
Lagrangian Decompositions for the Two-Level FTTx Network
Design Problem

Andreas Bley∗ Ivana Ljubić† Olaf Maurer∗
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Abstract

We consider the design of a passive optical telecommunication access network, where clients have
to be connected to an intermediate level of distribution points (DPs) and further on to some central
offices (COs) in a tree-like fashion. Each client demands a given number of fiber connections to its
CO. Passive optical splitters installed at the DPs allow k connections to share a single common fiber
between the DP and the CO. We consider fixed charge costs for the use of an edge of the underlying
street network, of a DP, and of a CO and variable costs for installing fibers along the street edges
and for installing splitters at the DPs. We present two Lagrangian decomposition approaches that
decompose the problem based on the network structure and on the cost structure, respectively. The
subproblems are solved using MIP techniques. We report computational results for realistic instances
and compare the efficiency of the Lagrangian approaches to the solutions of an integrated MIP
model.

1 Introduction

Motivation: In the deployment of passive optical networks (PONs), optical splitters are used to enable
a single optical fiber to serve multiple premises. Optical line terminals (OLTs) are placed at the service
provider’s central offices (COs) and a number of optical network units (ONUs) is placed either at the
location of end users (FTTH deployment) or close to them (FTTC/FTTB deployment). Splitters of
different types (e.g., 1:16, 1:32, or 1:64) are placed at the distribution points (DPs) between ONUs and
OLTs and several splitters can be aggregated in a single cabinet. A great advantage of PONs compared
to point-to-point network architectures is that it reduces the amount of fiber and the overall set-up costs
required for serving the end premises. Telecommunication providers are interested in minimizing the
investment costs for building a PON, while providing the required services. The main planning task
consists of deciding on the location and capacity of ONUs and DPs and the routing paths to lay down
the optical fiber, so that the required services are available at the end premises. This problem is of great
relevance for the deployment of new generation telecommunication networks. In this paper, we will
introduce a new network design problem that we will refer to as the Two-Level FFTx Network Design
Problem (2FTTx). This problem captures the most important optimization aspects of the deployment
of passive optical networks with a single layer of splitters between ONUs and OLTs. At the same time,
our problem simplifies the very complex costs and capacity structure stemming from the modular
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Figure 1: (a) An example of the input graph. Triangles are customers, squares are potential DPs, pen-
tagons are potential COs and circles are the remaining nodes. Numbers below triangles are customer
demands. (b) A feasible solution. Two COs and three DPs are opened. Numbers next to the DPs are the
splitter ratios - one splitter per DP location is installed. Consequently, flow along thick edges is one.

cable and duct types installed on the links. Rather than assuming that the cable cost of each link is
a stepwise increasing function of the number of optical fibers, we linearize those values and assume
that a fixed price has to be paid for each single fiber installed on an edge. In terms of cost, we only
distinguish between fibers connecting ONUs to DPs and DPs to OLTs in order to account for the typically
different cable and duct configurations used in these subnetworks. We will refer to the end premises
as the end customers. A subnetwork containing the routing paths between COs and DPs is called the
feeder network (FN), and a subnetwork containing the routing paths between DPs and end customers is
called the distribution network (DN). In our setting, we assume that both the feeder network as well as
the distribution network must have tree (or, more precisely, forest) topologies. Although there are no
technological reasons for this restriction, this requirement is typically imposed by the network operator
for practical reasons. With a tree-like network structure, deployment, upgrade and maintenance of a
PON become much simpler and less error-prone in practice. For the same reason, operators usually also
forbid to use the same cable (fiber bundle) for both feeder network and distribution network fibers, for
fibers heading into different directions, or for fibers heading towards different COs. Figure 1 illustrates
an example instance.

Our main goal in this paper is to develop computational methods that enable practitioners to (ap-
proximately) solve very large instances of the 2FTTx problem with very little computing time. Such
methods are of particular interest in the early stages of the long-term strategic network planning, when
numerous planning scenarios with varying technological assumptions and demand, cost, or revenue
predictions are evaluated. These are then used to identify the most important parameters and make
the global strategic decisions concerning technology vendors, the use of existing or the building of new
infrastructures, or the long-term evolution of the network, for example. These case studies require meth-
ods that are able to solve the 2FTTx network design problem for very large network regions consisting of
several PON areas very fast and with a sufficiently small optimality gap, but not necessarily to optimality.
The proposed Lagrangian decomposition approaches perfectly meet these requirements. They are also
very useful to quickly compute good bounds and approximate solutions in later planning stages. For the
final network and hardware configuration planning, which is typically performed only once for each of
the much smaller single PON areas, it is however advisable and computationally feasible to use a more
accurate model of the various technical elements (such as the different duct and cable types) in order
to fully exploit all potential savings.
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1.1 Problem Definition

More formally, the 2FTTx is defined as follows: We are given an undirected graph G = (V, E) with the set
of nodes V partitioned into customers (VC), potential distribution points (VD), potential central offices
(VCO) and the remaining nodes (VO). At least one central office has to be opened, and each customer
v ∈ VC has to be provided with at least dv ≥ 0 fibers. Fiber connections run from a CO, following a
path through at least one DP, until they reach an end customer. Splitters are installed at DPs so that
every single fiber emanating from a CO can be split into multiple fibers continuing towards customers
according to the splitting ratios of the given splitter types. A fiber path emanating from a CO must pass
through exactly one splitter at some DP on its way towards a customer. This splitter ’splits’ the path into
its feeder sub-path between the CO and the DP where this splitter is located and the distribution sub-
path between the DP and the customer. Other DPs that are installed along the fiber path are bypassed
by the feeder and the distribution sub-path. Note that we assume the node sets VC , VD, and VCO to be
disjoint in our input in order to properly model the different functionalities and costs associated with the
elements at ONUs, splitters and OLTs in the considered two-level hierarchy. A network location that may
contain a central office or a distribution point or both, for example, is represented by two co-located
(and connected) nodes belonging to VC and VD, respectively. The approach of using different nodes
representing the different functionalities that a network location may have is extremely powerful, as
it enables practitioners to selectively permit or forbid such combinations depending on the individual
location. Also note that (some of the) fibers can simply bypass nodes in VD or in VC and VCO without
being split or without being terminated, respectively.

We consider various capacities and fixed and variable costs related to the setup of the infrastructure
and to the installation of fibers and components of the network. Along each edge (trail) e ∈ E, at most
ue fibers can be installed in the feeder network and at most ue fibers can be installed in the distribution
network. The fixed-charge cost for setting up edge e ∈ E is ce. The cost of installing a single feeder
network fiber along edge e ∈ E is c f

e and the cost of a single distribution network fiber is cg
e . We assume

different costs for feeder and distribution fibers in order to account for the typically different cable and
duct configurations used in these subnetworks in practice.

At the potential distribution point and each central office, we consider the following capacity re-
strictions and costs. At each CO v ∈ VCO, a total number of at most uv feeder fibers may be terminated.
Setting up CO v ∈ VCO induces a fixed cost of cv. As each fiber that emanates from a CO is terminated
(or, more precisely, split) by exactly one splitter at some DP, we do not introduce an individual parameter
for the cost of terminating a single fiber at a CO. Instead, this cost is included in the cost of the splitter
device, that necessarily has to be installed at the other end of the fiber.

Similarly, at each DP v ∈ VD, a total number of at most uv distribution fibers may be terminated (or,
more precisely, connected to a splitter) and setting up v ∈ VD costs cv . Using different values for uv and
cv, different classes of DPs, such as street cabinets or underground closures, can be easily modeled. If
several classes are possible at the same location, these can be modeled via different co-located nodes in
the graph. Let T denote the set of all available splitter types that can be installed in any of the considered
potential DPs. For each t ∈ T , let st be the splitter ratio. As not all splitter types can be installed in all
DPs, given node dependent upper bounds Jt,v , t ∈ T and v ∈ DP, describe how many splitters of which
type can be installed at the different potential DPs. The costs of installing one splitter of type t ∈ T at
DP v ∈ DP is ct,v. Recall that this cost also includes the termination cost at the CO for the feeder fiber
supplying this splitter.

