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Abstract: In this article, a systematic literature review of 419 articles on energy demand modeling,
published between 2015 and 2020, is presented. This provides researchers with an exhaustive
overview of the examined literature and classification of techniques for energy demand modeling.
Unlike in existing literature reviews, in this comprehensive study all of the following aspects of
energy demand models are analyzed: techniques, prediction accuracy, inputs, energy carrier, sector,
temporal horizon, and spatial granularity. Readers benefit from easy access to a broad literature
base and find decision support when choosing suitable data-model combinations for their projects.
Results have been compiled in comprehensive figures and tables, providing a structured summary of
the literature, and containing direct references to the analyzed articles. Drawbacks of techniques are
discussed as well as countermeasures. The results show that among the articles, machine learning
(ML) techniques are used the most, are mainly applied to short-term electricity forecasting on a
regional level and rely on historic load as their main data source. Engineering-based models are
less dependent on historic load data and cover appliance consumption on long temporal horizons.
Metaheuristic and uncertainty techniques are often used in hybrid models. Statistical techniques
are frequently used for energy demand modeling as well and often serve as benchmarks for other
techniques. Among the articles, the accuracy measured by mean average percentage error (MAPE)
proved to be on similar levels for all techniques. This review eases the reader into the subject matter
by presenting the emphases that have been made in the current literature, suggesting future research
directions, and providing the basis for quantitative testing of hypotheses regarding applicability and
dominance of specific methods for sub-categories of demand modeling.

Keywords: energy demand modeling; energy forecasting techniques; systematic literature review;
energy demand drivers; level of detail; electricity load forecasting; natural gas consumption; heating
demand; energy demand sectors; prediction

1. Introduction

The transformation of our energy system towards a more reliable, eco-friendly, and
cost-effective one is a central goal of today’s energy policy. An integral part of the plan-
ning processes across different infrastructures are energy system models. As the scope
of such models is expanding across multiple infrastructures and energy carriers [1] they
become increasingly detailed and complex [2]. Hence, well-founded information on fu-
ture energy demand with the high temporal and spatial resolution is one of the most
crucial inputs for such models, having a direct impact on associated decision-making
processes [3] affecting real-time grid operation as well as long-term infrastructure extension
planning. Accordingly, there is a strong need for reliable models predicting and simulating
energy demand (in this article, all methods for the mathematical representation of energy
demand or consumption are summarized under the term “energy demand modeling”.
Therefore, the terms energy consumption and energy demand are to be understood syn-
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onymously). Finally, energy demand modeling is the essential basis for all quantifications
of demand flexibility.

There is an entire field of research revolving around the question of how energy
demand can be modeled using a variety of approaches on different scales ranging from
a global level down to a single appliance [4,5]. In the year 2009, there were 60 English
articles indexed on “Web of Science”, which had “energy demand” (the query also included
“energy consumption” as a synonym for “energy demand”) and “model” in their title.
In 2020 this number had increased to 641. Energy demand models have a wide range of
applications. As shown by Bhattacharyya and Timilsina [6], they can range from short-
term energy consumption forecasting in energy grids and markets over a simulation of
heat and electricity loads in buildings and industrial processes to econometric long-term
projections of national energy demand. In this article both, future-oriented forecasting, as
well as operational simulation of energy demand in technical systems, is addressed by the
term modeling.

Several reviews have been published capturing the variety of approaches and describ-
ing the developments in energy demand modeling literature. 28 recent reviews have been
analyzed for this article. An overview of their characteristics can be found in Table A1 in
the Appendix A. Seven out of these 28 stood out in terms of their systematic procedure
ensuring transparency, replicability, and reduced bias following the conduct of a systematic
literature review as described in [5,7,8]. These seven studies will be briefly presented in
the following.

Kuster et al. [9] present a review on electric load forecasting techniques. 41 papers are
reviewed regarding applied techniques, input data, pre-processing routines, geographic
extend, temporal resolution, and horizon. While this review covers a variety of criteria, the
number of reviewed articles could be extended across other energy carriers and sectors.
In [10], 63 articles are reviewed which focus on energy consumption in buildings mainly
applying ML techniques. The authors analyze the reviewed articles regarding techniques,
types of feature, pre-processing, temporal granularity, data size, type of building, type of
energy end-use, and performance measures. In [11], an analysis of the viability of various
model inputs for residential energy consumption is given, focusing on socio-demographic,
psychological, and contextual factors. In [4], Debnath and Mourshed present a review on
forecasting techniques for supply and demand in energy planning models across all energy
carriers. The authors present 483 models from articles published between 1985 and 2017.
They discuss geographical extend, time frames, and performance measures, as well as
specific criteria for techniques, such as the number of neurons in layers for artificial neural
networks (ANN). While this review provides a wide-ranging analysis, data-related aspects
are not included and a distinction between sectors is missing. Riva et al. [12] provide
an analysis of 130 peer-reviewed studies on long-term rural energy planning, covering
the electricity, oil, and heating sector on the demand and supply side. The reviewed
studies are classified according to spatial coverage, planning horizon, energy carrier,
mathematical models, and energy use. Šebalj et al. [13] review 39 articles on predicting
natural gas consumption in the residential and commercial sector, published between 2003
and 2017. Articles are categorized regarding technique, input variables, spatial scope,
and temporal horizon. Wei et al. [14] compiled a literature study on conventional and
artificial intelligence-based models in energy consumption forecasting. 116 publications
have been described with respect to purpose, temporal horizons, data properties, applied
areas, pre-processing, and forecasting techniques. Additionally, forecasting accuracy is
evaluated considering the MAPE.

Table 1 shows which aspects have been covered by recent systematic reviews. It
reveals that none of the existing reviews provides comprehensive coverage regarding all of
the aspects analyzed in the article at hand.
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Table 1. Overview of recent systematic literature by content. In each line, black squares (�) indicate topics covered in the
given review. Most reviews cover several sectors or energy carriers and analyze model inputs and spatio-temporal features.
Few reviews analyze model accuracies and only the present article covers all the aspects.
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� � � � � � � 41 [9]
� � � � � n/a [11]
� � � � � � � � � � 63 [10]
� � � � � � � � � 483 [4]
� � � � � � � � 130 [12]
� � � � � � � 39 [13]
� � � � � � � � � � 116 [14]

� � � � � � � � � � � � � � 419 This
article

2. Methodology

The literature review follows a systematic procedure as recommended in [4,7,9]. The
step-by-step procedure is shown in Figure 1.

Figure 1. Review procedure. The literature review process is divided into three main steps.

This review provides a comprehensive description and well-structured presentation
of the content of recent international literature on energy demand modeling. Therefore, a
systematic and replicable analysis of a high number of articles was conducted regarding
the utilized techniques as well as associated input data, accuracy, and spatio-temporal
resolution across different energy carriers and sectors. This comprehensive and concise
literature classification serves as a decision-base for fellow researchers for the selection
of appropriate data-model combinations for their projects. Direct and easy access to
articles corresponding to a particular set of criteria is provided through structured tables
in the Appendix A. Moreover, the advantages and drawbacks of common techniques as
well as countermeasures against disadvantages are presented. This review constitutes
an exploratory study examining and categorizing a broad and up-to-date literature base
regarding an unprecedented number of properties using descriptive statistical methods.
Challenges and future research directions are suggested and the compiled material provides
a basis for future hypothesis-based quantitative testing.
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The article is organized as follows: In Section 2, the systematic review process is
described. In Section 3, a description and classification of techniques are given. In Section 4
the results of the literature analysis are presented, starting with sectors and energy carriers
and followed by results on modeling techniques, input data, temporal and spatial char-
acteristics as well as accuracy. In Section 5 most significant results are discussed and in
Section 6 future research directions are suggested. The paper concludes with Section 7.

To aim for recent and relevant literature, the search was limited to articles published
between 2015 and 2020 in journals related to energy, engineering, modeling, and simulation
or computer science in English. The literature base for this review is the result of a replicable
query to Web of Science Core Collection, a database for international journal publications
and conference proceedings [15], on 1 May 2021. A search string was derived from a
keyword matrix containing keywords from the thematic groups “energy”, “demand” and
“modeling”. The search string and keyword matrix can be found in the Appendix A of this
review (see Table A2). The search yielded 695 articles, which were then further scrutinized
based on their title and abstract resulting in an exclusion of 276 articles due to non-matching
topics or closed access despite institutional logins at the publishers’ websites. The final
literature collection contains 419 articles.

Articles are analyzed according to the properties listed in Table 2. Given the variety
of entries for all the criteria, they have been grouped in the column “possible values” in
Table 2. The spatial resolution is defined by the smallest energy-consuming entity, which is
modeled in the respective articles. For the temporal horizon, various categorizations exist
in the literature [4,16]. The chosen definition is inspired by Wei et al. [14]. The MAPE is
defined as the average absolute discrepancy between the predicted value and the actual
value, expressed as a percentage of the actual value [17]. It is a unitless performance
measure and not dependent on the magnitude of the system, which makes it appropriate
for comparing the performance of techniques applied in different contexts [18]. Therefore,
it is a widely used accuracy measure in energy demand modeling [5]. For the techniques, a
variety of classifications can be found in the literature. The following section provides a
clear definition of categories of techniques used for energy demand modeling.

Table 2. Assessment criteria. Overview of analysis criteria defining the collected data during step three of the review
procedure. Each item represents a property characterizing the techniques applied in the respective articles. A short
description and possible values are given. For mutually exclusive criteria only one value is possible, while for non-exclusive
properties multiple values can be given and counted multiple times.

Analysis Criteria Description Possible Values Mutually
Exclusive

Technique Modeling technique applied
Artificial neural network, support vector
machine,
regression, autoregressive methods, etc.

No

Category of techniques General category of applied
technique

Statistical, machine learning, metaheuristic,
stochastic/fuzzy/grey, and engineering-based
techniques

No

Technique combination
A single technique or a
combination of techniques was
applied

Stand-alone or hybrid approach Yes

Model inputs
Inputs for energy demand models
serving as explanatory variables
and predictors

Data describing historic load, calendar
information, weather, economy, demographics,
environment, prices, behavior, and information
about the technical system

No

Energy carrier Forecasted/modeled type of
energy

Electricity, natural gas, energy for heating and
cooling No

Sector Economic sector or consumer
group which is modeled Industrial, commercial, residential, all sectors No

Technical system Applications or technical systems,
which are modeled

Power grid, gas grid, district heating, building,
production No
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Table 2. Cont.

Analysis Criteria Description Possible Values Mutually
Exclusive

Spatial resolution Spatial level of detail of models Country, regions (e.g., district),
households/buildings, appliances Yes

Temporal resolution Scale of time steps that are
described by the models Sub-hourly, hourly, daily, above daily Yes

Temporal horizon Timespan that is covered by the
models

Short-term (up to one day), medium-term
(several weeks or months), long-term (one year
and above)

Yes

Accuracy Performance evaluation of
presented models Numeric values for MAPE No

The 419 articles represent the total population of units whose properties are analyzed
and described. Hence, descriptive statistical techniques are used in order to illustrate the
frequency and contingency of the properties of the articles, using bar plots and box plots.
The data collected from the articles are categorical in all cases except for the MAPE value,
which is of numerical continuous type. For the MAPE value, a histogram was plotted in
order to illustrate its (non-symmetric) distribution.

After classification and analysis, the results are presented using plots and structured ta-
bles for the direct accessibility of articles. Subsequently, highlights are discussed regarding
particular advantages and drawbacks of techniques.

3. Classification of Techniques

A variety of classifications for techniques for energy demand modeling exists in the
literature. Debnath and Mourshed [4] distinguish between statistical, computational intelli-
gence (CI), and mathematical programming as well as stand-alone and hybrid techniques.
Within the category of statistical techniques, they define regression, time series analysis
(TSA), and autoregressive conditional heteroscedasticity (ARCH) techniques. Within the
category of CI, they mention ML, uncertainty, and metaheuristic techniques as well as
expert-based methods. Hong and Fang [5] suggest the two general categories of statistical
and artificial intelligence techniques, with the former comprising multiple linear regres-
sion and TSA techniques and the latter including ANN, fuzzy regression, support vector
machines (SVMs), and gradient boosting machines. Wei et al. [14] distinguish between
conventional techniques, including TSA, regression, and grey models, and artificial intelli-
gence techniques, such as ANN and SVM. Kuster et al. [9] discuss the categories of TSA,
regression models, ANN, SVM, and bottom-up techniques.

