions.

In the modified auxiliary graph égux we seek for a feasible subgraph F,yx of minimum
weight as before. Given Fj,,, we also shrink all subgraphs in Fig. 9 and remove all cycles
from the shrunken Fj,,. Then subdividing once all edges of G that correspond to dual edges
in F' makes the boundary of all triangle components and all other polygons even. For each
triangle component, we afterwards use the linear-time algorithm of Lemma 5.2 to extend the
feasible subgraph to the whole mesh. If an edge between two triangles is not subdivided by that
procedure so far, then we subdivide such an edge twice, as long as none of these two triangles

possesses a different edge which has been subdivided twice in that process.
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Lemma 5.7 The modified procedure yields a performance guarantee of 1.867.
Proof: As in the proof of Lemma 5.6, we obtain a lower bound of

low := Z Min(P) 4+ w(Faux) -
Pep

Consider a triangle component T'C'. Denote by ¢(T'Cx) the number of quadrilaterals used
for the triangle component. Recall that X is first extended to all triangles of that component by
the algorithm of Lemma 5.2, and second, for edges between triangles with X (e) = 0, we change
X and set X(e) = 2, if both triangles still have a different edge with X (¢’) = 0. Furthermore,
let Min(7T'C') denote the number of quadrilaterals used for the triangle component in an optimal
refinement. Certainly, we always have ¢(TCy) < SMin(TC).

We claim that we even have

5
q(TCX) < gMin(TC) + ‘XT0| -2, if ‘XT0| > 0,

except for the cases of odd triangle components which are single triangles. Clearly, we have
Min(TC) = 3|TC|, and ¢(T'Cx) < 5|T'C|. Hence, the claim is trivially fulfilled, if |X7r¢| > 2.
Thus, assume |X7¢| = 1 and that the triangle component consists of more than just one single
triangle. Then, either there is a triangle in that component which is refined to a polygon of type
(2,2,2) or there must be an edge for which X (e) has been changed to 2. The latter means that
this triangle component contains a triangle which has been refined to a polygon of type (3,2, 1).
In both cases, we need strictly less than 5/T'C| quadrilaterals for such a component.

For a single triangle T, however, we have that min(T,) < 2Min(T) 4+ |X7| — 1 holds. Let
'T| be the number of triangle components which are single triangles.

For all other polygons, we distinguish between two cases: If |Xp| = 0, then we have
min(Px) < 3Min(P), by Lemma 4.3. Otherwise, we have min(Pyx) < 3(Min(P) + Wp(Xp)) +
| Xp|—2.

Hence, we get

> min(Py,) < 2 0 (Min(P) + Wep(Xp)) + 3 (1Xp|=2) +[7].

PcP PcP PeP,|Xp|>0

As F'is a forest on as many as [{P € P, [Xp| > 0}| vertices, the sum Y pcp x50 |[XP|
cannot exceed twice that number.

So far, this yields a performance guarantee of g + % Thus, it suffices to show % < % in
order to get the claimed performance guarantee of % < 1.867.

Therefore, we are going to express low in terms of |7|. Consider an optimal mesh refinement
with the feasible subgraph Fj,; and let Yp be the corresponding subdivision for each polygon.
Denote by T; the number of single triangle components for which |Yp| = 1, and by T the number
of triangles with |Yp| > 3. This means that the optimal refinement needs at least 5T + 375
quadrilaterals to refine all odd triangle components.

Moreover, the optimal subdivision induces in total 47 + 675 edges on the boundary of
all single triangle components in an optimal refinement. As all odd triangle components are
by definition isolated, all these edges also belong to polygons which are not triangles. Hence,
there must be at least 47} 4+ 675 edges in the refinement which belong to the boundary of such
polygons.

Denote by P; the polygons with degree zero in Fyp; (i.e. the polygons with Py- = P), and by
Py all other polygons or odd triangle components which are not single triangles. Suppose that k&
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of the 4T 4 675 edges belong to polygons in P;, and denote this edge set by E;. In particular,
this implies k < 27T7.

A polygon P; € P; with k; edges from E; and #; other edges needs at least # -1
quadrilaterals in any refinement. (Here, we use that for each polygon P, the lower bound
@ — 1 < Min(P) holds.) As each polygon in P; has at least 4 edges, this implies that
’”THI' -1> %. In total, we need at least % quadrilaterals for the polygons in P;.

Furthermore, there are 477 + 675 — k edges which belong to polygons in P,. If a polygon
is in Po, then it must have at least 6 edges. Hence, similarly as in the other case, we obtain
W as a lower bound on the number of quadrilaterals used for polygons in Ps.

Summing up, we finally get

k 4Ty + 6T, — k

low25T1+3T2+Z+f >5(Ty +Ty) =5|T,

which finishes the proof. O

Proof of Theorem 5.5: Because of Lemma 5.7, it remains to show how to construct an optimal
feasible graph Fj,x. We solve this problem by a reduction to a capacitated minimum-—cost perfect
b—matching problem [Der88]. In order to introduce this reduction, we first state the problem we
want to reduce in more general terms. So let G = (V, E) be an undirected graph, let w(-) be a
weighting of E, and for v € V' let equal(v) be a logical flag. We call a subgraph F' of G feasible
if the following holds: The degree of each v € V' in F has the same parity as the degree in G if
and only if equal(v) is true. The problem is to find a feasible subgraph that minimizes the sum
of the edge weights w(-).

The reduction is as follows (and was first proposed by Edmonds and Johnson [EJ73]). For
v €V, let b(v) equal the degree of v if equal(v) is true, otherwise let b(v) equal the degree plus
one. Let G = (V,E) denote G with all loops {v,v}, v € V, added to E. The weight of such
a loop is w({v,v}) := 0. Moreover, we set £(e) := 0 for all e € E, u(e) := 1 for e € E, and
u({v,v}) := |b(v)/2] for {v,v} € E\ E.