Our model also permits to limit the number of chosen DPs and COs, which has been of practical
interest especially in multi-period network deployment studies. For this, the input parameters ND and
NCO express the maximum total number of allowed DPs and COs, respectively. In the computational
experiments reported in this paper, however, these parameters are infinity.
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The optimization goal consists of deciding which COs and which DPs to open, which splitters to
install at the DPs, and how to route paths in the FN and the DN so that demands of all customers are
satisfied at minimum cost. Thereby, DP and CO locations can be traversed as intermediate nodes, in
which case, no opening costs need to be paid for them. In addition, even if the feeder and the distribution
network both use the same edge, the fixed-charge cost ce is paid only once. Moreover, FN and DN are
required to have tree topologies.

Related Literature. There are several problems studied in the literature that deal with the design of
FTTx networks. Connected Facility Location, for example, considers the design of a tree-star network,
where facilities (e.g., splitters) are connected to customers in a star-like fashion. There are no splitter-
or edge-capacities and fiber costs are discarded, so that the optimization goal consists of determining
the network topology that minimizes the facility opening plus edge set-up costs. This problem has been
studied in Eisenbrand et al. [5], Gollowitzer and Ljubić [8], Leitner and Raidl [18], to mention a few
recent references.

Another related problem that combines network design and facility location aspects is the Two Level
Network Design (TLND) problem. In this problem, we are given two technologies and two types of
nodes that need to be served by them, and the goal consists of building a tree-tree network such that
facilities are installed at the transition points between the two technologies (see Gollowitzer et al. [9]).
In Balakrishnan et al. [1] the two level network design problem without facilities is studied. The 2FTTx
can be seen as a generalization of the TLND problem: if sufficiently large splitter- and edge-capacities
are assumed, and the fiber costs are zero, the 2FTTx reduces to the TLND problem.

The Local Access Network Design (LAND) problem is a problem that combines the topological design
of the network with the decisions on routing the fibers in order to serve customer demands, while
respecting edge capacities (see, e.g. Salman [26], Putz [25]). This problem captures the capacity
aspects of our problem, but assumes that there are no splitters installed on the way between the COs
and the end premisses.

Finally we point out that there are also other works in the literature focusing on other designing
aspects of FTTx networks. For example, in recent works presented in Gualandi et al. [11, 12], Kim
et al. [17], Chardy et al. [3], the authors concentrate on splitter location and dimensioning aspects by
assuming that the routing paths are given, and therefore can be replaced by assignment arcs.

More practice-oriented approaches have been studied in Martens et al. [21]. By using a two-step
approach with suitable MIP formulations, it is possible to optimize fiber-optic networks in realistic
scenarios (see Martens et al. [22]). Also Orlowski et al. [24] conducted various practice-oriented case
studies that originated from planning scenarios by a German carrier. Finally, a survey by Grötschcel et al.
[10] provides a comprehensive overview on optimization approaches used in the deployment of optical
access networks.

Our Contribution. We first propose an integrated MIP model (cf. Section 2) and present families
of strengthening valid inequalities for it. To deal with the size and complexity of the problem we
then propose two Lagrangian decomposition approaches for solving the 2FTTx (cf. Section 3 and 4).
The first approach decomposes the problem based on the network structure and the second approach
decomposes the problem based on the cost structure. The subproblems are solved using MIP techniques.
A combination of Lagrangian heuristics (presented in Section 5) and MIP techniques allows us to
solve some of the real-world network planning instances within a few percent of optimality. Detailed
computational results are shown in Section 6.
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2 MIP Model

Let A be the set of arcs obtained by bidirecting edges from E. We will use binary variables xv ∈ {0,1}
for each v ∈ VD to indicate whether splitters are installed at location v or not. Similarly, binary variables
zv ∈ {0,1} will indicate whether a central office v ∈ VCO is opened or not. The number of splitters of
type t installed at the DP location v ∈ VD will be counted using integer variables yt,v. Finally, for each
edge e ∈ E, binary variables we will indicate whether the edge e is used or not, and the number of fibers
in the DN and the FN installed along arc a ∈ A is counted using variables ga and fa, respectively. Using
these variables, our objective function can be described as follows:

Objective function

min
∑

v∈VCO

cvzv +
∑

v∈VD

cv xv +
∑

e∈E

cewe +
∑

v∈VD

∑

t∈T

ct,v yt,v +
∑

a∈A

(cf
a fa + cg

a ga)

The first two terms are the installation costs for COs and DPs, followed by the installation costs for
the edges, followed by the splitter installation costs. The last summation corresponds to the total fiber
costs installed in the DN and the FN.

Bounds on splitter installations, DPs and COs. The bounds regarding the total number of allowed
DPs and COs are expressed using constraints (1) and (2), respectively, and the bounds regarding the
maximal number of splitters of type t at the DP node v are expressed using (3):

∑

v∈VD

xv ≤ ND (1)

∑

v∈VCO

zv ≤ NCO (2)

yt,v ≤ Jt,v xv v ∈ VD, t ∈ T (3)

Each splitter installed at a DP location requires a single fiber from a CO (where a transceiver needs
to be placed). The overall number of splitters installed at a DP determines its upstream-fiber demand.
The overall number of fibers available in the DN and obtained after splitting at a certain DP location
determines its downstream-fiber supply. Before we present the remaining constraints of our MIP model,
we introduce auxiliary variables that help simplify the notation:

Fv ∈Q ∀v ∈ VD : the number of upstream-fibers at the DP v
Gv ∈Q ∀v ∈ VD : the number of downstream-fibers at the DP v
Hv ∈Q ∀v ∈ VCO : the number of transceivers installed at the CO v
w f

a ∈ {0, 1} ∀a ∈ A : 1 if the arc a is used by the f -flow
wg

a ∈ {0,1} ∀a ∈ A : 1 if the arc a is used by the g-flow

Flow conservation in distribution and feeder network. In order to ensure a feasible routing in the
DN, the following flow-preservation constraints (4) are used. They also state that the total customer
demand have to be satisfied using the supply of the downstream-fibers that are available at distribution
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points. Constraints (5) and (6) make sure that the g-flow is routed along e only if the edge e is installed.

∑

a∈δ−(v)

ga −
∑

a∈δ+(v)

ga =







dv v ∈ VC

−Gv v ∈ VD
0 else

v ∈ V (4)

gi j ≤ uewg
i j (i, j) ∈ A (5)

wg
i j +wg

ji ≤ we {i, j} ∈ E (6)

At the first glance, variables wg
a can be omitted. However, they are used later on to derive cuts that will

strengthen the LP relaxation.
To make sure that the routing between COs and DPs is feasible, we consider constraints (7). These

constraints also make sure that the overall upstream-demand at distribution points (expressed using Fv
variables) is to be satisfied by installing a sufficient number of transceivers at the corresponding COs
(Hv variables). Constraints (8) and (9) make sure that the f -flow is routed along e only if the edge e is
installed.

∑

a∈δ−(v)

fa −
∑

a∈δ+(v)

fa =







Fv v ∈ VD
−Hv v ∈ VCO

0 else

v ∈ V (7)

fi j ≤ uew f
i j (i, j) ∈ A (8)

w f
i j +w f

ji ≤ we {i, j} ∈ E (9)

Notice that in this model, since f (g) is a single commodity flow, the flows of the opposite directions
cancel out. However, it might happen that along an edge e = {i, j}, f sends flow in direction (i, j) and
g sends flow in direction ( j, i) (see Figure 1(b) where this happens along the edge {u, v}).