This article is based on the classification by Debnath and Mourshed [4], however,
extended by engineering-based techniques, which have been mentioned by other authors
and referred to as bottom-up techniques [6,9,19–22]. Expert-based systems and mathemati-
cal programming mentioned in [4] are not considered since none of the analyzed articles
followed either approach. Furthermore, the category of uncertainty techniques, which
consists of fuzzy logic and grey models according to [4], is complemented by stochastic
models, which have been encountered several times during data collection. The cate-
gory name “uncertainty technique” might evoke some ambiguity amongst readers, since
uncertainty is a natural property of any forecasting attempt. Therefore, the category is
renamed “stochastic/fuzzy/grey systems theory”. Based on the classifications of [4,9] the
following five categories are defined: statistical, ML, metaheuristic, stochastic/fuzzy/grey,
and engineering-based techniques.

3.1. Statistical Techniques

According to [4,5], this category consists of regression and TSA techniques. As shown
in [6], techniques from this category have been used in econometrics to explore the interre-
lationship between energy demand and economic development.
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Regression techniques are used to solve an underlying regression problem [23], which
consists of finding an approximation of a functional relation between numerical input and
output variables. To find a solution for the approximation, different methods are employed,
oftentimes minimizing the sum of the squares of errors [24]. For linear relations, this can be
done by the ordinary least squares method. For non-linear relations, methods of steepest
descent are used [24] or kernel functions [25]. Typical examples for statistical regression
as found among the reviewed articles are linear, nonlinear, logistic, quantile, and ridge
regression. Outside of statistical techniques, non-parametric regression can be found where
ML techniques, such as ANN, kernel regression, or regression trees are employed to derive
the functional form and regression parameters from the data [26,27].

TSA techniques derive their predictions from a historic time series, i.e., historic energy
consumption data. In their core, many TSA approaches represent regression models
since the predicted value is estimated based on one or more previous values [9]. This
category includes univariate time series models such as autoregressive moving average
(ARMA) models. Popular other techniques are autoregressive integrated moving average
(ARIMA) models for non-stationary time series, seasonal autoregressive integrated moving
average (SARIMA) models for seasonality, and ARMA models with exogenous variables
(ARMAX) [5,28]. A typical multivariate TSA method is vector auto-regression as used
in [29,30]. As suggested in [4], the category of TSA also includes exponential smoothing
models and ARCH techniques.

3.2. Machine Learning Techniques

Techniques from this category find broad application in energy demand modeling
and prediction and can be divided into supervised and unsupervised learning approaches.

Supervised learning approaches use labeled training datasets to derive a function
describing a relation between inputs and outputs based on examples of input-output
pairs [31]. They can be applied to numerical variables in the case of regression problems
and categorical variables in the case of classification problems [32]. Within this sub-category,
common techniques are ANN and instance-based algorithms, such as k-nearest neighbor
and kernel machines [33]. A common example for the latter is SVM, which can convert
nonlinear problems in low-dimensional space to linear problems in high-dimensional
space [34]. Furthermore, in this category, there are decision trees, Bayesian algorithms, and
ensemble learning approaches, such as gradient boosting machines [5].

Unsupervised learning approaches are often applied to clustering problems. These
algorithms deduce structures in an unlabeled input dataset, e.g., through finding similari-
ties [35].

3.3. Metaheuristic Techniques

Metaheuristic techniques oftentimes are used to solve optimization problems and
can be incorporated into other techniques to improve performance [23]. The category
includes evolutionary algorithms, which mimic mechanisms that are inspired by biological
processes, such as reproduction, mutation, recombination, and selection [4]. It includes ge-
netic algorithms, particle swarm optimization, bee colony optimization, firefly algorithms,
and more [36]. In combination with ML approaches, they can be employed for parameter
optimization in SVM [37] or weight optimization in ANN [22,38], resulting in approaches
such as the firefly algorithm neural network [23]. Genetic algorithms are also used for
feature selection in ML approaches [39,40].

3.4. Stochastic, Fuzzy and Grey Systems Theory Techniques

The techniques in this category are used to model different types of uncertainty.
Zimmerman describes two basic forms of uncertainty: the traditional logic of probability
describes randomness regarding the occurrence of an event, whereas fuzziness, describes
the ambiguity of an event, i.e., to what extent an event occurs [41]. As Hájek et al. [42]
point out, probability and fuzzy logic represent different sorts of uncertainty. Probability
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theory is used to describe stochastic processes [43] in which future states of a system are
described by their past states plus a random change.

In energy demand modeling, stochastic processes such as Markov chains are used
for forecasting and simulation of load profiles [20,44–46]. Fuzzy logic is employed in
the form of fuzzy time series [47], fuzzy regression models [5], fuzzy clustering [48], and
adaptive neuro-fuzzy interference systems (ANFIS) [49]. Tien states that fuzzy uncertainty
can be analyzed with the grey system theory [50] and Debnath and Mourshed classify
them as uncertainty methods [4]. The grey theory was proposed by Deng in 1982 and was
developed to estimate the behavior of an uncertain system given only a limited amount of
data [51]. The fundamental grey model GM(1,1) relies on as few as four recent data points
to forecast the future data point [50]. The model uses the least square method to obtain the
parameters for the grey differential equations, which describe the change between time
steps [51].

3.5. Engineering-Based Techniques

Engineering-based techniques follow a bottom-up approach and use a variety of exter-
nal and internal parameters to describe an energy-consuming system in high detail [6,23].
Oftentimes, individual loads of end-use appliances are considered to obtain aggregate
profiles [19]. Common examples are models on the level of individual dwellings [52] or
industrial processes [53] as well as building simulations [54]. Engineering-based models
have proven their worth in planning and design of technical systems, being able to sim-
ulate a system’s behavior under conditions, for which there has been little historic data
recorded yet [21]. Furthermore, they are promising approaches regarding the inclusion of
the effects of household composition and individual behavior of dwellers as well as testing
demand-side management strategies [20]. While techniques from this category are widely
deployed in practice, they have been less visible in scientific articles on energy demand
modeling and rarely been included in literature reviews.

Geographic information systems (GIS) are used for referencing data to geographic
shapes, which have a distinct location and orientation relative to a reference coordinate
system. Most of the time they are used for visualization and mapping of energy con-
sumption as well as for urban [55] and rural [56] planning of infrastructure and building
simulation [54,57].

4. Results

A total number of 419 articles originating from 54 different countries was reviewed.
The country with the highest output of articles during the last years is China (98) followed
by the USA (40) and Turkey (31). The analysis of the publication dates shows a slight
increase of articles over the last six years from 66 in 2015 to 77 in 2020.

4.1. Sectors and Energy Carriers

Figure 2 shows the energy carriers and economic sectors on which the articles were
focused. It reveals that in most articles the consumer group is not limited to a single sector
but rather comprises all sectors together. This is the case when the energy consumption
of an entire (market-) region is modeled. However, targeted modeling of residential and
commercial energy consumption is also common, while industrial consumers are analyzed
rather rarely. A possible interpretation could be the lower availability of publicly available
consumption data for the industrial sector compared to the other sectors. Moreover,
industrial energy consumption tends to be less dependent on exogenous influencing
factors (e.g., weather) and rather exhibits production-related temporal patterns that are
difficult to predict without knowledge of internal processes, which can be company-specific
and proprietary knowledge.
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Figure 2. Sectors and energy carriers. The number of published articles is shown by sector and
energy carrier. In most articles, the energy consumption of all sectors is modeled, e.g., of an entire
region. Electricity consumption is modeled the most. In the residential and commercial sectors, a
significant number of articles focus on heating and cooling demand in buildings.

Figure 2 also shows that most articles focus on electricity demand. However, par-
ticularly within the residential and commercial sectors, various articles are modeling the
consumption of thermal energy, i.e., demand for heating and cooling. This could be par-
tially explained by the fact, that there is a significant number of articles focusing on energy
in buildings in the residential and commercial sectors, where thermal energy accounts
for the largest share of the energy consumed. A separate analysis of all technical systems
showed that most articles focus on power grids, smart grids, and buildings (see Figure A3).
Table A3 in Appendix A provides a structured reference list of the analyzed articles by
energy carrier and sector. Fellow researchers can use this overview to find articles, which
have similar objects of research with regard to the energy carriers and the sector.

4.2. Techniques and Input Data

A variety of techniques is employed in the field of energy demand modeling. Figure 3
shows the number of appearances (n) of each of the five major categories of techniques (see
Section 3) across all articles as well as the proportion of energy carriers whose consumption
was modeled.

Figure 3. The relative share of energy carriers within each category of techniques. The relative share
of appearances of each energy carrier within each of the five major categories of techniques (see
Section 3) is shown along with the total number of appearances (n) of each category. Approaches
like ML and statistical techniques are used the most and are largely applied to model electricity
consumption. These methods mainly rely on historic consumption data, which is particularly well
available for electricity consumption. Engineering-based approaches are used less frequently overall
but are suited to model heat/cooling demand, especially in the context of building simulation.
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It is revealed that ML and statistical techniques are employed in most of the reviewed
articles. A possible reason could be that ML and statistical techniques, like TSA, can be
applied to a variety of use cases with relatively little effort in terms of model configura-
tion and data preparation. They mainly require historic load data as input, which can
be complemented by a limited set of external parameters, such as calendar or weather
information [51,58–60]. Conventional regression techniques, like multiple linear regres-
sion, are commonly used among the articles as well and perform as benchmarks for other
approaches [61–63].

Stochastic, fuzzy and grey techniques can be implemented as stand-alone models [64],
e.g., simulating load profiles by sampling from stochastic processes such as Gaussian
processes or Markov chains [52,65,66]. However, the representation of uncertain outcomes
through stochastic, fuzzy or grey expressions is often combined with other techniques such
as statistical regression [67,68] or ANN [69,70], giving results in the form of membership
functions, intervals or probabilistic density.

Metaheuristic techniques are often used as part of hybrid techniques. Typical ap-
plication is the optimization of model parameters [34,71] or feature selection [39,49] in
ML models. Another example is the application of genetic algorithms in order to create
optimized models as the result of an evolutionary process in which model a configuration
is refined over multiple generations [72,73].

In the case of engineering-based techniques, energy demand is derived from the speci-
fications of the system and its technical details [53,74,75]. Hence, an accurate simulation
with an engineering-based model can require a high amount of data and effort, which
might reduce the widespread use of such approaches [76]. However, engineering-based
techniques are used to a greater extend to model heating and cooling demands, especially
in the context of building simulation.

GIS techniques are used to reference data to geo-spatial shapes and visualization in
the form of geographical maps. This has been used in the context of building simulation,
where geometry and orientation was considered [54,57,77,78] or planning of rural [56] or
urban [79,80] grid infrastructure. In other cases regional loads and trends in spatial energy
consumption were analyzed [21,81–83] or modelled using socioeconomic data [84–86].

Figure 4 provides more details on the ML techniques that are used in the articles.
ANNs [87,88], by far, show the highest number of appearances, followed by instance-based
algorithms such as SVMs [89,90]. Clustering algorithms such as the k-means algorithm
are used frequently to split datasets into groups of maximum similarity. This can be
applied to the formation of consumer groups but also to finding similar days in historic
load datasets [91–93]. Ensemble learning algorithms combine multiple ML techniques
that are individually trained in order to obtain an improved overall performance. This
can be achieved by bootstrap aggregating (bagging) [94,95] and boosting [96,97]. Bayesian
algorithms and decision trees use supervised learning algorithms and therefore are typ-
ically used for regression and classification problems, e.g., Bayesian networks [98,99] or
classification and regression trees [100,101]. By combining multiple decision trees through
bagging, where each tree is trained on a different sub-sample of the dataset, random forest
ensembles are created [94,102,103].
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Figure 4. ML techniques. The number of appearances of each technique within the cluster of ML
techniques is displayed. Supervised learning with ANN is the predominant ML technique. Clustering
algorithms are frequently used for data preparation and feature selection. Decision trees and Bayesian
networks are used rather rarely.

Overall, in 210 out of 419 articles a combined approach was employed. Figure 5 shows
the combinations among the five main categories. The self-arcs show the number of times
the respective technique was used as a stand-alone approach or was combined with a
technique from the same category, which is the case for 63 articles within the category of
ML, 17 articles with statistical techniques, three articles with metaheuristic techniques and
respectively four articles with stochastic/fuzzy/grey and engineering-based techniques.