There is a straightforward one-to—one correspondence between feasible subgraphs of G and
perfect b-matchings in G with lower bounds #(-) and upper bounds u(-). Moreover, the cost of
a b-matching with respect to w(-) equals the sum of edge weights of the corresponding feasible
subgraph.

Note that the graph of the b-matching instance is essentially as dense as G, i.e. it has O(m)
edges. Apart from pathological constructions, we even have m = O(n). In particular, this is
always the case, if the number of corners of each polygon is bounded by some constant. Hence,
in such cases, the b—matching instance runs on O(n) edges. However, the underlying graph is
not planar, in general.

This establishes the reduction, and by an application of Gabow’s [Gab83] algorithm the time
bound claimed in the theorem follows. O

If the graph G of the homogeneous mesh M is planar, the running time of the minimum
T—join algorithm can be slightly improved by an application of the famous planar separator
theorem of Lipton and Tarjan.

Theorem 5.8 (planar separator) [LT79] Let G be a planar graph on n vertices. Then the
vertices of G can be partitioned into three sets A, B,C, such that no edge joins a verter in A
with a vertex in B, neither A nor B contains more than %n vertices, and C contains no more
than 2v/2n vertices. Furthermore, the sets A, B,C can be found in O(n) time.

Following [MNS86], we use the notion of a good separator.
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Definition 5.9 A graph G on n vertices has a good separator if there exist two constants ¢; < 1
and ¢y satisfying: The vertices of G can be partitioned into three sets A, B, C such that no edge
joins a vertex in A with a vertex in B, neither A nor B contains more than cin vertices, and
C' contains no more than co\/n vertices.

Lemma 5.10 If the graph G of the homogeneous mesh M 1is planar, then an optimal feasible
subgraph can be computed in time O(n3/?logn).

Proof: Barahona[Bar90] and Matsumoto et al. [MNS86] have shown how to solve the minimum
T—join problem in O(n3/2logn) for planar graphs using the planar separator theorem.

We cannot directly use their result, as the graph Ggux on which we have to solve the T-join
problem is not planar, in general. However, with a slight modification of the technique used by
Matsumoto et al. [MNS86] we can show in the following that G¢,, has a good separator.

Let G be the variant of the dual graph as in Definition 5.1 and v, € V¢ be the vertex
corresponding to the boundary of the mesh. G need not be planar, if the boundary of the mesh
is not connected. However, after deletion of vy, the graph G\ {v,} is certainly planar, if G is
planar. Hence, we can apply the planar separator theorem to G\ {v;}. This means that we
can partition the graph G%\ {v;} into sets A, B, C, such that no edge joins a vertex in A with
a vertex in B, neither A nor B contains more than %n vertices and C contains no more than
2(2n)'/? vertices. If we put v, into the set C, we clearly also have a partition for G with the
required properties.

The partition A, B, C' naturally induces a partition of the vertices of G¢  into A’, B' and
C': 1f a vertex vy € A (vg € B, vg € C) is replaced by a subgraph in G, then all vertices of
the subgraph belong to A’ (B', C’, respectively).

We have to show that A’, B’,C’ yields a good separator. Let k be the number of vertices
of the largest subgraph introduced for a polygon v%. It is important that k is some constant
number, namely k& = 12 in Fig. 9. Denote by n’ the number of vertices in G%,. Hence, we
have n’ < kn. As |A| < 2n, at least % vertices of n/ cannot belong to |A’|. This means
Al <nf -2 < (1- %)n’ = ¢in', with ¢; := 1 — ﬁ < 1. By symmetry, we can also
bound the number of vertices in B’ by |B| < ¢in/. Certainly, C' contains no more than
IC"] < E|C) < 2k(2n)'/? < 2k(2n/)'/? vertices. Hence, we can choose ¢y := 2kv/2. Thus, there is
a good separator for G¢ _ which can be found in linear time.

Very similarly, we can also show that in the whole separation tree the subgraphs partitioned
by their separators all have good separators.

Now exactly the same analysis as in [Bar90] yields the claimed result. O

6 Concluding Remarks

We conjecture that our performance guarantee of 1.867 for homogeneous meshes is not tight.
Indeed, it remains an open question whether examples exist where our approximation is really
worse than a g—approximation.

We would like to emphasize that all lower bounds cannot only be used for the proof of the
corresponding performance guarantee, they are also efficiently computable — in the same time
complexity as the approximation itself.

Our subdivision lemmas, Lemmas 4.1 and 4.3, can — in principle — be somewhat strengthened,
at the cost of an increasing number of exceptional cases. This would also involve an even by far
more extensive case distinction than the one we had to go through for the results presented in
that chapter.
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Up to now, we decided not to go on into that direction, because the bottleneck for further
improved approximations of homogeneous meshes are triangles. It seems that a different strategy
is needed to get a better lower bound.

This is even more important for meshes with foldings where the current worst case guarantee
with a factor of 4 seems to be extremely pessimistic. Perhaps, it would help if we could find an
approximation of the T-join problem in hypergraphs.

For the asymptotic complexity of our algorithms, parallel dual edges do not hurt, as we can
always modify the T-join problem into an equivalent one without parallel dual edges. As to the
running time of our algorithms it remains an interesting open question how many dual edges
are possible in our variant of the dual graph of a homogeneous mesh, if we do not count parallel
dual edges? We do not know of homogeneous meshes with more than O(n) non-parallel dual
edges. Note that a mesh consisting of a single polygon can have an arbitrarily large number of
edges, but all corresponding dual edges are parallel.

Finally, we would like to mention that our application of the planar separator can also be
extended in a straightforward way to meshes with bounded genus [GHT84].
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