Moreover, the tree topologies of FN and DN are guaranteed using the following in-degree constraints:
∑

a∈δ−(i)

w f
a ≤ 1, i ∈ V (10)

∑

a∈δ−(i)

wg
a ≤ 1, i ∈ V (11)

Upstream-demand and downstream-capacity at DPs. For each installed splitter at a DP v ∈ VD, a
single fiber in the FN is required, and the total upstream-demand at v is calculated using constraints (12).
The number of downstream-fibers available at the DP v is bounded by the total number of installed
splitters and their capacity, see (13):

Fv =
∑

t∈T

yt,v v ∈ VD (12)

Gv ≤
∑

t∈T

st yt,v v ∈ VD (13)

Note that these constraints link the distribution network and the feeder network. The total flow arriving
at the customer nodes in the distribution network can never exceed the flow into the distribution points,
except by factors introduced by the splitting ratios of the splitters available in the model.
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Finally, the number of available downstream fibers at DPs and COs v is also bounded by uv , i.e.:

Gv ≤ uv xv v ∈ VD (14)

Hv ≤ uvzv v ∈ VCO (15)

Without loss of generality we assume that uv ≤
∑

t∈T st Jt,v .
The set of feasible 2FTTx solutions is completely described using constraints (1) – (15). This MIP

model will be called the aggregated MIP model. It contains a large number of variables and constraints,
and therefore, it is quite unrealistic that using this model one will be able to solve instances arising in
the practical application. Besides, the lower bounds obtained by this model may be quite weak, due to
involved “bigM”-constraints: (5),(8),(14),(15). To overcome the problems with the weak lower bounds,
in the following subsection we will first present families of strengthening valid inequalities. In the
second half of the paper, to deal with the size and complexity of the problem, we will propose two
Lagrangian decomposition approaches. These will enable us to solve some of the real-world network
planning instances very close to optimality.

2.1 Valid inequalities for the aggregated MIP model

2.1.1 Connectivity constraints

Connectivity constraints in the DN. We observe that the flow conservation constraints (4) together
with the capacity constraints (5) define a single-commodity flow problem in the distribution network.
For the problem to be feasible, for each customer v ∈ VC , dv units of flow need to be transported from a
distribution point with xk = 1 to v. This also implies that the distribution network has to be connected.
The following connectivity constraints in the DN are therefore valid for our problem. Solutions to the
problem have to fulfill them for every node subset W that contains at least one customer node.

∑

k∈W∩VD

xk +
∑

(i, j)∈δ−(W )

wg
i j ≥ 1 W ⊂ V, W ∩ VC 6= ; (16)

Here, W is an arbitrary node subset that contains at least one customer node. These constraints basically
state that for each customer i there has to exist an open DP k such that they can be connected by a
directed path from k to i in the subgraph of G induced by wg variables. These inequalities are not
implied by the previous model and can be used to strengthen the LP bounds (see, e.g., Ljubić et al.
[20]).

Connectivity constraints in the FN. Similarly, the flow conservation constraints (7) together with
the capacity constraints (8) define a single-commodity flow problem in the feeder network. For the
problem to be feasible, for each DP k ∈ VD, Fk flow units need to be transported from a central office
with z` = 1 to k. As above, the following connectivity constraints in the FN are therefore valid. Solutions
to the problem have to fulfill them for every node subset W that contains at least one distribution point:

∑

`∈W∩VCO

z`+
∑

(i, j)∈δ−(W )

w f
i j ≥ xk W ⊂ V, k ∈W ∩ VD (17)

They ensure that open COs and open DPs belong to a connected network, and even more, that for each
open DP k there has to exist an open CO ` such that they can be connected by a directed path from ` to
k in the subgraph of G induced by w f variables. Also these inequalities are not implied by the previous
model and can be used to strengthen the LP bounds.
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Global connectivity constraints. These constraints are based on the observation that the overall
solution has to be connected. Furthermore, since the edges e ∈ E can be oriented in one or the other
direction, and the costs for the installation are paid only once, no matter if the same edge is used twice
(once in the FN, and once in the DN), the following directed connectivity cuts are valid and are not
implied by the previously introduced cuts. Solutions to the problem have to fulfill them for every node
subset W that contains at least one customer node:

∑

`∈W∩VCO

z`+
∑

(i, j)∈δ−(W )

w f
i j ≥ 1 W ⊂ V, W ∩ VC 6= ; (18)

These inequalities make sure that for each customer i ∈ VC there is a directed path between an open CO
` and i in the subgraph induced by w f variables. That way, the variables w f that are originally intended
to model only the arcs of the FN, are used to “push-up” the capacities of fractional edge variables in the
DN.

Lemma 2.1. Constraints (16), (17) and (18) can be separated in polynomial time.

Proof. We will explain how to separate (16), the remaining separation algorithms follow the same
idea. Given the values x̃ and w̃g of a fractional LP solution to the aggregated MIP, we can separate
constraints (16) in an auxiliary graph Gg = (Vg , Ag) that is generated as follows. Artificial root node r is
added to V and connected to all distribution points v ∈ VD, i.e., Vg = {r} ∪ V , Ag = A∪ {(r, k) | k ∈ VD}.
In the resulting digraph Gg , for each v ∈ VC , there has to be a flow of value not less than 1 from r to
v. We treat the values of w̃g

i j as the capacity on the arc (i, j) and x̃k as capacity on the arc (r, k). If the
value of the maximum flow is less than one, the associated minimum cut, projected into the space of x
and wg variables, corresponds to a violated (16) inequality.

In the following, let

G :=
�

(g, G, wg, w) ∈ R|A|+|VD|
+ × {0,1}|A|+|E| |

(g, G, wg, w) satisfies (4)-(6),(11),(16)
	

, and (19)

F :=
�

( f , H, F, w f, w) ∈ R|A|+|VCO|+|VD|
+ × {0,1}|A|+|E| |

( f ,H, F, w f,w) satisfies (7)-(9),(10),(17)
	

. (20)

The following section illustrates how the problem can be decomposed in an intuitive way, so that the
subproblems associated to G and F can be treated separately.

3 Lagrangian Decomposition into Feeder and Distribution Part

Our first Lagrangian decomposition approach decomposes the problem in the most intuitive way: the
design of the FN and the design of the DN. To obtain this decomposition, we have to relax constraints
that couple both networks. We proceed as follows:

1. Duplicate yt,v variables: introduce a copy of yt,v variables (denoted by y ′t,v) and then replace yt,v
by y ′t,v in equations (12).

2. Duplicate xv variables: Introduce a copy denoted by x ′v .

3. Duplicate we variables: Introduce a copy denoted by w′e.
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(a) (b)

Figure 2: Lagrangian Decomposition into the Feeder and Distribution Part: (a) Distribution network
(DN), and (b) Feeder network (FN).

4. Extend the previous model with the following inequalities, associate dual variables λ, α and β to
them and relax them in a Lagrangian fashion:

∑

t∈T

y ′t,v ≥
∑

t∈T

yt,v v ∈ VD . . . (λv)

we = w′e e ∈ E . . . (αe)

xv = x ′v v ∈ VD . . . (βv)

The whole problem decomposes into two subproblems that will be referred to as the Feeder Problem (F)
and the Distribution Problem (D). Figure 2 illustrates this decomposition.