Figure 5. Combination of techniques. An arc connects two categories whenever in an article a
combination of techniques from the two categories was used. Self-arcs indicate that a technique was
used as a stand-alone approach or was combined with a technique from the same category. The size
of the self-arc/arc at its start and endpoint represents the share of stand-alone/combined techniques
relative to the total number of articles.

The analysis shows that among the analyzed articles, engineering-based techniques
have the highest proportion of stand-alone models and metaheuristic techniques have the
highest proportion of hybrid models. ML techniques often form hybrid techniques with
themselves as well as with statistical and stochastic/fuzzy/grey techniques.
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A typical example for a combined approach is the employment of techniques for
clustering or frequency analysis for upstream data preparation. These techniques refine
input data, e.g., by signal decomposition through Fourier or wavelet transformation, before
the data is fed into a downstream model implemented by TSA [95,104,105] or ML tech-
niques [106–112], where each of the decomposed signals is predicted separately. Another
example is the integration of fuzzy mathematics into ANNs resulting in ANFIS [59,113–115]
or the incorporation of metaheuristic optimization algorithms into the training stage of an
ANN [116,117] or SVM [34,37,71].

In other cases, an overall prediction will be given as a weighted average of the results
of multiple models, which can stem from different categories. The calculation of the
weights can be subject to various (metaheuristic) optimization techniques, allowing TSA,
regression or ML techniques to be combined into one approach [59,113,118–120]. In the case
of engineering-based techniques, there are examples of combining simulation results from
stochastic processes with bottom-up models, which are predominantly used for predicting
energy demand in households [52,121,122].

Another aspect of the reviewed articles concerns the respective datasets that serve as
inputs for the models. Table 3 gives an overview of examples for different model inputs,
reflecting the variety of input data that is used in the field.

Table 3. Model inputs. Classification of possible data-sets used as model input along with examples of data-sets.

Model Inputs Examples

Historic energy demand Historic load, electricity, heating, cooling, or natural gas demand

Weather data Outside temperature, atmospheric pressure, cooling and heating degree days, humidity,
solar radiation, wind speed

Calendar data Time of day, day of the week, month, holidays, bridge days, seasons, workday, working
hours, operating time of appliance

Demographic or economic data

Economic indicators: gross domestic product (GDP), gross national income (GNI), level of
production, income, import and export level of a region; demographic indicators: human
development indices, population, number of dwellers/buildings/residences, age, sex,
education, infant mortality

Technical system data

Appliance data: equipment installed, number of appliances, efficiency, material properties,
air change ratio, flow rate, outlet/inlet temperatures, rated power of the equipment,
impedance
Building data: floor space, number of bedrooms, transmission factor, building type, age of
the building, efficiency rating, geometry of the building, the status of refurbishment,
window area, building material, indoor temperature, indoor humidity

Usage and behavioral data Time-use survey data, building usage (main residency, rented, owned, etc.),
occupancy/activity patterns, operation/usage time of a device

Energy prices Electricity and gas prices, tariffs, payment methods

Figure 6 gives an overview of the frequency of usage of different types of input data
as well as an indication of whether they are used in combination with others (“Multiple
demand drivers (DD)”) or as a “single DD”. It is revealed that historic energy demand is
used in 85% of the articles, which highlights its significance as a data source. As historic
demand can be forecasted by trend extrapolation and pattern recognition, e.g., in the case
of ARMA models, it constitutes a stand-alone data source.
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Figure 6. Input data—frequency of usage. The number of articles relying on the seven different types
of input data is shown.

Weather data is used in 43% of the articles. Its frequent use could be explained by
the fact that operational patterns of some end-user devices are correlated with weather
phenomena, e.g., heating, cooling, and lighting systems. Calendar information is also
widely used (in 29% of the articles) since energy consumption can exhibit daily, weekly or
annual patterns. For example, in most cases, the metering data of a company will reflect
working hours.

Usage and behavioral data can be used to describe the relationship between energy
consumption and user behavior, i.e., a parameter indicating that a technical device is now
in use. Regional demographic and economic data describe properties of a region, such
as household income or economic output, which can serve as predictors for the energy
consumption of this region. The relatively rare use of price data might seem surprising,
but can be explained by the international literature base largely covering countries with
regulated or only recently liberalised energy markets, such as China, where price signals
have not been transmitted to end consumers in the past [123]. Furthermore, energy demand
has shown to be price inelastic both in the short and long-term [124], and therefore energy
prices are not be considered as dominant drivers of demand.

When taking a closer look at the usage of input data across the techniques (Figure 7),
it becomes apparent that among the examined articles engineering-based techniques do
not rely on historic energy demand data as much as the other techniques. Here, external
parameters such as information on the technical system or weather data are essential,
whereas historic energy demand is rather used for calibration and validation purposes.

Figure 7. Input data type by the method. For each method, the relative share of the seven in-
put data types is shown. Across all methods, engineering-based approaches rely less on historic
energy demands.
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Tables 4–8 present the results of the analysis on the techniques and inputs used in the
examined articles. They allow the reader to directly identify the compatibility of the data
spectrum and methodology. The first two columns contain the techniques and associated
advantages and disadvantages. The other columns refer to the input data types. In each cell
a short assessment of the respective data-technique combination in the context of energy
demand modeling is given in the following categories:

• “Contributions” refers to the number of relevant articles.
• “Impact” describes the importance (high, medium, low) of the data type for the

respective technique considering different use-cases.
• “Drawbacks” refers to the weaknesses and limitations of the data-technique

combination.

“Outlook” gives a qualitative assessment of the applicability in future research based
on the number of contributions and the rating on impact and drawbacks, revealing possible
research fields with high or limited potential for application.

All articles relevant for each cell, are documented in detail in the structured reference
lists in Tables A4–A7 in Appendix A, which enables the reader to find examples of data-
model combinations in recent literature.
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Table 4. Techniques and input data used (1/5). Compiled results of the analysis on techniques and input data. Each cell provides a short assessment of the respective data-technique
combination. The corresponding articles for each cell are documented in detail in the structured reference lists in Tables A4–A7 in Appendix A.

Technique
Advantages and
Disadvantages of
Techniques

Historic Energy
Demand Weather Data Calendar Data Demographic or

Economic Data
Technical System
Data

Usage or
Behavioral Data Energy Prices

ANN

+ Established for
classification and
regression problems
(high performance),
low effort, handle
non-linear relations,
big variety of
pre-set models, no
knowledge of
technical system
needed

− Risk of over-fitting,
difficult
interpretation
(black-box), feature
engineering
required

Contributions: 107
Impact: High; can
be used as a single
input
Drawbacks:
Outputs
dependent on data
quality and
availability
Outlook:
Continuous
intensive use

Contributions: 65
Impact: High;
predictor for
heating and
cooling and
lighting systems
Drawbacks:
Limited
explanatory value
for other
applications than
heating/cooling/
lighting
Outlook:
Continuous
intensive use

Contributions: 44
Impact: High;
Predictor for
regular daily,
weekly or annual
patterns
Drawbacks: Risk
of overestimation
of periodic
routines, cannot
account for special
events without
knowledge
Outlook:
Continuous
intensive use

Contributions: 13
Impact: Low for
short-term load
prediction; high
for long-term
regional, sectoral,
or national
demand
prediction
Drawbacks: Low
level of detail
regarding
individual
consumer patterns,
usually yearly or
quarterly
resolution
Outlook:
Continuous use in
cases of long-term
national or
sectoral demand
modeling

Contributions: 18
Impact: High;
explanatory value
regarding process
internal and
end-user devices
Drawbacks:
Difficult to collect,
have to be
measured using
sensors, might be
subject to data
privacy or
company secrets
Outlook:
Occasional use,
could see
intensification

Contributions: 6
Impact:
Potentially high;
explanatory
value regarding
individual
consumer patterns
Drawbacks: High
effort to collect
because the result
of time-of-
use surveys,
subject to privacy
or company
secrets, difficult to
predict, the output
of simulations
Outlook: Rare use,
could see
intensification

Contributions: 4
Impact: Low
Drawbacks:
Rarely considered
as a predictor
because demand
has low price
elasticity, price
swings only in
liberalized
markets, difficult
to obtain future
values to use in
predictions
Outlook: Rare use
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Table 4. Cont.

Technique
Advantages and
Disadvantages of
Techniques

Historic Energy
Demand Weather Data Calendar Data Demographic or

Economic Data
Technical System
Data

Usage or
Behavioral Data Energy Prices

Instance-
based

+ Established for
classification
problems, good
performance with a
high number of
features, for kernel
machines there are
many pre-set kernel
functions to choose
from, transforms
nonlinear relations
into linear ones in
the feature space,
robust against
overfitting

− Medium/high
effort, dependent on
the right choice of
kernel,
memory-intensive
and limited
scalability for big
datasets

Contributions: 35
Impact: High;
usually
complemented by
additional features
Drawbacks:
Outputs
dependent on data
quality and
availability
Outlook:
Continuous
intensive use

Contributions: 19
Impact: High;
predictor for
heating and
cooling and
lighting systems
Drawbacks:
Limited
explanatory value
for other
applications than
heat-
ing/cooling/lighting
Outlook:
Continuous
intensive use

Contributions: 15
Impact: High;
Predictor for
regular daily,
weekly or annual
patterns
Drawbacks: Risk
of overestimation
of periodic
routines, cannot
account for special
events without
knowledge
Outlook:
Continuous
intensive use

Contributions: 11
Impact: High for
classification of
regions or
consumer groups;
low for short-term
load prediction
Drawbacks: Low
level of detail
regarding
individual
consumer patterns,
usually yearly or
quarterly
resolution
Outlook:
Continuous use in
cases of regional
or sectoral
modeling

Contributions: 8
Impact: High;
explanatory value
regarding process
internal and
end-user devices
Drawbacks:
Difficult to collect,
have to be
measured using
sensors, might be
subject to data
privacy or
company secrets
Outlook:
Occasional use,
could see
intensification

Contributions: 0
Impact:
Potentially high
explanatory value
for classification of
typical time steps
considering
individual
consumer patterns
Drawbacks: High
effort to collect
because the result
of time-of-
use surveys,
subject to privacy
or company
secrets, difficult to
predict, the output
of simulations
Outlook: No use,
could see
intensification

Contributions: 2
Impact: Low
Drawbacks: rarely
considered as a
predictor because
demand has low
price elasticity,
price swings only
in liberalized
markets, difficult
to obtain future
values to use in
predictions
Outlook: Rare use
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Table 4. Cont.

Technique
Advantages and
Disadvantages of
Techniques

Historic Energy
Demand Weather Data Calendar Data Demographic or

Economic Data
Technical System
Data

Usage or
Behavioral Data Energy Prices

Clustering

+ Finding natural
groupings in an
unsupervised
learning process,
easy to implement,
different algorithms
in place based on
geographic distance
(K-means), graph
distance (affinity
propagation),
density (DBSCAN),
or a hierarchical
approach

− Assumptions on the
number and shape
of clusters can be
necessary and lead
to mistakes

Contributions: 34
Impact: High;
used to find
similar time steps
or similar
consumer groups
Drawbacks:
Outputs
dependent on data
quality and
availability
Outlook:
Continuous
intensive use

Contributions: 13
Impact: High;
used for finding
similar days, a
predictor for
heating and
cooling and
lighting systems
Drawbacks:
Limited
explanatory value
for other
applications than
heating/cooling/
lighting
Outlook:
Continuous
intensive use

Contributions: 12
Impact: High; for
regular daily,
weekly or annual
patterns
Drawbacks: Risk
of overestimation
of periodic
routines, cannot
account for special
events without
knowledge
Outlook:
Continuous
intensive use

Contributions: 9
Impact: High for
classification of
regions or
consumer groups;
low for short-term
load prediction;
Drawbacks: Low
level of detail
regarding
individual
consumer patterns,
usually yearly or
quarterly
resolution
Outlook:
Continuous use in
cases of regional
or sectoral
modeling

Contributions: 5
Impact: High;
explanatory value
regarding process
internal and
end-user devices
Drawbacks:
Difficult to collect,
have to be
measured using
sensors, might be
subject to data
privacy or
company secrets
Outlook:
Occasional use,
could see
intensification

Contributions: 2
Impact:
Potentially high
explanatory value
for classification of
typical time steps
considering
individual
consumer patterns
Drawbacks: High
effort to collect
because the result
of time-of-
use surveys,
subject to privacy
or company
secrets, difficult to
predict, the output
of simulations
Outlook: Rare use,
could see
intensification

Contributions: 1
Impact: Low
Drawbacks:
Rarely considered
as a predictor
because demand
has low price
elasticity, price
swings only in
liberalized
markets, difficult
to obtain future
values to use in
predictions
Outlook: Rare use
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Table 5. Techniques and input data used (2/5).

