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1 Introduction

We investigate an optimal control problem for the evolutionary flow for incompressible non-

Newtonian fluids in a fixed bounded domain Ω ⊂ R
2 with a fixed time horizon T . As a model

problem we minimize the following quadratic objective functional J

J(u, f) =
1

2

∫

Q

∣

∣u(x, t) − ud(x, t)
∣

∣

2
dxdt +

γ

2
‖f‖2

F s (1.1)

subject to the initial-boundary-value problem for the system of evolutionary equations

ut − div(σ(Du)) + (u · ∇)u + ∇π = f in Q,

div u = 0 in Q,

u = 0 on Σ,

u(0) = u0 in Ω.

(1.2)

The optimization variables are the control f and the response, that consists of the velocity field

u and the pressure π. Moreover, we have denoted Q := Ω × (0, T ) and Σ := Γ × (0, T ) with Γ
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suported by LC 06052 (MŠMT ČR). This author was also partly supported by DFG SFB 557 ’Control of complex
turbulent shear flows’ at TU Berlin. The second author was supported by grants 201/06/0352 (GA ČR) and
MSM 21620839 (MŠMT ČR).
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being the C2+µ-boundary of Ω, µ > 0. Further, functions ud ∈ L2(Q)2, and u0 ∈ L2(Ω)2 are

given; as to u0, later we still need some regularity (2.11). The parameter γ is a positive real

number. The function space F s, whose norm occurs in the definition (1.1) of J , will be specified

later, see (2.16).

We denote by Du the symmetric gradient of a function u, i.e. Du := 1
2

(

∇uT + ∇u
)

. The

mapping σ is a mapping from R
2×2
sym to R

2×2
sym, the space of all symmetric R

2×2-matrices. The

precise assumptions on σ can be found in Section 2.

The governing equations were first studied by mathematically Ladyzhenskaya [18, 19] and Lions

[20], see the discussion in the monograph of Nečas, Málek, Rokyta, and Růžička [23]. The

resulting partial differential equations are of quasi-linear type. They generalize Navier-Stokes

equations, which are semi-linear and contained as the special case σ(D) = νD, ν > 0.

Optimal control problems for non-Newtonian fluids are rarely investigated. We mention the work

of Slawig [24] for the stationary case. Control of a parabolic equation with power-law differential

operator was considered by White [27]. An optimal control problem with temperature-dependent

viscosity was modeled by Kunisch and Marduel [17]. Numerical studies of shape optimization

problems with non-Newtonian fluids are considered by Abraham, Behr, and Heinkenschloss

in [2]. For related optimal control problems for the Navier-Stokes equations, we refer to [1,

8, 9, 12, 13, 14, 25]. Necessary optimality conditions for optimal control problems subject to

quasilinear elliptic equations are considered by Casas and Fernández [5], Casas and Yong [7],

and Lou [21]. Optimal control problems subject to parabolic equations were studied by Casas,

Fernández, and Yong [6], and Fernández [10, 11].

We restrict the considerations to the two-dimensional case. This is due the fact that known

regularity results, namely by Kaplický [15], guarantee that the coefficients in the main part of

the differential operator for the linearized and the adjoint equations are in L∞(Q). Such a result

is needed for optimality conditions and not known for problems in three dimensions, for which

only existence of optimal controls can be proved.

The article is organized as follows. In Section 2 known results are collected. The existence

of optimal controls is proven in Proposition 2.1. Section 3 deals with the first-order necessary

optimality conditions, which are finally proven in Theorem 3.9. As pre-requisite, the control-

to-state mapping and its continuity and differentiability properties are analyzed. Second-order

sufficient optimality conditions are then investigated in Section 4, Theorem 4.5. Finally, in

Section 5 we will comment on the three-dimensional case and prove existence of optimal controls

in a particular situation.

2 Notation and preliminary results

Here, we will summarize assumptions on the non-linearity σ as well as known existence and

regularity results for the state equation. We now assume that σ has a potential Φ : R
2×2
sym → R

+,

i.e. σij(D) = ∂ijΦ(|D|2) with ∂ij := ∂/∂Dij
. We assume further that Φ is a C3 function with

Φ(0) = 0 and ∂ijΦ(0) = 0 for all i, j ∈ {1, 2}. Moreover, we require that there are positive
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constants

2 ≤ p < 4 (2.3)

and C1, C2, C3 such that

C1(1 + |D|2)
p−2

2 |D̃|2 ≤ ∂ijσkl(D)D̃ijD̃kl, (2.4)

|∂ijσkl(D)| ≤ C2(1 + |D|2)
p−2

2 (2.5)

|∂ij∂mnσkl(D)| ≤ C3(1 + |D|2)
p−3

2 (2.6)

hold for all D, D̃ ∈ R
2×2
sym, i, j, k, l, m, n ∈ {1, 2}. These assumptions except (2.6) are frequently

used in the literature, see e.g. [15, 22, 23]. For existence of optimal controls it suffices to assume