The Feeder Network Problem

After substituting Fv :=
∑

t∈T y ′t,v , for each v ∈ VD, and adding back constraints (3), the feeder network
subproblem is given as:

(F) min
∑

v∈VCO

cvzv −
∑

v∈VD

λv Fv +
∑

a∈A

cf
a fa −

∑

v∈VD

βv x ′v−
∑

e∈E

αew′e

Hv ≤ uvzv v ∈ VCO (21)

Fv ≤
∑

t∈T

Jt,v x ′v v ∈ VD (22)

∑

v∈VCO

zv ≤ NCO (23)

(z, x ′) ∈{0,1}|VCO|+|VD|, ( f , H, F, w f , w′) ∈ F

The Distribution Network Problem

(D) min
∑

v∈VD

(cv+βv)xv +
∑

e∈E

(ce+αe)we +
∑

v∈VD

∑

t∈T

(ct,v+λv)yt,v +
∑

a∈A

cg
a ga
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Gv ≤ min{uv xv ,
∑

t∈T

st yt,v} v ∈ VD (24)

yt,v ≤ Jt,v xv v ∈ VD (25)
∑

v∈VD

xv ≤ ND (26)

(x , y) ∈{0, 1}|VD|×Z|T ||VD|
+ , (g, G, wg , w) ∈ G

Observe that both problems, (F) and (D) are NP-hard. However, they are structurally significantly
simpler than the starting problem, and therefore, easier to solve from the practical perspective. The
problems are generalizations of the capacitated network design problem with single source. We solve
these problems using a branch-and-cut (B&C) approach whose main ingredients are outlined in Section 6.
One of the advantages of the B&C approaches is that warm start features (i.e., initializations of upper
bounds and valid inequalities) can be re-used from iteration to iteration (via solution pools and cut
pools, respectively).

When solving this decomposition, we extend the model (F) with the global connectivity cuts (18)
that make sure that customers are connected with open COs. These constraints restrict the set of
feasible solution for the (F) model, but they do not cut off global optimal solution(s). In addition, these
constraints strengthen the Lagrangian bounds obtained by this decomposition. Finally, to make sure that
global connectivity cuts are also associated to edge set-up costs, Lagrangian multipliers are initialized
as αe := −ce, for all e ∈ E. The remaining Lagrangian multipliers are initialized with zero values. We
will refer to this decomposition as the “(F)+(D)” decomposition approach.

4 Lagrangian Decomposition into Fixed-Charge and Flow-Cost Part

In this section we propose an alternative Lagrangian decomposition approach in which we decompose
the problem according to the classification of variables by cost types. In other words, we decompose the
problem into:

1. the Fixed Charge Subproblem, which captures all set-up costs associated to fixed-charge variables,
we, xv and zv , and

2. the Flow Subproblem, which captures all variable (flow) costs associated to splitter-installation
variables yt,v and flow variables fa and ga.

To the constraints that contain variables of both types we associate dual variables λ, µ and ν , and relax
them in Lagrangian fashion:

yt,v ≤ Jt,v xv t ∈ T, v ∈ VD . . . (λt,v)

Gv ≤ uv xv v ∈ VD . . . (µv)

Hv ≤ uvzv v ∈ VCO . . . (µv)

gi j ≤ uewg
i j {i, j} ∈ E . . . (ν g

a )

fi j ≤ uew f
i j {i, j} ∈ E . . . (ν f

a )

Figure 3 illustrates this decomposition approach. We obtain two subproblems, that we will refer to as
the Fixed Charge Subproblem (FC) and the Flow Subproblem (FP).
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(a) (b)

j

i

Figure 3: Lagrangian Decomposition into (a) Fixed Cost, and (b) Variable Cost part for the input instance
given in Fig. 1 (but here we assume that all customer demands are equal to 32). Thick dashed lines
show the g-flow, continuous lines show the f -flow. One unit of f -flow is sent along each arc in the FN,
and 32 units of flow are sent along each arc in the DN, except between DP i and customer j, where
g-flow is equal to 64.

The Fixed Charge Subproblem (FC)

The subproblem that captures the fixed costs of the 2FTTx is given as follows:

(FC) min
∑

v∈VCO

(cv −µvuv)zv +
∑

v∈VD

(cv − (
∑

t∈T

λt,vJt,v +µvuv))xv+

+
∑

e∈E

cewe −
∑

a∈A

ua

�

ν f
a w f

a + ν
g
a wg

a

�

∑

v∈VD

xv ≤ ND (27)

∑

v∈VCO

zv ≤ NCO (28)

w f
i j +w f

ji ≤ we e = {i, j} ∈ E (29)

wg
i j +wg

ji ≤ we e = {i, j} ∈ E (30)
∑

a∈δ−(i)

w f
a ≤ 1 i ∈ V (31)

∑

a∈δ−(i)

wg
a ≤ 1 i ∈ V (32)

(x , z, w, w f , wg) ∈ {0,1}|VD|+|VCO|+|E|+2|A|

The Flow Subproblem (FP)

The other subproblem, that captures the variable costs of the 2FTTx, is:

(F P) min
∑

v∈VD

∑

t∈T

(ct,v +λt,v)yt,v +
∑

v∈VD

µvGv +
∑

V∈VCO

µvHv+

+
∑

a∈A

(cf
a + ν

f
a ) fa +

∑

a∈A

(cg
a + ν

g
a )ga
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∑

a∈δ−(v)

ga −
∑

a∈δ+(v)

ga =







dv v ∈ VC

−Gv v ∈ VD
0 v ∈ VCO ∪ VO

v ∈ V (33)

∑

a∈δ−(v)

fa −
∑

a∈δ+(v)

fa =







Fv v ∈ VD
−Hv v ∈ VCO

0 v ∈ VC ∪ VO

v ∈ V (34)

Fv =
∑

t∈T

yt,v v ∈ VD (35)

Gv ≤
∑

t∈T

st yt,v v ∈ VD (36)

( f , g, F, G, H, y) ∈ (R2|A|+2|VD|+|VCO|
+ , Z|T ||VD|

+ )

Observe that (FC) is a trivial subgraph selection problem. Edge selections can simply be made by the
sign of the coefficient. Similarly, we can simply select the nodes with the largest negative coefficients
until reaching the bounds on the total number of DPs and COs. Obviously, there is not much gain if the
problem is decomposed into one hard and one trivial subproblem. To strengthen the models, we insert
the connectivity constraints (16)-(18) in the original MIP model. After the Lagrangian relaxation, these
end up in the (FC) subproblem. That way, we end up with a non-trivial subproblem (FC) which makes
this decomposition approach useful.

Despite the fact that also in this decomposition both subproblems, (FC) and (FP), are NP-hard, they
are significantly simpler than the original problem. The problem (FP) is NP-hard since the packing
subproblem has to be solved at each of the installed distribution points. After adding the connectivity
constraints, the problem (FC) becomes NP-hard, since it assembles the structure of the cardinality
constrained Steiner arborescence problem with node and arc weights. To solve the subproblem (FC), we
develop a branch-and-cut algorithm (see Section 6) in which solution- and cut-pools are used as warm
start features. The subproblem (FP) is solved as a compact MIP model by a black-box MIP solver with
an additional advantage that solution pools are used to initialize starting solutions in each Lagrangian
iteration. We will refer to this decomposition as the “(FC)+(FP)” decomposition.