Technique
Advantages and
Disadvantages of
Techniques

Historic Energy
Demand Weather Data Calendar Data Demographic or

Economic Data
Technical System
Data

Usage or
Behavioral Data Energy Prices

Ensemble
learning

+ Improved predictive
performance by
combi-ning the
predictions of
multiple models,
in-creased
robustness by
reducing the
variance of
prediction errors

− Requires additional
knowledge to solve
the bias-variance
tradeoff

Contributions: 19
Impact: High;
always used
Drawbacks:
Outputs
dependent on data
quality and
availability
Outlook:
Continuous use

Contributions: 12
Impact: High;
predictor for
heating and
cooling and
lighting systems
Drawbacks:
Limited
explanatory value
for other
applications
than
heating/cooling/
lighting
Outlook:
Continuous use

Contributions: 9
Impact: High;
Predictor for
regular daily,
weekly or annual
patterns
Drawbacks: Risk
of overestimation
of periodic
routines, cannot
account for special
events without
knowledge
Outlook:
Continuous use

Contributions: 1
Impact: Low for
short-term load
prediction; high
for long-term
regional, sectoral,
or national
demand
prediction,
Drawbacks: Low
level of detail
regarding
individual
consumer patterns,
usually yearly or
quarterly
resolution
Outlook: Use in
cases of regional
or sectoral
modeling

Contributions: 3
Impact:
Potentially high;
explanatory value
regarding process
internal and
end-user devices
Drawbacks:
Difficult to collect,
have to be
measured using
sensors, might be
subject to data
privacy or
company secrets
Outlook:
Occasional use,
could see
intensification

Contributions: 1
Impact:
Potentially high;
explanatory value
regarding
individual
consumer patterns
Drawbacks: a
high effort to
collect because the
result of
time-of-use
surveys, subject
to privacy or
company secrets,
difficult to predict,
the output of
simulations
Outlook: Rare use,
could see
intensification

Contributions: 1
Impact: Low
Drawbacks:
Rarely considered
as a predictor
because demand
has low price
elasticity, price
swings only in
liberalized
markets, difficult
to obtain future
values to use in
predictions
Outlook: Rare use
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Table 5. Cont.

Technique
Advantages and
Disadvantages of
Techniques

Historic Energy
Demand Weather Data Calendar Data Demographic or

Economic Data
Technical System
Data

Usage or
Behavioral Data Energy Prices

Deep
learning

+ Established for
classification and
regression problems,
can learn complex
patterns be using
hidden layers
creating
intermediary
representations of
the data, reduced
need for feature
engineering using
drop-out layers

− Large amounts of
training data
required,
specialized
algorithms,
computationally
intensive to train,
require additional
expertise to tune

Contributions: 17
Impact: High;
always used
Drawbacks:
Outputs
dependent on data
quality and
availability
Outlook:
Continuous use

Contributions: 9
Impact: High;
often used for
short term load
forecasting
Drawbacks:
Limited
explanatory value
for other
applications
than heating/
cooling/lighting
Outlook:
Continuous use

Contributions: 7
Impact: High;
Predictor for
regular daily,
weekly or annual
patterns
Drawbacks: Risk
of overestimation
of periodic
routines, cannot
account for special
events without
knowledge
Outlook:
Continuous use

Contributions: 1
Impact: Low for
short-term load
prediction; high
for long-term
regional, sectoral,
or national
demand
prediction
Drawbacks: Low
level of detail
regarding
individual
consumer patterns,
usually yearly or
quarterly
resolution
Outlook: Use in
cases of regional
or sectoral
modeling

Contributions: 1
Impact:
Potentially high;
explanatory value
regarding process
internal and
end-user devices
Drawbacks:
Difficult to collect,
have to be
measured using
sensors, might be
subject to data
privacy or
company secrets
Outlook: Rare
use, could see
intensification

Contributions: 1
Impact:
Potentially high;
explanatory value
regarding
individual
consumer patterns
Drawbacks: High
effort to collect
because the result
of time-of-use
surveys, subject
to privacy or
company secrets,
difficult to predict,
the output of
simulations
Outlook: Rare use,
could see
intensification

Contributions: 0
Impact: Low
Drawbacks:
Rarely considered
as a predictor
because demand
has low price
elasticity, price
swings only in
liberalized
markets, difficult
to obtain future
values to use in
predictions
Outlook: No use
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Table 5. Cont.

Technique
Advantages and
Disadvantages of
Techniques

Historic Energy
Demand Weather Data Calendar Data Demographic or

Economic Data
Technical System
Data

Usage or
Behavioral Data Energy Prices

Bayesian
algorithms

+ Established for
classification, basic
models (Naïve
Bayes) have low
implementation
effort, good
performance, good
scalability, are able
to handle
conflicting/limited
information and
nonlinear relations

− Design of advanced
models (B.
networks) requires
expert knowledge
or good data to
learn from,
computationally
expensive, therefore
simplifications are
used, however, they
assume conditional
independence
between input
features, which is
rarely true

Contributions: 9
Impact: High if
used for
forecasting
Drawbacks:
Outputs
dependent on data
quality and
availability
Outlook:
Continuous use

Contributions: 8
Impact: High;
used in almost all
cases, often used
for forecasting for
heating and
cooling demand
Drawbacks:
Limited
explanatory value
for other
applications
than heating/
cooling/lighting
Outlook:
Continuous use

Contributions: 5
Impact: High;
used in short-term
forecasts,
Predictor for
regular daily,
weekly or annual
patterns
Drawbacks: Risk
of overestimation
of periodic
routines, cannot
account for special
events without
knowledge
Outlook:
Continuous use

Contributions: 2
Impact High for
classification of
regions or
consumer groups;
low for short-term
load prediction;
Drawbacks: Low
level of detail
regarding
individual
consumer patterns,
usually yearly or
quarterly
resolution
Outlook: Use in
cases of regional
or sectoral
modeling

Contributions: 2
Impact: Low for
forecasting, used
in cases of
algorithms for
energy
management and
system control
Drawbacks:
Difficult to collect,
have to be
measured using
sensors, might be
subject to data
privacy or
company secrets
Outlook: Sporadic
use

Contributions: 1
Impact: Low for
forecasting;
potentially high
for classification of
typical time steps
considering
individual
consumer patterns,
used for
simulations of
demand in smart
grids
Drawbacks: High
effort to collect
because the result
of time-of-use
surveys, subject
to privacy or
company secrets,
difficult to predict,
the output of
simulations
Outlook: Rare use

Contributions: 1
Impact: Low, can
be used for
simulation of
smart grids
Drawbacks:
Rarely considered
as a predictor
because demand
has low price
elasticity, price
swings only in
liberalized
markets, difficult
to obtain future
values to use in
predictions
Outlook: Rare use
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Table 6. Techniques and input data used (3/5). Continuation of Table 5.

Technique
Advantages and
Disadvantages of
Techniques

Historic Energy
Demand Weather Data Calendar Data Demographic or

Economic Data
Technical System
Data

Usage or
Behavioral Data Energy Prices

Decision
trees

+ Established for
classification, rarely
used for regression,
handles non-linear
relationships by
splitting data into
homogenous
sub-samples, low
effort in data
preparation, robust
to outliers or
missing values,
good scalability

− Risk of overfitting,
very data sensitive,
a small change in
data can result in a
major change of tree
structure

Contributions: 7
Impact: High;
always used
Drawbacks:
Outputs
dependent on data
quality and
availability
Outlook:
Continuous use

Contributions: 5
Impact: High;
used in almost all
cases, often used
for forecasting for
heating and
cooling demand
Drawbacks:
Limited
explanatory value
for other
applications
than heating/
cooling/lighting
Outlook:
Continuous use

Contributions: 5
Impact: High;
used in short-term
forecasts, a
predictor for
regular daily,
week-ly or annual
patterns
Drawbacks: Risk
of overestimation
of periodic
routines, cannot
account for special
events without
knowledge
Outlook:
Continuous use

Contributions: 3
Impact: High for
classification of
regions or
consumer groups;
low for short-term
load prediction;
Drawbacks: Low
level of detail
regarding
individual
consumer patterns,
usually yearly or
quarterly
resolution
Outlook:
Continuous use in
cases of regional
or
sectoral modeling

Contributions: 3
Impact: High;
explanatory value
regarding process
internal and
end-user
devices
Drawbacks:
Difficult to collect,
have to be
measured using
sensors, might
be subject to
data privacy or
company secrets
Outlook:
Occasional use,
could see
intensification

Contributions: 0
Impact:
Potentially high;
explanatory value
for classification of
typical
time steps
considering
individual
consumer patterns
Drawbacks: High
effort to collect
because the result
of time-of-use
surveys, subject to
privacy or
company secrets,
difficult to predict,
the output of
simulations,
Outlook: Could
see intensification

Contributions: 0
Impact: Low
Drawbacks:
Rarely considered
as a predictor
because demand
has low price
elasticity, price
swings only in
liberalized
markets, difficult
to obtain future
values to use in
predictions
Outlook: Rare use
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Table 6. Cont.

Technique
Advantages and
Disadvantages of
Techniques

Historic Energy
Demand Weather Data Calendar Data Demographic or

Economic Data
Technical System
Data

Usage or
Behavioral Data Energy Prices

Regression

+ Low
implementation
effort, good
performance,
computationally
inexpensive, white
box character,
measures against
overfitting in place
(regularization)

− Risk of underfitting,
sensitive to outliers,
the underlying
assumption that
features are
independent does
not hold in reality

Contributions: 88
Impact: High;
the dependent
variable
Drawbacks:
Outputs
dependent on data
quality and
availability
Outlook:
Continuous
intensive use

Contributions: 50
Impact: High; one
of the most used
independent
variables,
especially for
heating/
cooling/lighting
Drawbacks:
Limited
explanatory value
for other
applications than
heat-
ing/cooling/lighting
Outlook:
Continuous
intensive use

Contributions: 31
Impact: High;
predictor for
regular daily,
weekly or annual
patterns
Drawbacks: Risk
of overestimation
of periodic
routines, cannot
account for special
events without
knowledge
Outlook:
Continuous
intensive use

Contributions: 31
Impact: High for
long-term regional,
sectoral or
national demand
prediction
Drawbacks: Low
level of detail
regarding
individual
consumer
properties, usually
yearly or quarterly
resolution
Outlook:
Continuous
intensive use
in cases of
regional or
sectoral modeling

Contributions: 13
Impact: High;
explanatory value
regarding process
internal and
end-user
devices
Drawbacks:
Difficult to collect,
have to be
measured using
sensors, might
be subject to
data privacy or
company secrets
Outlook:
Occasional use,
could see
intensification

Contributions: 10
Impact:
Potentially high;
explanatory value
regarding
individual
consumer patterns
Drawbacks: High
effort to collect
because the result
of time-of-use
surveys, subject to
privacy or
company secrets,
difficult to predict,
the output of
simulations
Outlook:
Occasional use,
could see
intensification

Contributions: 3
Impact: Low
Drawbacks:
Rarely considered
as a predictor
because demand
has low price
elasticity, price
swings only in
liberalized
markets, difficult
to obtain future
values to use in
predictions
Outlook: Rare use
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Table 6. Cont.

Technique
Advantages and
Disadvantages of
Techniques

Historic Energy
Demand Weather Data Calendar Data Demographic or

Economic Data
Technical System
Data

Usage or
Behavioral Data Energy Prices

TSA/ARCH

+ Low
implementation
effort, data cleaning,
and understanding
is done at the same
time, uncovers
patterns in data like
autocorrelation and
seasonality, filters
out noise, lots of
pre-set models

− Cannot predict
unpreceded events,
poor handling of
outliers which can
be propagated into
future, not many
techniques to deal
with large numbers
of variables and
complex
relationships, less
suitable for
long-term
forecasting

Contributions: 78
Impact: High;
always used, often
used as a single
input
Drawbacks:
Outputs
dependent on data
quality and
availability
Outlook:
Continuous
intensive use

Contributions: 20
Impact: Medium;
used as an
external variable,
especially for
heating/cooling/
lighting
Drawbacks:
Limited
explanatory value
for other
applications than
heat-
ing/cooling/lighting
Outlook:
Continuous use

Contributions: 19
Impact: Medium;
used as an
external variable,
a predictor for
regular temporal
patterns
Drawbacks: Risk
of overestimation
of periodic
routines, cannot
account for special
events without
knowledge
Outlook:
Continuous use

Contributions: 10
Impact: Low for
short-term load
prediction;
medium for
long-term regional,
sectoral, or
national demand
prediction
Drawbacks: Low
level of detail
regarding
individual
consumer patterns,
usually yearly or
quarterly
resolution
Outlook: Use in
cases of regional
or sectoral
modeling

Contributions: 0
Impact: Low;
use of many
external variables
is generally rare
with TSA
Drawbacks:
Difficult to collect,
have to be
measured using
sensors, might be
subject to data
privacy or
company secrets
Outlook: Rare use

Contributions: 1
Impact: Low; use
of many external
variables is
generally rare
with TSA
Drawbacks: High
effort to collect
because the result
of time-of-use
surveys, subject to
privacy or
company secrets,
difficult to predict,
the output of
simulations
Outlook: Rare use

Contributions: 1
Impact: Low;
since external
variables are
generally rarely
used with TSA in
general
Drawbacks:
Rarely considered
as a predictor
because of low
price elasticity,
price swings only
in liberalized
markets, difficult
to obtain future
values
Outlook: Rare use
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Table 7. Techniques and input data used (4/5). Continuation of Table 6.

Technique
Advantages and
Disadvantages of
Techniques

Historic Energy
Demand Weather Data Calendar Data Demographic or

Economic Data
Technical System
Data

Usage or
Behavioral Data Energy Prices

Stochastic

+ Capacity to handle
uncertainty
regarding the
occurrence of events
and produce
variations of
possible outcomes,
the underlying
assumptions about
the randomness can
be tested
statistically,
allowing to estimate
not only the
expected value but
also the variations
of the expected
values Potentially
high
implementation
effort can be
computationally
expensive, results
can be difficult to
communicate

Contributions: 33
Impact: High;
used to define
probability
distribution on
historic values
Drawbacks:
Outputs
dependent on data
quality and
availability
Outlook:
Continuous
intensive use

Contributions: 15
Impact: High;
predictor for
heating and
cooling and
lighting systems
Drawbacks:
Limited
explanatory value
for other
applications than
heat-
ing/cooling/lighting
Outlook:
Continuous
intensive use

Contributions: 15
Impact: High;
predictor for
regular daily,
weekly or
annual patterns
Drawbacks: Risk
of overestimation
of periodic
routines, cannot
account for special
events without
knowledge
Outlook:
Continuous
intensive use

Contributions: 10
Impact: High for
long-term regional,
sectoral or
national demand
prediction
Drawbacks: Low
level of detail
regarding
individual
consumer
properties, usually
yearly or quarterly
resolution
Outlook:
Continuous
intensive use in
cases of regional
or sectoral
modeling

Contributions: 8
Impact: High;
explanatory value
regarding process
internal and
end-user devices
Drawbacks:
Difficult to collect,
have to be
measured using
sensors, might be
subject to data
privacy or
company secrets
Outlook:
Continuous use,
could see
intensification

Contributions: 8
Impact: High;
explanatory value
regarding
individual
consumer patterns
Drawbacks: High
effort to collect
because the result
of time-of-use
surveys, subject to
privacy
or company
secrets, difficult to
predict, the output
of
simulations
Outlook:
Continuous use,
could see
intensification

Contributions: 2
Impact: Low; can
be used for
simulation of
smart grids
Drawbacks:
Rarely considered
as a predictor
because demand
has low price
elasticity, price
swings only in
liberalized
markets, difficult
to obtain future
values to use in
predictions
Outlook: Sporadic
use
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Table 7. Cont.

Technique
Advantages and
Disadvantages of
Techniques

Historic Energy
Demand Weather Data Calendar Data Demographic or

Economic Data
Technical System
Data

Usage or
Behavioral Data Energy Prices

Fuzzy

+ Adopts vagueness
in human reasoning
modeling the degree
of occurrence of an
event, can display a
range of possibilities
for inputs by
applying
membership
functions
(fuzzyfication), can
handle incomplete
data, after the
model’s ruleset is
applied
defuzzyfication can
be done following
different principles
(e.g., weighted
average),
computationally
inexpensive,

− Results can be
perceived as
inaccurate,
communication of
results can be
difficult, depends
on expert
knowledge to be set
up, extensive
validation and
testing

Contributions: 32
Impact: High;
exact usage also
depends on the
other part of the
hybrid model (ML,
TSA, etc.)
Drawbacks:
Outputs
dependent on data
quality and
availability
Outlook:
Continuous
intensive use

Contributions: 11
Impact: High;
predictor for
heating and
cooling and
lighting systems
Drawbacks:
Limited
explanatory value
for other
applications than
heat-
ing/cooling/lighting
Outlook:
Continuous
intensive use

Contributions: 10
Impact: Medium;
exact usage
depends on
an-other part of
the
hybrid model,
usually no
fuzziness about
calendar
information
Drawbacks: Risk
of overestimation
of periodic
routines, cannot
account for special
events without
knowledge
Outlook:
Continuous use

Contributions: 7
Impact: High for
long-term regional,
sectoral or
national demand
prediction
Drawbacks: Low
level of detail
regarding
individual
consumer
properties, usually
yearly or quarterly
resolution
Outlook:
Continuous
intensive use in
cases of regional
or sectoral
modeling

Contributions: 3
Impact: Medium;
exact usage
depends
on another part of
the hybrid model,
high explanatory
value regarding
process internal
and
end-user devices
Drawbacks:
Difficult to collect,
have to be
measured using
sensors, might be
subject to data
privacy or
company secrets
Outlook:
Occasional use,
could see
intensification

Contributions: 2
Impact:
Potentially high;
explanatory value
regarding
individual
consumer patterns
Drawbacks: High
effort to collect
because the result
of time-of-use
surveys, subject to
privacy
or company
secrets,
difficult to predict
the output of
simulations
Outlook:
Occasional use,
could see
intensification

Contributions: 1
Impact: Low; can
be used for
simulation of
smart grids
Drawbacks:
Rarely considered
as a predictor
because demand
has low price
elasticity, price
swings only in
liberalized
markets, difficult
to obtain future
values to use in
predictions
Outlook: Sporadic
use
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Table 7. Cont.

Technique
Advantages and
Disadvantages of
Techniques

Historic Energy
Demand Weather Data Calendar Data Demographic or

Economic Data
Technical System
Data

Usage or
Behavioral Data Energy Prices

Metaheuristic

+ Provide alternative
and promising
algorithms to solve
optimization
problems and
efficiently search the
solution space,
variety of
metaheuristic
algorithms in place
which requires little
implementation
effort

− No guarantee that
the global
maximum is
attained, selection of
algorithm can be
difficult, depending
on adequate
parameter tuning

Contributions: 26
Impact: High;
exact usage also
depends on the
other part of the
hybrid model (ML,
regression, etc.)
Drawbacks:
Outputs
dependent on data
quality and
availability
Outlook:
Continuous
intensive use

Contributions: 17
Impact: high,
often used as a
predictor for heat-
ing/cooling/lighting
Drawbacks:
Limited
explanatory value
for other
applications than
heat-
ing/cooling/lighting
Outlook:
Continuous
intensive use

Contributions: 7
Impact: Medium;
exact usage
depends on
an-other part of
the hybrid model
Drawbacks: Risk
of overestimation
of periodic
routines, cannot
account for special
events without
knowledge
Outlook:
Continuous use

Contributions: 7
Impact: High for
long-term regional,
sectoral or
national demand
prediction
Drawbacks: Low
level of detail
regarding
individual
consumer
properties, usually
yearly or quarterly
resolution
Outlook:
Continuous
intensive use
in cases of
regional or
sectoral modeling

Contributions: 2
Impact:
Potentially high;
explanatory value
regarding process
internal and
end-user devices,
exact
usage depends on
another part of the
hybrid model
Drawbacks:
Difficult to collect,
have to be
measured using
sensors, might be
subject to data
privacy or
company secrets
Outlook:
Occasional use,
could see
intensification

Contributions: 1
Impact:
Potentially high;
explanatory value
regarding
individual
consumer patterns
Drawbacks: High
effort to collect
because the result
of time-of-use
surveys, subject to
privacy
or company
secrets, difficult to
predict, the output
of
simulations
Outlook: Rare use,
could see
intensification

Contributions: 3
Impact: Low
Drawbacks:
Rarely considered
as a predictor
because demand
has low price
elasticity, price
swings only in
liberalized
markets, difficult
to obtain future
values to use in
predictions
Outlook:
Occasional use
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Table 8. Techniques and input data used (5/5). Continuation of Table 7.

Technique
Advantages and
Disadvantages of
Techniques

Historic Energy
Demand Weather Data Calendar Data Demographic or

Economic Data
Technical System
Data

Usage or
Behavioral Data Energy Prices

Engineering-
based

+ White box character,
revealing detailed
input-output
relations, Able to
simulate energy
demand for
explorative and
normative scenarios
including
disruptions that
have no historic
record

− Data and
knowledge-
intensive, prediction
accuracy can be low
due to
simplifications
regarding the
system

Contributions: 21
Impact: High;
historic demand
used for validation
of model outputs
Drawbacks:
Outputs
dependent
on data quality
and availability
Outlook:
Continuous
intensive use

Contributions: 22
Impact: high,
often used as a
predictor for heat-
ing/cooling/lighting
Drawbacks:
Limited
explanatory value
for other
applications than
heat-
ing/cooling/lighting
Outlook:
Continuous
intensive use

Contributions: 8
Impact: Medium;
not needed to
describe physical
input-output
relations, a
predictor for
regular daily,
weekly or annual
patterns
Drawbacks: Risk
of overestimation
of periodic
routines, cannot
account for special
events without
know-ledge
Outlook:
Continuous use

Contributions: 16
Impact: High for
long-term regional,
sectoral or
national demand
prediction
Drawbacks: Low
level of detail
regarding
individual
consumer
properties, usually
yearly or quarterly
resolution
Outlook:
Continuous
intensive use
in cases of regional
or sectoral
modeling

Contributions: 37
Impact: High;
most important
information to
describe physical
input-output
relations,
Drawbacks: High
amount of data
needed, difficult
to collect, have to
be measured
using sensors,
might be subject
to data
privacy or
company secrets
Outlook:
Continuous
intensive use

Contributions: 12
Impact:
Potentially high;
explanatory value
regarding
individual
consumer patterns
Drawbacks: High
effort to collect
because the result
of time-of-use
surveys, subject to
privacy or
company secrets,
difficult to predict,
the output of
simulations
Outlook:
Continuous use,
could see
intensification

Contributions: 2
Impact: Low
Drawbacks:
Rarely considered
as a predictor, not
needed for
physical
input-output
relations, demand
has low price
elasticity, price
swings only in
liberalized
markets, difficult
to obtain future
values to use in
predictions
Outlook: Rare use
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4.3. Spatiotemporal Level of Detail

The spatial and temporal properties represent the level of detail applied within the
articles and are common decision criteria for model selection since the level of detail of
available input data substantially influences the resolution and scale of the output of a
model. Figure 8 summarizes the core findings with regard to the applied techniques among
the analyzed articles.

Figure 8. The relative share of categories of techniques by the temporal horizon and spatio-temporal
resolution. The left figure shows that ML and metaheuristic techniques are predominantly employed
for short-term projections while engineering-based approaches are used for longer timeframes. The
middle figure shows that there is an overall tendency towards hourly time steps. Techniques are
used equally across all temporal resolutions, except ML, which decrease for longer time-steps. The
right figure shows that buildings, households, and regions are analyzed the most. Engineering-based
models stand out in showing a clear tendency towards a high level of detail.