4.1 Further Valid Inequalities

When solving the (FC) subproblem, notice that the only way more than one DP/CO is opened is if
the costs of the DPs/COs become negative due to the setting of the corresponding dual multipliers.
Therefore, the bounds obtained by solving the (FC) subproblem can further be strengthened by addi-
tional inequalities that make sure that the capacity of open DPs/COs is sufficient to service customer
demands. These inequalities can also reduce the number of iterations of the Lagrangian decomposition.
The following inequalities are used for this purpose:

∑

v∈VD

uv xv ≥
∑

v∈VC

dv (37)

∑

v∈VCO

§

max
t∈T

st

ª

uvzv ≥
∑

v∈VC

dv (38)

∑

v∈VCO

uvzv +
∑

v∈VD

xv

∑

t∈T

(st − 1)Jt,v ≥
∑

v∈VC

dv (39)

Constraints (37) make sure that a sufficient number of downstream fibers is provided, and constraints (38)
make sure that a sufficient number of transceivers is installed at COs, so that customer demands can be
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satisfied (assuming the highest possible splitting ratio). Finally, constraints (39) combine the latter two
using the fact that each splitter requires exactly one fiber coming from a CO (and therefore we have
st − 1 in the second summation).

Strengthening by Splitter-Counting

One could aggregate variables yt,v as follows:
∑

v∈VDP

yt,v = yt t ∈ T

These newly introduced integer variables yt count the number of splitters of type t ∈ T installed across
all DPs. Adding the latter equality into the aggregated MIP brings no benefits, however, in the context
of our second Lagrangian relaxation, it helps in solving the (FC) subproblem. After associating dual
multipliers πt and relaxing these constraints, the new variables are added to (FC) and an additional
term of −

∑

t∈T πt yt is added in the objective function.
Then, the following inequalities are used to further strengthen the (FC) subproblem:

∑

t∈T

st yt ≥
∑

v∈VC

dv (40)

∑

v∈VCO

uvzv +
∑

t∈T

(st − 1)yt ≥
∑

v∈VC

dv (41)

∑

v∈VD

Jt,v xv ≥ yt ∀t ∈ T (42)

∑

v∈VCO

uvzv ≥
∑

t∈T

yt (43)

Constraint (40) states that at least as many fibers have to leave the distribution points into the
distribution network as are needed to fulfill the total demand.

The first term of (41) is an upper bound on the number of fibers leaving the central offices. The next
term counts precisely how many fibers are added to this number by splitting at the distribution points.
So the left-hand side is an upper bound on total flow number of the distribution network. The inequality
states that this upper bound needs to exceed the total demand or the solution will not be feasible.

The left-hand side of (42) upper-bounds the total number of splitters of a fixed type that can be
installed in the network. The inequality states that we need to open at least d yt

Jt,v
e distribution points to

install yt splitters of type t without violating the splitter installation bounds.
Finally, (43) states that enough central offices have to be opened to be able to supply all installed

splitters with fibers from the feeder network.

5 Lagrangian Framework and Heuristics

In this section we first describe the generic Lagrangian decomposition framework that is applied to
both approaches. In this framework, lower bounding and upper bounding procedures are incorporated.
Lower bounding procedures are based on solving lower bounds of associated MIP models, and upper
bounding procedures are heuristics that we describe below. For each of the proposed decomposition
approaches, we develop appropriate heuristics. They solve each of the subproblems independently,
using the current Lagrangian multipliers in the objective function. Hence, in all the following heuristics,
solving the subproblem always refers to the Lagrangian-modified objective functions, unless it is stated
differently.
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5.1 Generic Lagrangian Framework

Relaxing the constraints linking the feeder and the distribution network part as described in Section 3,
we obtain the Lagrangian function

L(Λ) := LF+D(Λ) = LF (Λ)+ LD(Λ) ,

where Λ := (λ,α,β) ∈ R|VD|
+ ×R

|E|×R|VD| is the vector of Lagrangian dual multipliers for the (in)equalities
linking the variables y, w, and x to their copies y ′, w′, and x ′, respectively. The two functions LF (Λ)
and LD(Λ) yield the optimal solution value of the two integer linear problems (F) (augmented with
global connectivity cuts(18)) and (D), respectively, for the given dual multipliers Λ.

Analogously, the decomposition into fixed charge and flow cost dependent variables described in
Section 4 yields the Lagrangian function

L(Λ) := LFC+F P(Λ) = LFC(Λ)+ LF P(Λ) ,

with dual multipliers Λ := (λ,µ,ν ,π) ∈ R|VD||T |+|VD|+|T |+|VCO|+2|E|
+ (assuming we introduce the extra

splitter count variables yt as described in Section 4.1). Here, LFC(Λ) represents the optimal solution
value of (FC) after adding constraints (16)-(18) and (37)-(43), while LF P(Λ) represents the optimal
solution value of (FP).

It is well known that for each dual vector Λ the value L(Λ) is a lower bound for the optimal value
of original aggregated model (1) – (15) and, hence, also L∗ := maxΛ L(Λ) is a valid lower bound. As
there are only finitely many (basic) solutions to the original model and to each of the subproblems
(D), (F), (FC), and (F P), the corresponding dual functions LF , LD, LFC and LF P are piece-wise linear
and concave in Λ. Hence, convex function optimization techniques can be applied in order to find dual
multipliers Λ∗ that yield the best possible lower bound L∗.

In our implementation, we employ a bundle method. Bundle methods typically converge relatively
fast requiring only a few evaluations of the dual function(s), which is very attractive in our application,
where each evaluation (in principle) requires the solution of an integer linear program. Furthermore,
they permit the use of an independent bundle of subgradients for each of the two sub-functions LF
and LD or LFC and LF P involved in the respective Lagrangian function, potentially leading to a further
reduction in (sub-)function evaluations. Finally, general purpose implementation of these methods are
availabe, such as C O N I C B U N D L E [14, 15], which has already proved its practicability and efficiency in
the solution of large scale problems (see, e.g. [13]).

The basic theory of bundle methods is explained in [16] and [2], for example. In principle, given
a starting point for the dual multipliers, the bundle method iteratively determines the next candidate
as an optimizer of a quadratic model with the current point as a stability center and (dual) constraints
stemming from a set (bundle) of previous optimal solutions. If the value of the optimal solution of
this quadratic model improves sufficiently over the value at the stability center, the method performs a
descent step and proceeds. Otherwise a null step not changing the stability center but improving the
quadratic model with the new subgradient is performed.

For the initial dual multipliers and after each descent step of the bundle algorithm, we apply one
of the heuristics described in the following sections to compute feasible primal solutions for the overall
problem.

In order to reduce the run time of the two proposed Lagrangian relaxation approaches in practice,
we also decided to avoid the solution of the integer linear programs (F), (D), (FC), and (FP) via branch-
and-bound in the evaluation of the corresponding (sub-)functions. Instead, we stop after processing
the root node of the corresponding branch-and-bound trees. Conceptually, this also can be regarded
as the solution of an (appropriately defined) linear relaxation of the respective subproblems, namely a
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Algorithm 1 Feeder-Distribution-Feeder Heuristic.
1: Solve the feeder subproblem (F) (incl. global connectivity cuts (18))
2: if (F) has no incumbent then
3: End heuristic
4: else
5: Let SF be the best solution of (F)
6: Initialize distribution subproblem (D) with edge costs set to zero for all e ∈ SF
7: Solve the distribution subproblem (D)
8: if (D) has no incumbent then
9: End heuristic

10: else
11: Let SD := ( g̃, G̃, w̃g , w̃, ỹ , x̃) be the best solution of (D)
12: Solve the feeder subproblem (F) with edge costs set to ce for all e ∈ E and:
13: w′e ≥ w̃e, e ∈ E, Fv :=

∑

t∈T ỹt,v and x ′v := x̃v , v ∈ VD.
14: if (F) has no incumbent then
15: End heuristic
16: else
17: Let SF2 be the best solution of (F)
18: Return merged solution: SF2 plus SG .

relaxation that includes all those constraints that are implicitly enforced via the simple preprocessing
techniques and cutting planes of the ILP solver at the root node and that relaxes all other integrality
constraints. Unfortunately, however, it was necessary to disable most of the heuristic preprocessing
and cutting plane generation techniques that are implemented in the ILP solver in order to avoid
inconsistencies in their application and resulting numerical instabilities in the bundle algorithm. The
resulting bounds will, of course, be weaker than those that can be obtained by optimally solving the
integer programming subproblems. Yet, the bounds are very satisfactory from a practical point of view.