The analysis of the temporal horizon (Figure 8, left) reveals an overall higher number
of occurrences for short- (≤one day) and long-term (≥one year) projections compared to
medium-term. Among the articles, ML techniques are applied more frequently for short
temporal horizons while engineering-based and uncertainty techniques are used more
often for longer time frames. This is in line with a common view within the scientific
literature, whereby engineering-based energy demand models are described as simulation
approaches, which are suitable for modeling longer time spans in a realistic and reliable
manner [76]. For the other approaches, there seems to be no particular tendency.

The analysis of the temporal resolution (Figure 8, middle) reveals an overall tendency
towards hourly time steps or shorter. This could be because hourly time steps represent
a reasonable compromise between the level of detail, availability, and data quantity for
most projects since an hourly resolution allows to represent most human-driven impacts
on consumption, such as daily routines, while the amount of data is still manageable.
Additionally, a lot of weather and consumption data is tracked at least in hourly time
steps. However, there are differences among the energy carriers: for example, there was
no article that modeled natural gas consumption with shorter than hourly time steps.
The difference in temporal resolution for electricity and gas most likely reflects system
operation requirements and the respective metering infrastructure [125]. Figure 8 also
shows that for time steps longer than one day, there is a decrease of ML approaches while
statistical approaches are used more frequently.

The investigation on the spatial resolution (Figure 8, right) shows an overall tendency
among the analyzed literature of modeling energy consumption on the level of single
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households and buildings or regional level, e.g., on a district-scale. Comparatively few
approaches focus on the level of appliances or national consumption. Engineering-based
techniques stand out in having a clear tendency towards the building and appliance level,
reflecting the high level of detail which is characteristic of this technique. Scaling an
engineering-based model to the national level requires high amounts of detailed technical
system data and has only been done in a few cases [126]. In contrast, statistical techniques
are used most frequently on large geographic scales, reflecting their traditional role in
econometric analyses. Tables A8 and A9 in Appendix A provide a structured list of
references by techniques and levels of detail. The tables allow the reader to identify
recent articles that share a similar combination of these properties, which enables fellow
researchers to quickly find matching articles for their projects.

4.4. Prediction Accuracy

Prediction accuracy has a direct relationship with decision quality [113]. Therefore,
the pursuit of performance enhancement and higher levels of accuracy is one of the
driving factors of the development of new techniques and combinations among them.
Given its importance, researchers might consider the forecasting accuracy as a criterion
for model selection. According to Hong and Fan, the most used performance measure in
the electric power industry is MAPE, due to its simplicity and transparency [5]. Lewis’
benchmark [127], which has been mentioned by several authors [18,128], suggests, that a
MAPE value of 10 % or lower indicates high prediction accuracy.

In several literature reviews MAPE values of different techniques are
compared [4,14,23]. Debnath and Mourshed suggest, that ML and hybrid approaches
tend to perform more accurate compared to other techniques [4] and Wei et al. found that
MAPE values of long-term projections tend to be better than for short-term projections [14].
However, other authors are reluctant to give clear recommendations, stating that the differ-
ent choices of performance measures make it hard to categorize the methods from best to
worst [4] and that the suitability of models finally depend on the dataset [23].

MAPE was the most frequently used accuracy measure among articles and was
provided in 217 of 419 articles. Other measures like root mean square error (RMSE),
normalized RMSE (nRMSE), mean absolute error (MAE), and coefficient of determination
(R2) were encountered in several cases as well. Figure 9 shows the histogram of the MAPE
values over-collected from all articles. The shape of the distribution as well as the values
for skew (3.99) and kurtosis (23.07) give a strong indication that the values are not normally
distributed. The same assumption can be derived from the histograms of the grouped
MAPE values, e.g., by technique since they show similar characteristics.

Figure 9. Histogram of MAPE values in analyzed articles. Multiple values per article are possible.
skew = 3.99, kurtosis = 23.07.

Figure 10 shows that a direct comparison does not reveal a universal higher level of
accuracy for any technique used among the articles. While engineering-based methods have
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a slightly higher median (green line), the means (red diamonds) are almost equal among
all techniques. This could be due to the great variety of available methods within each
category, allowing users to find techniques that are tailored to their use-cases. Furthermore,
for every technique, particular measures and sub-routines have been developed to counter
drawbacks and increase accuracy (see Section 4.5). An analysis of the MAPE values of
techniques grouped by hybrid and stand-alone approaches yielded a similar result.

Figure 10. Boxplot of MAPE values by categories of techniques. Box represents the interquartile
range (IQR). Whiskers show a range of data beyond the 1st and 3rd quartile and extend until 1.5*IQR
on each side, ending at maximum and minimum data points within that interval. Outliers are not
shown. The green line represents the median. The red diamond represents mean. Among the
analyzed articles, accuracy measured by MAPE does not seem to depend necessarily on the chosen
technique.

Figure 11 gives an indication, that different levels of spatial resolution could influence
the accuracy of prediction. A higher level of detail seems to result in higher MAPE values,
especially for articles in which loads of individual appliances were predicted showed.
A possible interpretation could be, that aggregated loads on the level of countries or
regions are easier to predict since they are smoother and more likely to show seasonal or
trend-related patterns compared to loads of individual appliances. Disaggregated loads
depend on the behavior of individual users having a higher degree of randomness, which
naturally produces lower degrees of accuracy in their prediction. Similar analyses for
articles grouped by the temporal horizon and the temporal resolution were conducted but
did not show interpretable results (see Figures A1 and A2 in the Appendix A).

Figure 11. Boxplot of MAPE values by spatial levels of detail. The same mode of display as
in Figure 10. This shows that a higher level of detail results in lower accuracy. This is because
aggregated loads on the country and regional level are smoother and have stronger temporal patterns
compared to loads of individual appliances or households, which are subject to behavioral patterns
and a higher degree of randomness.
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4.5. Measures for Improvement of Accuracy

Techniques have become more flexible over the years to be adapted to the specific
contexts and datasets in which they are used and sub-routines have been developed to
counter drawbacks and improve predictive performance.

For ML techniques, the following measures to improve predictive performance have
been found in the analyzed articles. To reduce overfitting, ensemble learning was em-
ployed to create independent predictions of multiple models and to use weighted averaged
results [59,95–97,99,113,115,129–134]. Other measures against overfitting include the usage
of incremental learning and dynamic neural networks, where the models are updated
step by step during training phase [88,106,131,135] or restrictions on coefficients are im-
plemented [136] as well as the introduction of dropout layers [137]. The adjustments of
coefficients of the predicting variables in order to capture the essential properties of the
training data and provide better generalization to yet unknown data points, is an impor-
tant and widespread concept to avoid overfitting known as regularization. The idea is to
use a regression technique to shrink or regularize the estimated coefficients, effectively
discouraging the learning of a complex model and hence reducing risk of overfitting.
The most common procedures are the least absolute shrinkage and selection operator
(LASSO) [138–142] and the ridge regression [96,102,143,144]. Bayesian regularization was
used in [145,146].

The curse of dimensionality [147] is a common problem, which occurs when dealing
with high dimensional datasets. Elimination of insignificant features and appropriate
selection is crucial for ML and regression techniques. This was achieved by using corre-
lation and principal component analysis (PCA) in [61,107,148–161]. For ML approaches,
feature selection was also done by genetic algorithms and decision trees in [39,40,100,111]
and fuzzy based feature selection in [162–164]. To boost accuracy, deep learning tech-
niques such as stacked auto encoders [21,165–167] or long short-term memory (LSTM)
networks [153,168–171] are used. Another measure to increase accuracy for ANN is to vary
the number of neurons and layers, as shown in [106,159,172,173].

Another popular measure is the pre-processing of data in order to eliminate outliers
and noise, as well as isolate seasonal [113] or temperature related [174] patterns. For
TSA and ML techniques this has been done by using wavelet or Fourier transformation
in [39,58,90,108,111,120,175–180]. Particular attention was payed to the prediction of special
events and holidays in [118,181–183].

Sometimes model performance suffers from the lack of data. In the case of ML
approaches this can be compensated by the creation of virtual data through densification
or latent information functions [184,185]. In engineering-based techniques insufficient data
can be tackled by prioritization as well as the right choice of representative samples as
done in [19,54,186–188].

ML approaches sometimes suffer from ending up in local shallow minima when opti-
mizing parameters. The solutions can involve alternative (metaheuristic) optimization rou-
tines during training stage, such as the artificial bee colony algorithm for ANNs [116,189],
the Cuckoo search [71] or the wolf pack algorithm [163] for SVMs.

4.6. Summary of Results

The following chapter provides a brief summary of advantages and disadvantages as
well as countermeasures to cope with the drawbacks by category of techniques derived
from the analyzed literature. Table 9 contains the most important elements.
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Table 9. Summary of advantages and disadvantages as well as countermeasures to compensate drawbacks.

Technique Advantages Disadvantages Countermeasures

ML

High predictive performance;
Relatively low implementation effort;
Able to handle nonlinear relations;
Many pre-set model configurations are
available;
Can be used without deeper knowledge
of technical system

Black box character;
Risk of overfitting;
Course of dimensionality;
Risk of getting stuck in shallow
local minima

Regularization;
Ensemble learning;
Appropriate feature selection;
Variation of input layers and
neurons;
Usage of metaheuristic
optimization during the
training stage

Statistical

Low implementation effort for basic
models;
White box character, revealing relations
between independent and dependent
variables;
Especially TSA can be used with
relatively low data requirements

Limitations when independent
variables are correlated;
Difficulties predicting extreme
events and outliers;
Slight risk of overfitting

Pre-processing of data, e.g., by
transformation and
decomposition;
Variable selection using PCA;
Coefficient adjustments using
regularization

Stochastic/Fuzzy/
Grey

Appropriately addresses uncertainty
about inputs allowing to estimate
expected outputs and output variations
by using quantiles, intervals, or density
functions as representations;
Able to deal with incomplete/inaccurate
data;
Able to simulate energy demand based
on stochastic processes, providing
generated data as inputs for other
models

Can be considered unsatisfying
for decision-makers since
model outputs are afflicted
with probabilistic or fuzzy
expressions;
Long computing times for
repeated simulation of
stochastic processes

Variable elimination
algorithms;
Usage of evaluative labels on
model outputs to make the
uncertainty more
understandable (e.g.,
uncertainty is high or low)

Metaheuristic

Provide alternative and promising
methods to solve optimization problems
and efficiently search the solution space
to find global optima;
can be applied to different types of
problems;
a high number of easy to implement
algorithms in place;
Can be incorporated into other models;

Requires additional knowledge
and effort to implement in
existing models;
not unrestrictedly reliable in
finding the optimal solution
Can have low convergence
rates and be time-consuming

Usage of existing and proven
model combinations

Engineering-based

White-box character, revealing detailed
input-output relations based on laws of
physics;
Able to simulate energy demand for
explorative and normative scenarios
including disruptions that have no
historic record

Data and knowledge-intensive
for a description of the
technical system; prediction
accuracy can be low due to
simplifications regarding the
system

Prioritization of datasets and
choice of representative
samples;
Use of publicly available
datasets for aggregated
consumers

ML techniques are used the most across the articles and showed an increase in usage
over the last years. ML has the advantages of being able to handle nonlinear relations and
achieve high levels of accuracy with quite low implementation effort [22]. Drawbacks lie in
the black-box character [190], the tendency of overfitting and getting stuck at shallow local
minima [116,191]. Countermeasures are the use of regularization procedures, the formation
of model ensembles as well as feature selection and data pre-processing by decomposition.
ML techniques dominate across all temporal and spatial levels, however with a slight
tendency towards smaller time steps, horizons and scales.

Statistical modelling techniques have a long history in econometrics and are common
in energy demand modelling, too. They are the second most used technique. Multiple
linear regression is fast and simple to use and capable of explaining the relationship
between independent and dependent variables. However, when independent variables
are correlated, these models face difficulties [148]. One way of counteracting is by refining
the variable selection process and reducing complexity with the help of PCA or coefficient
shrinking with LASSO. TSA techniques are easy to use and efficient in modelling overall
trends and seasonal patterns. Limits occur when it comes to forecasting extreme events
or outliers. Countermeasures can be found in the transformation and decomposition of
data [104].
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Techniques for stochastic, fuzzy and grey systems modelling address different types
of uncertainty. As discussed by Hong and Fan [5], having elements of uncertainty included
in model outputs can be considered to be unsatisfying for decision makers in management
positions who expect single point values. However, this branch of energy demand mod-
elling can still be considered as a recent development, which will likely see an increase in
popularity over the next years. Fuzzy and grey approaches are able to deal with incomplete
or inaccurate data [69,192]. Stochastic simulations might run into long computing times,
which can be countered by variable elimination algorithms [98].

Meta-heuristic approaches are mainly used as part of combined models, e.g., by intro-
ducing genetic feature selection algorithms [40,112] or by optimizing model parameters
through an evolutionary process [72,73,189]. However, the integration of a metaheuristic
algorithm into another technique requires additional effort and can have low convergence
rates that has to be justified by improved results [193].

Engineering-based techniques derive energy demand from a bottom-up represen-
tation, which involves a detailed representation of input-output-relationships based on
the laws of physics. This level of detail represents a fundamental difference to other
techniques. Engineering-based approaches are commonly used in the context of building
simulation [57,194]. However, the requirement of large amounts of parameters as well as
the accurate representation of input-output relationships make the initial set-up of such
models rather laborious. Once created, however, these models have the potential to predict
different scenarios on a long temporal horizon, which makes them particularly relevant
in the context of system planning. Furthermore, the forecasting based on historic data, as
done by ML and TSA techniques, is unable to depict structural disruptions, such as the
consequences of political interventions, technological breakthroughs or a pandemic.

5. Discussion

Compared to existing literature reviews on energy demand modelling presented in
Section 1 ([4,9–14]) and Table A1, this study covers all sectors, energy carriers, categories of
techniques, input data types, spatio-temporal characteristics, accuracy as well as advan-
tages, disadvantages and typical countermeasures. A recent publication in this journal
by Mosavi et al. [195] focuses on the application of ML models in the energy system com-
prising separate analyses of multiple studies including accuracy values on different scales.
In comparison, the study at hand presents a more detailed analysis of the demand sector,
including a wider range of techniques and a more extensive and structured literature base,
ensuring comparability of the properties of different articles.

Most articles focus on electricity consumption, which is not surprising since it is
the most valuable and expensive form of energy. Moreover, due to service level require-
ments of grid infrastructure and expansion of smart meters, vast amounts of detailed
and high-quality data is available in this sector [5]. However, the authors expect an in-
creasing number of smart metering devices also in the gas and heat grids, which will
improve data availability in the future and facilitate integrated energy system planning
and modelling [196,197].

Studies with a focus on buildings represent a significant overall share among analyzed
articles and are particularly relevant in the context of modelling heating and cooling
demand in the residential and commercial sector. Compared to relevant analyses on
the building sector assessing efficiency of wood-based constructions [198], their energy
consumption during use [199] or the potential of zero energy buildings [200,201], the
review at hand covers all energy demand sectors up to a national scale.

The industry sector is underrepresented in the available articles. Considering the
intense efforts regarding efficiency targets and demand side management potentials, there is
a large interest in modelling the industry sector including the adoption of new technologies,
as explained by Fleiter et al. [76]. The small number of articles can be explained by a lack
of publicly available data as well as the reluctance to publish this kind of research; energy
consumption of a company is often considered sensitive data since it implicitly contains
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information about production activity and efficiency [125]. The results of the review at
hand indicate that the challenges pointed out by Fleiter et al. regarding data availability
and transparency in the industrial sector persist [76].

Accuracy of prediction is one of the most important factors in decision making, not
only to enable the right choice of models but also to allow stakeholders to understand
the performance of the employed method. Unlike the findings of other authors ([4,14]), a
tendency of higher accuracy for ML and hybrid techniques or for longer temporal horizons
cannot be confirmed for the analyzed articles. It was shown that among the examined
literature models with higher spatial detail have a tendency towards lower accuracy. This
shows that comparing MAPE values of techniques irrespective of the individual context in
which they are applied is of limited explanatory value. In order to robustly compare and
discuss accuracy of different techniques they have to be applied to the same datasets, as
done in forecasting competitions, such as GEFCom [27,139,202–204].

6. Challenges and Future Research Directions

In the context of the energy transition, the focus of planning and decision-making
processes is expanding across infrastructures and sectors. Accordingly, the level of detail
and complexity of energy systems and energy demand models is increasing. Looking at
the results of the analysis, the research focus is on sector-unspecific electricity demand,
i.e., without a focus on a particular consumer group. Given the importance of carbon-free
energy carriers, a continuous high output of articles on electricity demand is expected but
should be backed up by intensifying research on modeling heat and hydrogen demand.
Compared to the residential and commercial sectors, the industrial sector has been less
frequent in the focus. Given the significant decarbonization challenges this sector faces,
intense research efforts are needed and should lead to an increasing number of publicly
available studies.

ML-techniques, more precisely ANN, and statistical approaches are the predominant
methods and historic energy demand, weather data, and calendar information are the
most frequently applied inputs. Based on the analysis of data-technique combinations
(Tables 4–8), continuous intensive use of data-driven ML-techniques can be expected,
especially in ensembles and combined models integrating key strengths of other models
such as Fuzzy expressions or metaheuristic optimization algorithms, using historic energy
demand and publicly available input data. At the same time, given the high explanatory
value of the technical system and appliance usage data, the authors see a high potential for
an intensifying application of these inputs. This development is supported by the expansion
of the sensor and metering sector, which will further increase the availability and quality
of data, especially on the level of buildings and appliances. In addition, this level of detail
is needed in order to accurately model demand flexibility options and their technical and
economic constraints in the different sectors. This also enables a broader application of
detailed engineering-based models, which are particularly suited for representing the
input-output relations.

Future work should make use of the knowledge base provided by this literature
review, inspiring hypothesis-driven analyses and quantitative testing, focusing on the
applicability and dominance of specific data-method combinations for energy demand
modeling.

7. Conclusions

A comprehensive and up-to-date systematic literature review about energy demand
modeling regarding techniques, data, accuracy, energy carriers, sectors, and spatio-temporal
level of detail was presented. 419 articles published between 2015 and 2020 were reviewed.
References are structured by property and compiled in tables for easy access.

The analysis has shown that energy demand modeling is a research field with contin-
uously high numbers of yearly publications. The analysis of the articles proved the current
trend of increasing popularity for ML approaches. Statistical models such as regression and



Energies 2021, 14, 7859 34 of 58

TSA are well established, whereas stochastic/fuzzy/grey and metaheuristic techniques
often are used as part of combined approaches. Engineering-based techniques stand out
as they provide a more detailed representation of the physical properties of the energy-
consuming system resulting in higher external and internal data requirements. A research
gap was identified regarding models for industrial energy demand.

The level of accuracy proves to be a difficult criterion for a ranking of techniques since
attainable performance depends on the particular context. Among the articles, a higher
level of detail, e.g., forecasting on the level of appliances, produced lower levels of accuracy
compared to forecasts of aggregated loads on country levels.

The material presented here shows trends with regard to the prevailing combinations
of methods and data and allows these trends to be tested on the basis of quantitative
methods in the future. In particular, this review provides the basis for further analyses and
quantitative testing of hypotheses regarding the applicability and dominance of specific
methods for sub-categories of demand modeling.
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Appendix A

Table A1. Characteristics of existing literature reviews. Overview of existing literature reviews by content. In each line,
black squares (�) indicate topics covered in the given review. Only seven literature reviews used a systematic approach.
Most reviews cover more than one sector or energy carrier and are concerned with analyzing model inputs (demand drivers).
Few reviews show the number of articles reviewed. Only the present article covers all aspects.

Systematic Energy Carriers Sectors Building
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en
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A
ll

se
ct
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s

� � � � 41 [9]
� � � � � n/a [11]
� � � � � � � � 63 [10]
� � � � � � 483 [4]
� � � � � � 130 [12]
� � � � � 39 [13]
� � � � � � � 116 [14]

� � � � � n/a [205]
� � � � � n/a [206]
� � � n/a [207]
� � � � � 31 [208]
� � � n/a [5]
� � n/a [209]
� � � � � 50 [23]
� � � n/a [210]
� � � � n/a [211]
� � � n/a [212]
� n/a [213]

� � � n/a [214]
� � � � n/a [215]
� � � � � � n/a [216]
� � � � n/a [217]
� � � � � � � � n/a [128]
� � � � � n/a [218]
� � � � � n/a [219]
� � � � � � n/a [220]

� � � 17 [221]
� � n/a [222]

� � � n/a [223,224]

� � � � � � � � � � � 419 This
review
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Table A2. Keyword compilation. The table contains the keywords used for the literature research
arranged by thematic groups. Keywords in the bottom cell are explicitly excluded, which leads to a
more precise search result. The * is a truncation operator to retrieve words with variant zero to many
characters.

Energy Demand Modeling

Electric * Demand Forecast *
Natural gas Consumption Estimat *

Heat Load Predict *
Requirement Project *

Intensity Simulation
Disaggregation

Planning
Model *

Bottom-up
Top-down

Excluded keywords: storage, carbon, emission, price, optimization, vehicle, climate

Search string applied to the Web of Science Core Collection on 1 May 2021:
(TI = ((electric* OR “natural gas” OR heat) AND (demand OR consumption OR load OR

requirement OR intensity) AND (forecast* OR estimat* OR predict* OR project* OR simulation
OR disaggregation OR planning OR model* OR “bottom-up” OR “top-down”)) NOT TS =

(storage OR carbon OR emission OR price OR optimization OR vehicle OR climate))

Table A3. Articles sorted by energy carrier and sector. A compilation of the results of the analysis regarding energy carriers
and sectors, which allows for direct tracing of the respective references.

Energy Carrier Sector References

Electricity

All sectors
[5,16,27,29,30,33,34,39,40,47,48,51,52,58–60,69–73,81,82,88–90,94,95,97,100,103,105,106,108–
111,113,117,118,129,135,136,138–142,147–149,157,161–163,165,168–170,172,176–179,181,182,184–186,189–
191,202,203,225–321]

Residential [19–21,44,52,56,62,64,66,68,75,79,84,86,92,93,96,98,122,126,130,143,158,160,164,166,174,322–393]

Commercial [17,21,61,63,75,79,84,91,102,120,131,132,137,145,150–152,156,173,233,325,333,336,340,346,357,362–
364,371,378,394–413]

Industry [45,49,51,53,79,84,155,180,226,233,249,336,351,362,371,408,414–424]

Gas

All sectors [18,80,99,112,133,153,192,287,425–436]
Residential [104,116,437–445]
Commercial [83,104,116,137,438,441,443]
Industry [83,419,441,443,446]

Heating/cooling

All sectors [37,87,146,175,183,447–452]
Residential [22,52,54,57,74,85,101,144,154,171,187,194,334,341,451,453–464]
Commercial [61,77,91,101,107,114,115,137,154,159,398,459,465–473]
Industry [53,419,474]

Table A4. Techniques and input data used per article (1/4) (thanks to the reviewers’ advice, Tables 5–9 have been designed
in a clear and understandable structure, highlighting techniques and applications).

Method Input References

ANN

Historic energy demand

[16,21,40,45,48,49,51,58–60,68–70,72,73,80,82,87,88,91,94,96,97,99–101,106,108,110,112–118,130–
132,135–138,145–148,153,154,159,161,162,164–168,172–174,176,184,185,191,229,235,237,244,248,249,252,
255,260,261,263,265,267,270,277,278,283,286,288,293,294,325,340,342,346,348,349,352,354,356,360,363,
366,373,399,402,405,407,427,428,442,448,453,454,456,470,475–477]

Weather data
[21,22,40,68–70,80,82,87,91,96,97,101,106,112,114,115,118,130,132,136,138,145–
148,151,153,154,159,164,165,172–174,176,183,191,229,237,244,255,261,263,267,275,325,340,348,349,356,
363,402,405,407,427,432,442,448,454,456,470,476,477]

Calendar data [48,70,73,88,94,97,99,101,106,110,112–115,118,136,138,146,147,154,159,162,164,165,173,183–
185,229,235,237,244,263,293,325,340,342,348,349,354,399,470,477]

Demographic or
economic data [21,40,49,82,101,133,148,255,258,270,277,348,356]

Technical system data [22,68,80,82,87,91,96,101,144,159,269,354,366,402,416,453,457,474]
Usage or behavioral data [40,96,151,255,348,432]
Energy prices [49,96,148,427]
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Table A4. Cont.