5.2 Lagrangian Heuristic for the (F)+(D) Decomposition

For the first decomposition approach, we develop a heuristic that we refer to as the Feeder-Distribution-
Feeder Heuristic. Pseudo-code of this heuristic is given in Algorithm 1. The heuristic consists of three
stages: in the first stage we solve the feeder subproblem (F) extended by global connectivity cuts (18).
That way, we obtain a preliminary topology of our network that makes sure that all customers are
connected to each other and to at least one open CO. In the second stage, the edges of this network
are used “for free” (cf. Step 6) for solving the distribution subproblem. The last stage is a transition
from the distribution subproblem into the feeder subproblem. Solution of (D) is denoted by SD. Edges
that belong to SD are now taken in the solution of (F). In addition, open DPs and their demands are
uniquely determined by SD and these parameters (the values for Fv and x ′v) are transferred as inputs
for the feeder subproblem (F). If the last stage returns a feasible solution for (F), after merging it with
SD, we obtain a feasible 2FTTx solution. The advantage of calling the (F) subproblem at the beginning
is that it gives us a “global view” to the problem, by incorporating the global connectivity requirements.

Each of the subproblems in this procedure is solved as a branch-and-cut reusing the cuts and feasible
solutions from the previous iterations. Since these B&C algorithms are called as heuristic procedures,
we do not search for the optimal solution, but we stop the execution of these frameworks as soon as
two feasible solutions are found.
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Algorithm 2 FixedCharge-Flow Heuristic.
1: Solve the Fixed-Charge subproblem (FC)
2: if (FC) has no incumbent then
3: End heuristic
4: else
5: Let SFC be the best solution of (FC)
6: Let G̃ be a subgraph of G induced by the edges of SFC
7: Solve aggregated MIP on G̃ with we := 1, for all e ∈ SFC.
8: if aggregated MIP has no incumbent then
9: End heuristic

10: else
11: Return the best aggregated MIP solution

5.3 Lagrangian Heuristic for the (FC)+(FP) Decomposition

Pseudo-code of this heuristic is given in Algorithm 2. This heuristic first solves the fixed charge sub-
problem (FC), including all connectivity constraints (16)-(18), and inequalities (37)-(43). That way, the
topology of the network is determined, and it only remains to make capacity and routing decisions. In
order to do so, we create a subgraph G̃ of G, induced by the given topology, and resolve the whole ag-
gregated MIP on it. This aggregated MIP also contains constraints (16)-(18) and (37)-(39), but solving
it is usually much faster than solving the original aggregated MIP, due to the fixing of variables.

6 Computational Results

6.1 Branch-and-Cut (B&C) Algorithms

Each of the problems, the aggregated MIP with connectivity constraints (16)-(18), the distribution
subproblem (D), the feeder subproblem (F), and the fixed-charge subproblem (FC), are solved using
branch-and-cut algorithms. In this section we explain the main ingredients of these algorithms, which
are implemented in C++ using C P L E X 12.4 callable library.

Separation of Connectivity Cuts

Connectivity constraints are separated using maximum flows, as explained in the proof of Lemma 2.1.
The maximum flow is calculated using the push-relabel procedure (see, e.g. [4]). To speed-up the
separation, we exploit the idea of backward cuts in order to detect more diverse cuts, further away
from the artificial root node. The idea, applied to constraints (16), for example, is as follows: First,
the arcs of the original graph are reversed. Then, the maximum flow from a customer towards the
artificial root node is calculated. If violated, the arcs of the associated minimum cut are reversed and the
corresponding connectivity cut is added to the model. We enforce generation of sparse cuts by adding
an ε value to each edge, and use nested cuts to generate more cuts in less iterations (see, e.g., [19]). At
each call of the separation callback, we generate a new random ordering of the customers in order to
avoid separating cuts corresponding to the same (already satisfied) customers over and over. The cut
separation is not executed for another customer during a run if the number of already generated cuts
exceeds 100. The cut separator is called at the root node of the branch-and-bound tree and at every
further node with quadratic index. The cut separator is also used to check feasibility of integral solutions,
in the course of which lazy constraints are generated.
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Cut Pools and Warm Start

Since branch-and-cut algorithms are called in each iteration of the Lagrangian decomposition approach,
our implementation of the (F), (D), and (FC) models uses cut pools to store previously detected violated
cuts and reuse them in each new iteration in a warm-start fashion. This is possible because from iteration
to iteration only the objective function changes (due to the new dual multipliers), and the polytopes
associated to feasible solutions remain the same. Hence, connectivity cuts (16)-(18) detected in earlier
iterations can be reused without the computational effort of (re-)computing maximum flows.

Similarly, the best solution among the ones found in previous iterations is set as the initial feasi-
ble solution at the beginning of each branch-and-cut execution, which substantially reduces the time
required to solve the subproblems.

Primal Heuristics

C P L E X ’s default heuristics were turned on, and for the branch-and-cut runs called from within the
Lagrangian heuristics C P L E X ’s parameters were set to emphasize finding feasible solutions.

In addition, we enhance the search for upper bounds of the (FC) model by our own upper bounding
procedure. This procedure is a LP-rounding heuristics based on the following approach: (i) First, a set
of terminals is determined, depending on the fractional values of x and z variables; (ii) Then a Steiner
tree is built to connect those terminals, and (iii) finally the remaining variables are calculated using an
auxiliary MIP in which the Steiner tree edges are fixed to one (we := 1), and the remaining edges are
fixed to zero (we := 0).

To determine the subset of terminals, we apply an LP-rounding technique: Terminals are customers
plus all nodes v ∈ VD ∪ VCO whose corresponding LP-values xv and zv are greater or equal to a given
threshold π. In the default implementation, π is set to 1/2.

For calculating the Steiner tree on a given set of terminals, we apply the distance network heuristic
(see, e.g., Mehlhorn [23]): First, we build a distance network, which is a weighted complete graph
spanning the terminals. The weights of the edges in the distance network are the lengths of shortest
paths between the corresponding terminals in the original graph G using the values of the we variables
as edge lengths. Then, we compute a minimum spanning tree (MST) in the distance network and map
its edges back to the paths in the original network. The resulting graph spans all terminals, but still
may contain cycles. To obtain a Steiner tree, we then compute a MST in this graph and finally prune
non-terminal leaves from this tree.

MIP Initialization

All valid inequalities mentioned for models (F), (D), (FC), and the aggregated MIP are added at the
very beginning to the MIP, except the connectivity constraints (16)-(18), which are separated during the
execution of the branch-and-cut algorithms. In order to strengthen the (initial) linear relaxations and
speed-up the cutting plane phase of the algorithm, we add some further simple but effective inequalities
to the initial formulations.
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The models (D) and the aggregated MIP models are additionally initialized with:
∑

(i, j)∈A,i 6=k

wg
i j + x j ≥ wg

jk, for all ( j, k) ∈ A, j ∈ VD , (44)

∑

(i, j)∈A,i 6=k

wg
i j ≥ wg

jk, for all ( j, k) ∈ A, j 6∈ VD , and (45)

∑

(i, j)∈δ−( j)

wg
i j ≥ 1, for all j ∈ VC . (46)

The models (F), (FC) and the aggregated MIP models are additionally initialized with:
∑

(i, j)∈A,i 6=k

w f
i j + z j ≥ w f

jk, for all ( j, k) ∈ A, j ∈ VCO , (47)

∑

(i, j)∈A,i 6=k

w f
i j ≥ w f

jk, for all ( j, k) ∈ A, j 6∈ VCO , (48)

∑

(i, j)∈δ−( j)

w f
i j ≥ x j , for all j ∈ VD , and (49)

∑

(i, j)∈δ−( j)

w f
i j ≥ 1, for all j ∈ VC . (50)

Inequality (44) states that for each distribution point that has a selected outgoing arc ( j, k), there
should be an incoming g-arc from a node not k or it should be selected as a distribution point. Inequal-
ity (45) states that each node that is not a distribution point and has a selected outgoing arc into g also
needs to have an incoming arc. Inequality (46) states that every customer needs to have an incoming
arc selected which is necessary to satisfy his demand.

Inequalities (47)-(49) state similar things as the inequalities before, but enforce the constraints also
on the feeder network. We also enforce that each customer has an incoming feeder arc via inequality (50),
which was not required in the original model and has no effect on the feasible integer edge vectors w,
but strengthens the LP relaxation after the decomposition.

Implementation Details

The branch-and-cut algorithms were implemented in C++ using the C P L E X 12.4 callable library. All
experiments were performed on AMD Phenom II X6 machines with 8GB RAM and 6 CPU cores running
at 3.2 GHz. Our cut separators are thread-safe and we run CPLEX in a multi-threaded way to exploit
the parallel computational power of modern processors. For the separation of constraints (16)-(18), we
use the max-flow implementation by Goldberg [7]. The C O N I C B U N D L E algorithm (available at [14])
of Helmberg and Kiwiel [15] is used to solve the convex optimization problem of finding the optimal
Lagrangian dual multipliers. In both decomposition approaches, we use two independent bundles of
subgradients to describe the dual functions corresponding either to the two problems (F) and (D) in
the (F)+(D)-Decomposition or to the two problems (FC) and (FP) in the (FC)+(FP)-Decomposition.
In order to keep the number of evaluations of the mixed-integer subproblems small, we use a large
maximum bundle size of 100 for both dual functions in both decomposition approaches.

6.2 Benchmark Instances

We consider a set of nine benchmark instances of different sizes originating from the German research
project FTTx-Plan [6]. These instances correspond to typical regional fiber deployment planning prob-
lems – both FTTH and FTTB – in (mostly urban) regions that can be covered by 1 to 15 central offices.
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(a) Instance “a” (b) Instance “c”

Figure 4: Two input instances: squares, triangles and circles represent potential COs, potential DPs and
customers, respectively. Maps courtesy of Google Maps.

inst |V | |E| |VD| |VCO| |VC |
∑

dv ce cDP cCO

a 637 826 97 4 36 488 5878 4600 418670
b 1315 1434 143 5 88 278 5341 4576 509750
c 1675 1730 99 5 552 2290 637 3433 413156
d 2271 1419 494 4 349 717 1039 1500 418670
e 6750 7352 520 11 571 5006 672 3186 305454
f 6750 7352 520 11 571 5006 672 3186 300000
g 4110 4350 224 6 1072 4164 635 3512 466927
h 4227 4484 314 5 1379 5542 3483 3417 477505
i 11544 12478 875 15 3862 14088 3326 3274 522729

Table 1: Overview of basic instance properties.

Some of the benchmark instances correspond to real-world planning problems provided by industry
partners. For the other instances, the underlying networks are generated from publicly available street
network information by considering realistic scenarios of potential customers, distribution points, and
central offices in a region of typical size and creating potential connections along one or both sides of
street segments depending on the street type, from the customer locations to the closest streets, and
appropriate interconnection points and edges at crossings and joins. Figure 4 shows the networks of
instances “a” and “c” embedded in Google Maps. Costs and capacities are obtained by mapping the
very complex real-world network component costs, parameters, and installation costs of a typical GPON
system to the simpler cost and capacity model used in our optimization model.

Table 1 provides the most important parameters of these benchmark instances. The number of
customer locations to be served ranges from 36 in the smallest instance to 3862 in the largest one. The
average fiber demand per customer location ranges from 2.0 to 13.5. The total number of edges, which
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correspond to the trails or street segments that may be used by the network, ranges from approximately
800 in the smallest instance to approximately 12,500 in the largest one.

The benchmark instances used in our experiments correspond to so-called greenfield planning prob-
lems, where edges, DPs, and COs (mostly) need to be build from scratch. Accordingly, the fixed charge
costs associated with the installation of an edge, of a DPs, or of a COs also contain the cost for trenching
and installing ducts, cabinets, or underground closures. Table 1 also shows the average values of these
fixed setup costs in our instances. The fixed setup costs for COs and DPs depend on the device type
(underground closure vs. street cabinet DP, for example) and on its location and vary only moderately
among the different potential CO and DP locations. The fixed setup cost of the edges, on the other hand,
also depend linearly on the length of the edges and vary a lot within each instance, ranging from 0 for
edges connecting co-located nodes to 45 times the average (instance “d”) or 20% of the average setup
cost a CO (instances “h”, “i”). In general, the average fixed charge setup cost of an edge is of the same
order as the average setup cost of a DP.

The fiber installation costs depend linearly on the length of the edges in all instances. In the dis-
tribution network a fiber installation typically uses a larger number of smaller cables and ducts with
a higher fraction of dead (i.e., unused) fibers than this is the case in the feeder network. In order to
account for this fact, the fiber installation costs in the distribution network are larger than those in the
feeder network in our instances. For the smaller instances”a”,”b”, and “d”, distribution fibers cost approx-
imately 5.3 times as much as feeder fibers per kilometer. In the other instances, they cost approximately
1.3 times as much. The fixed charge setup costs of the edges, however, highly dominate the costs for
installing fibers along the edges in our greenfield planning problems. The fixed setup cost of an edge is
approximately 3,000 times the cost of a single feeder fiber installed on this edge.

In all instances, we consider the same 5 splitter types with splitting ratios of 2, 4, 8, 16, and 32,
and cost 161, 272, 352, 427, and 890 per device, respectively. Thus, the cost of a 1:32 splitter ranges
between 450 and 4, 000 times the average feeder fiber cost and between 20% and 60% of the average
DP setup cost.

In the solutions found by our algorithms, the total fixed charge setup costs for the edges, DPs, and
COs clearly dominate the total flow dependent cost for installing feeder and distribution fibers and
splitters. The ratio between fixed charge costs to flow dependent costs ranges from approximately 18:1
in instances “e” and “f” to 150:1 in instance “b”. More details on the considered technical and managerial
aspects and the methodology for the generation of the original benchmark instances can be found in
[21, 22, 24].

6.3 Computations

Table 2 provides a comparison of the two decomposition approaches against the two variants of the
aggregated model, one that is implemented as a branch-and-cut approach with cuts (16)-(18) (denoted
by “Aggr. MIP + Cuts”) and one that is a compact aggregated MIP formulation (denoted by “Aggr.
MIP”). A time limit of two hours has been imposed to all four approaches. However, the Lagrangian
decomposition approaches typically converged much faster. The column “Best UB” shows the objective
value of the best solution found among all four approaches. For the two decomposition approaches
(denoted by “(F)+(D) Decomp.” and “(FC)+(FP) Decomp.”, resp.), we report the final gap obtained at
the end of the last iteration (gap[%]), the gap of the final lower bound with respect to the global upper
bound reported as “Best UB” (gapUB[%]), the total number of Lagrangian iterations (#It), the total
number of subprobem evaluations within the bundle method (#f), and the total running time (t [s]).
Asterisk next to the running time denotes that the approach did not converge within two hours, and
the reported values are obtained in the last iteration within this time limit. For the two variants of the
aggregated model, instead of the number of iterations, we report the total number of branch-and-bound
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nodes explored within the given time limit (#Nodes). For comparison, we also report in the column gapL
the relative gap obtained with the “Aggr. MIP + Cuts”-approach within the time required by “(FC)+(FP)
Decomp.” to terminate and in column tL the time needed by “Aggr. MIP + Cuts” to reach the same gap
as “(FC)+(FP) Decomp.” at termination.