Method Input References

Instance
based

Historic energy demand [33,34,37,39,68,71,82,89,90,101,107,108,111,131,147,163,175,178,229,236,263,285,331,340,346,349,356,361,
365,396,398,425,442,449,478]

Weather data [37,39,68,82,89,101,107,147,163,175,183,229,263,340,349,356,396,442,449]
Calendar data [39,101,111,147,183,229,236,263,331,340,349,396,425,449,478]
Demographic or
economic data [34,82,89,101,107,178,258,285,331,356,478]

Technical system data [37,68,82,101,107,398,449,457]
Usage or behavioral data n/a
Energy prices [178,331]

Table A5. Techniques and input data used per article (2/4). Continuation of Table A4.

Method Input References

Clustering

Historic energy demand [21,48,49,81,82,91–93,109,114,118,155,163,232,234–
236,263,268,279,322,323,326,328,342,353,355,360,369,372,395,403,428,476]

Weather data [21,82,91–93,114,118,163,263,275,348,353,476]
Calendar data [48,92,93,109,114,118,235,236,263,326,342,348]
Demographic or economic data [21,49,81,82,93,232,234,348,395]
Technical system data [82,91,93,353,395]
Usage or behavioral data [348,395]
Energy prices [49]

Ensemble
learning

Historic energy demand [94–97,100,106,114,120,130,132,133,138,162,168,355,363,407,449,476]
Weather data [95–97,106,114,130,132,138,363,407,449,476]
Calendar data [94,95,97,106,114,120,138,162,449]
Demographic or economic data [133]
Technical system data [96,144,449]
Usage or behavioral data [96]
Energy prices [96]

Deep
learning

Historic energy demand [21,72,73,106,153,164–167,229,248,267,278,293,325,352,366]
Weather data [21,106,153,164,165,229,267,325,432]
Calendar data [73,106,164,165,229,293,325]
Demographic or economic data [21]
Technical system data [366]
Usage or behavioral data [432]
Energy prices n/a

Bayesian
algorithms

Historic energy demand [39,98,99,145,146,164,249,250,405]
Weather data [39,98,145,146,164,239,345,405]
Calendar data [39,98,146,164,239]
Demographic or economic data [99,345]
Technical system data [269,345]
Usage or behavioral data [98]
Energy prices [98]

Decision
trees

Historic energy demand [100,101,228,407,446,449,468]
Weather data [101,407,446,449,468]
Calendar data [101,228,446,449,468]
Demographic or economic data [101,446,468]
Technical system data [101,457,468]
Usage or behavioral data n/a
Energy prices n/a



Energies 2021, 14, 7859 38 of 58

Table A6. Techniques and input data used per article (3/4). Continuation of Table A5.

Method Input References

Regression

Historic energy demand

[17,27,30,61–63,75,84–86,91,96,118,131,133,134,138,140,143,146,148–150,152,154,156–
160,168,181,189,192,202,230,231,234,239,240,242,243,255,262,263,268,270,273,277,280,282,
285,289,292,327,329,331,337,338,340,344,356,357,363,364,367,371,395,397,398,400,401,404,
404,407,438–440,442,446,447,465,468]

Weather data
[27,61–63,75,84,91,96,118,138,140–142,146,148–
150,154,157,159,160,183,239,242,255,289,292,329,338,340,363,367,394,397,404,407,438–
440,442,446,447,449,465,468]

Calendar data [27,61–63,118,138,140,146,150,154,157,159,160,183,230,239,280,292,331,340,400,438,440,
446,447,449,468]

Demographic or economic data [75,85,133,141,148,157,158,189,234,255,262,270,277,285,292,298,327,330,331,338,351,395,
439,440,446,447,465,468]

Technical system data [61,63,75,85,96,144,152,158,159,327,329,330,337,338,344,358,394,395,398,400,449,458,468]
Usage or behavioral data [63,86,96,142,255,327,330,395,400,401]
Energy prices [63,96,148,280,331,439,458]

TSA/
ARCH

Historic energy demand

[17,29,30,39,47,48,59,60,79,81,95,104,105,109,113,120,131,134,136,143,155,156,162,167,
178–180,182,202,227,231,240,241,243,245–247,249–251,253,256,259,261,263–265,271–
273,276,281,283,288,290,294,296,297,324,333,339,342,343,346,356,363,367,369,371,373,403,
407,414,418,430,443,479]

Weather data [39,95,136,143,180,202,243,253,259,261,263,264,290,339,343,356,363,367,407,430]
Calendar data [39,48,95,109,113,120,136,162,202,227,231,241,243,245,263,290,342,343,414]
Demographic or economic data [29,81,178,240,241,246,273,356,443]
Technical system data n/a
Usage or behavioral data [339]
Energy prices [178,241,246]

Stochastic

Historic energy demand [20,27,29,30,33,34,40,44,45,64,66,68,79,93,98,133,139,167,176,184,202,203,228,238,243,246,
257,276,294,324,414,418]

Weather data [27,40,52,68,93,98,139,176,202,203,238,243,334,347]
Calendar data [27,44,52,93,98,121,122,184,202,203,228,238,243,347,414]
Demographic or economic data [29,34,40,66,93,122,133,246,334,347]
Technical system data [20,52,66,68,93,121,334,347]
Usage or behavioral data [40,44,52,66,98,121,122,334]
Energy prices [98,246]

Fuzzy

Historic energy demand [16,18,47–49,51,59,69,70,75,112–
114,118,133,135,163,164,192,251,252,270,272,284,285,327,336,349,426,453,470]

Weather data [69,70,75,112,114,118,151,163,164,349,470]
Calendar data [48,70,112–114,118,164,284,349,470]
Demographic or economic data [49,75,133,270,285,327,336,475]
Technical system data [327,409,453]
Usage or behavioral data [151,327]
Energy prices [49]

Table A7. Techniques and input data used per article (4/4). Continuation of Table A4.

Method Input References

Meta-
heuristic

Historic energy demand [34,37,39,40,49,71–73,112,116,117,136,150,163,175,189–192,254,363,407,427,437,446,447]
Weather data [22,37,39,40,112,136,150,163,175,191,254,363,407,427,437,446,447]
Calendar data [39,73,112,136,150,446,447]
Demographic or economic data [34,40,49,189,190,446,447]
Technical system data [22,37]
Usage or behavioral data [40]
Energy prices [49,190,427]

Engineering-
based

Historic energy demand [53,75,78,85,129,186,187,287,291,326,329,341,353,359,368,370,371,374,408,431,469]
Weather data [52–54,74,75,77,78,187,194,329,332,334,347,353,368,408,450,466,467,469,480,481]
Calendar data [52,77,121,122,326,332,347,375]
Demographic or economic data [53,75,85,122,226,233,291,295,330,334,347,374,408,431,441,481]

Technical system data [19,52,54,74,75,77,85,121,186–188,194,274,295,329,330,332,334,341,347,353,374,375,406,
409,415,417,429,450,466,469,471,474,480–483]

Usage or behavioral data [19,52,54,121,122,330,334,370,375,450,481,483]
Energy prices [295,332]
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Table A8. Techniques and level of detail per article (1/2). Compiled results of the analysis on techniques, temporal horizon,
and spatial resolution. The table follows a matrix structure: all articles referenced within a cell rely on the category of
techniques specified.

Method Temporal
Horizon Spatial Resolution References

Machine learning Short

Appliance [45,107,163,164,166,236,265]

Building/household
[40,59,87,91,92,98,112,117,120,130,137,154,162,168,173,175,248,279,
323,331,342,346,348,355,360,365,366,369,381,387,392,396,398,399,
402,403,407,413,419,448,462,477,478]

Regional
[37,58,60,71,94,97,106,113,116,135,136,140,146,147,161,165,169,174,
176,183,229,235,237,244,249,267,275,286,307,315,319,320,356,434,
442,452,459,484]

National [16,73,118,155,294,311,317,318,428,432]

Medium

Appliance [352,373,474]

Building/household [101,102,115,132,143,325,340,349,378,388,395,410,421,445,446,454,
456,470,476]

Regional [33,68,69,80,90,100,110,111,153,171,260,268,278,288,322,411,449]
National [95,191,250,261,263]

Long

Appliance n/a
Building/household [89,114,156,159,310,328,353,354,380]
Regional [21,34,48,70,82,96,103,108,131,141,170,234,270,302,305,309,362,384]
National [29,49,51,99,138,178,232,255,258,277,283,285,300,306,312,316,436]

Statistical

Short

Appliance [231,265,344,418,423]

Building/household [59,61–63,91,120,154,158,162,168,331,335,335,339,342,346,367,369,
379,387,393,394,398,403,407]

Regional [30,60,79,113,136,140,146,157,183,227,249,264,276,282,290,356,438,
440,442]

National [118,142,155,182,242,243,292,294,308,318,330]

Medium

Appliance [373,401,420]
Building/household [17,75,102,143,180,324,337,338,340,343,390,395,446,473]
Regional [247,253,259,268,272,288,289,397,479]
National [95,245,246,250,251,261,263,444]

Long

Appliance [329]
Building/household [85,156,159,160,321,327,333,364,382,404,414]

Regional [47,48,96,104,105,131,141,149,150,177,234,241,256,270,271,280,281,
296,297,301,305,357,391,397]

National [29,83,84,133,134,138,178,179,181,189,192,230,240,255,262,273,277,
283,285,298,303,312–314,351,371,435,436,439,443]

Table A9. Techniques and level of detail per article (2/2). Continuation of Table A6.

Method Temporal
Horizon Spatial Resolution References

Stochastic/
Fuzzy/
Grey

Short

Appliance [45,163,164,418]
Building/household [20,40,46,52,59,66,98,112,335,392,393]
Regional [30,79,113,135,176,276,299,434]
National [16,118,243,257,294,317]

Medium

Appliance n/a
Building/household [64,75,324,349,385,470]
Regional [33,68,69,272,411]
National [246,251]

Long

Appliance n/a
Building/household [114,321,327,347,382,414,463]
Regional [34,47,48,70,270,321,334,336,362]
National [18,29,49,51,121,133,192,284,285,435]

Meta-
heuristic Short

Appliance [163]
Building/household [40,112,117,175,387,407,413,437]
Regional [37,71,116,136,320]
National [73]

Medium

Appliance n/a
Building/household [446]
Regional [254]
National [191]

Long

Appliance n/a
Building/household n/a
Regional [34,150]
National [49,189,190,192]



Energies 2021, 14, 7859 40 of 58

Table A9. Cont.

Method Temporal
Horizon Spatial Resolution References

Engineering-based
Short

Appliance [274,406,415,467,482]
Building/household [52,186,332,461]
Regional n/a
National [330]

Medium

Appliance [474,480]
Building/household [19,74,75,78,188,466]
Regional [129]
National [368]

Long

Appliance [194,329,375,483]
Building/household [54,77,85,341,347,353,463,481]
Regional [187,226,233,287,291,295,334,374,441]
National [126]

Figure A1. Boxplot of MAPE values by different temporal resolutions. The same mode of display as
in Figure 10. This shows that temporal resolution (length of time steps) does not seem to necessarily
have an impact on accuracy measured by MAPE.

Figure A2. Boxplot of MAPE values by different temporal horizons. The same mode of display as in
Figure 10. This shows that the length of the temporal horizon does not seem to necessarily have an
impact on accuracy measured by MAPE.
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Figure A3. Technical systems analyzed. This shows that most articles focus on power grids and
buildings.
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376. Doğan, R.; Akarslan, E. Investigation of Electrical Characteristics of Residential Light Bulbs in Load Modelling Studies with
Novel Similarity Score Method. IET Gener. Transm. Amp. Distrib. 2020, 14, 5364–5371. [CrossRef]

377. Haq, E.U.; Lyu, X.; Jia, Y.; Hua, M.; Ahmad, F. Forecasting Household Electric Appliances Consumption and Peak Demand Based
on Hybrid Machine Learning Approach. Energy Rep. 2020, 6, 1099–1105. [CrossRef]

378. Zhou, D.; Ma, S.; Hao, J.; Han, D.; Huang, D.; Yan, S.; Li, T. An Electricity Load Forecasting Model for Integrated Energy System
Based on BiGAN and Transfer Learning. Energy Rep. 2020, 6, 3446–3461. [CrossRef]
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