Comparing the results provided in Table 2, we find that none of the two aggregated MIP approaches
completed within two hours. For instance “h”, the aggregated MIP approach without cuts even failed
exceeding the available memory. Furthermore, we observe that the aggregated MIP approach without
cuts exhibits the worst performance. For three out of nine instances, no feasible solution is found within
two hours, and for three out of remaining six, the upper bounds were above 30%. We find that in these
cases the gaps are mainly caused by the poor quality of the bounds produced by this approach. For all
instances, the number of explored branch-and-bound nodes is at least a six-figure number (with the
exception of the instance “h” exceeding the memory limit).

The addition of connectivity cuts clearly improves the performance of the aggregated MIP model:
The number of explored branch-and-bound nodes reduces by one to two orders of magnitude, and
both the gaps and the solutions obtained after two hours are significantly improved. However, for the
large instances “e”, “f”, and “i” with more than 5,000 edges, no feasible solutions are found using the
approach “Aggr. MIP + Cuts”.

In contrast to the aggregated MIP approaches, both decomposition approaches terminate much
earlier with strong lower and upper bounds. The overall gaps remain below 4% in all cases. Comparing
the running times of the two decomposition approaches, we observe that (FC)+(FP) performs slightly
better. Its average (median) running time is 2369.89 (1779) seconds, compared to an average (median)
running time of 3380.33 (2365) seconds for the (F)+(D) approach. The quality of the solutions obtained
with the two approaches is similar.
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Figure 5: Progress of lower and upper bounds for the instance “d”: two aggregated MIP approaches
(left), and two decomposition approaches (right).

For the smaller instances, where the “Aggr. MIP + Cuts” approach was able to find feasible solutions,
the final gaps obtained with this approach are slightly smaller than the ones obtained by the decomposi-
tion approaches. In these cases, the aggregated approach benefits from solving a single “global” model
of the problem, which permits to fully exploit all optimization potentials via branching, while both de-
composition approaches operate on a pairs of two independent submodels that are coupled only rather
loosely via Lagrangian multipliers. However, we emphasize that the main purpose of the proposed
Lagrangian decomposition approaches is to compute strong valid lower and upper bounds for large
problem instances. This means that embedding these decomposition approaches into a (coordinated)
branch-and-bound framework would further improve the obtained bounds and solutions.

To take a closer look at the performance of the proposed approaches, Figures 5, 6, and 7 show the
progress of the lower and the upper bounds for instances “d”, “e” and “f”, respectively. We observe that
both decomposition approaches already reach very strong lower and upper bounds within only several
minutes. In the remaining time, there is only a little progress in these values until the C O N I C B U N D L E

method converges (in which case the Lagrangian multipliers remain unchanged and the algorithm
terminates). The two aggregated MIP models, on the other hand, improve the bounds constantly but
very slowly as more branch-and-cut nodes are explored. Also, we observe that there is a significant
improvement in the quality of both lower and upper bounds when adding connectivity constraints. If
“Aggr. MIP + Cuts” happens to find feasible solutions, it finds them relatively early in the exploration
in the branch-and-bound tree. For the aggregated MIP approach without cuts, on the other hand, good
solutions are found either relatively late in the branch-and-cut process, or are not found at all.

When analyzing the performance of the (F)+(D) decomposition, we came to the conclusion that its
convergence and the overall performance strongly depend on the initial values of Lagrangian multipliers.
This can be seen from Figure 8, which shows the progress of lower and upper bounds for the instance
“a” with three different initializations of Lagrangian multipliers αe: (a) the installation costs of the edges
are fully charged to feeder subproblem (αe = −ce, e ∈ E), (b) the installation costs of the edges are
fully charged to the distribution subproblem (αe = 0, e ∈ E), and (c) half of the installation cost of the
edges is charged to both the feeder and to the distribution subproblem (αe = −ce/2, e ∈ E). All other
Lagrangian multipliers are initialized to zero. The presented results indicate that a “wrong” initialization
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Figure 6: Progress of lower and upper bounds of four approaches on the instance “e”.

of the Lagrangian multipliers can drastically slow down the overall performance.
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Figure 8: Comparison of subproblem evaluations for different settings of Lagrangian multipliers for the
(F)+(D) decomposition in instance “a”.

The success of the (FC)+(FP) decomposition over the (F)+(D) decomposition can be explained
by the global connectivity constraints added to the fixed charge subproblem. This can be seen from
Figure 9, where we show the progress of lower and upper bounds of the (FC)+(FP) decomposition with
and without adding global connectivity constraints to the fixed charge subproblem.
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Figure 7: Progress of lower and upper bounds of four approaches on the instance “f”.

The results indicate that the global cuts are not only crucial for obtaining high quality lower bounds,
but also for obtaining feasible solutions. When global cuts are turned off, no upper bound was found
within 800 seconds, whereas a high quality solution is obtained in less than 100 seconds, otherwise.
Similar behaviors to the ones reported in Figures 8 and 9 were also observed for the remaining instances.
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Figure 9: Comparison of the (FC)+(FP) decomposition with and without global cuts in instance “a”.

Recall at this point that all benchmark instances considered in this study stem from greenfield
planning problems, where the setup costs of the edges include trenching costs and, thus, constitute
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the dominant share of the overall network cost. The impact of the global connectivity constraints may
be smaller for instances stemming from planning problems where (mostly) existing edges can be used
without or with only very small setup costs. Thus, the overall efficiency of the (FC)+(FP) decomposition
approach observed in our experiments for greenfield planning instances may deteriorate for instances
where the fixed setup cost incurred by trenching, placing closures and cabinets, opening central offices,
and performing the setup activities no longer dominate the flow dependent hardware costs for fibers
and splitters in the networks.

7 Conclusions

In this paper we have proposed a new combinatorial optimization problem that models a more detailed
deployment of passive optical networks. To solve the problem, four mixed-integer-programming ap-
proaches were proposed: two of them consider a MIP model and solve it either as a compact MIP, or by
a branch-and-cut algorithm (by adding additional valid inequalities to model connectivity). The remain-
ing two approaches are Lagrangian decompositions whose subproblems are still NP-hard to solve, but
can be efficiently tackled by branch-and-cut approaches. Our computational study has shown that the
decomposition approaches outperform the aggregated MIP approaches, both with respect to the running
time, and with respect to the quality of the obtained lower and upper bounds. On the other hand, design-
and implementation-effort for the proposed Lagrangian decomposition approaches is much higher than
for the branch-and-cut approach. Therefore we may conclude that for a practitioner, if the running time
is an issue, it pays off to develop a Lagrangian-based approach for solving 2FTTx instances, otherwise,
it may be sufficient to run the (much simpler to implement) branch-and-cut approach.

Among the two decomposition approaches, a slight preference is given to the one that decomposes
the problem according to its cost structure, into the fixed charge and variable cost subproblems. The reason
for this is the “global view” of this approach, which is ensured by global connectivity constraints added
into the fixed charge subproblem. These constraints “guide” the topology of the network throughout
Lagrangian iterations. Both decomposition approaches are capable of solving realistic instances (with
almost 5000 nodes and 12500 edges) with final gaps of only a few percents. The obtained results
indicate that these decomposition approaches could be even further improved by embedding them into
a branch-and-bound framework. Since the problem is new, researchers working on network design
might find it interesting to consider other aspects of solving the 2-FTTx, like Benders decomposition,
column generation, or to study heuristic approaches or approximation algorithms.
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