Φ ∈ C2 and (2.4)–(2.5). Since we want to deal with second-order derivatives of σ, we assumed

in addition that Φ is C3 and that we have the bound (2.6) of σ′′. These assumptions on σ

covers a wide range of applications in non-Newtonian fluids, see [23]. For the special choice

σ(D) = νD, p = 2, the mentioned case of the Navier-Stokes equation with viscosity coefficient

ν > 0 is included. The assumptions (2.4)–(2.5) imply the monotonicity of σ

(σ(D1) − σ(D2))(D1 − D2) ≥ 0 ∀D1, D2 ∈ R
2×2
sym

as well as its boundedness

|σ(D)| ≤ c|D|p−1 ∀D ∈ R
2×2
sym,

see [22, Lemma 2.1]

We will use in the sequel the standard Sobolev spaces. To incorporate the divergence-free

condition, we will use

V := {v ∈ H1
0 (Ω)2 : div v = 0}, H := {v ∈ L2(Ω)2 : div v = 0}.

Many of the quantities occuring in the article are vector-valued functions. For the sake of

brevity, we will use occasionally the same notations of function spaces for scalar and vector-

valued functions.

2.1 The state equation

We are looking for weak solutions of the intial-boundary value problem (1.2). Let an initial

value u0 ∈ V and a right-hand side f ∈ L2(0, T ; V ′) be given. Then a function u ∈ Lp(0, T ; V ∩

W 1,p(Ω)) with ut ∈ L2(0, T ; V ′) is called a weak solution, if it satisfies u(0) = u0 and

∫ T

0
〈ut, φ〉V ′,V dt +

∫

Q
σ(Du)Dφ + (u · ∇)uφ dxdt =

∫ T

0
〈f, φ〉V ′,V dt

for all smooth and divergence-free test functions φ with 〈·, ·〉V ′,V being the duality pairing

between V ′ and V . Here, some implicit summations took place, so let us write the second and

third term explicitly:

∫

Q
σ(Du)Dφ + (u · ∇)uφ dxdt =

∫

Q

2
∑

i,j=1

(

σij(Du)(Dφ)ij + ui
∂uj

∂xi
φj

)

dxdt.
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Of course, in view of the definition of D, it holds (Du)ij = 1
2( ∂ui

∂xj
+

∂uj

∂xi
). Note, that the pressure

is eliminated in the weak formulation due to the use of divergence-free test functions.

The existence and uniqueness of a weak solution for the two-dimensional case and p ≥ 2 is due to

Ladyzhenskaya [18, 19] and Lions [20]. In particular, in [18] it is proven that for u0 ∈ W 1,p(Ω)∩V

and f ∈ L2(Q) the unique weak solution of (1.2) satisfies

u ∈ Lp(0, T ; W 1,p(Ω) ∩ V ), ut ∈ L2(Q). (2.7)

This directly implies that the optimal control problem (1.1)–(1.2) is solvable in the control space

F = L2(Q).

Proposition 2.1 (Existence of optimal controls.) Let (2.4)–(2.5) be satisfied with p ≥ 2.

Let an initial value u0 ∈ W 1,p(Ω)∩ V be given. We assume γ > 0 in (1.1) Then for F = L2(Q)

there exists an optimal control f̄ ∈ F of the optimal control problem (1.1)–(1.2).

Proof. Obviously, the problem is feasible, since f0 = 0 and the associated solution u0 = 0 of

(1.2) is an admissible pair. If f0 is already optimal nothing is to prove.

If f0 is not an optimal control, there must be controls f with lower values of the objective

functional. This allows us to restrict the optimal control problem to the set

F0 =

{

f ∈ L2(Q) : ‖f‖L2 ≤
1

γ
‖u0 − ud‖

2
L2}

}

.

Since the objective functional is bounded from below, there is a minimizing sequence of controls

fn with associated states un, such that inf J = limn→∞ J(un, fn). After extracting subsequences,

we have the existence of weak limits f̄ ∈ L2(Q) and ū, with fn ⇀ f̄ in L2 and un ⇀ ū in the

spaces given by (2.7). In the following, we will only apply the weak convergences ∇un ⇀ ∇ū

in Lp(Q) and un,t ⇀ ūt in L2(Q), respectively. It remains to prove that ū is the solution of the

state equation with control f̄ .

Let v ∈ Lp(0, T ; W 1,p(Ω)) be an arbitrary test function with div v = 0. The assumptions (2.4)–

(2.5) on σ imply the monotonicity of the associated Nemytskĭı operator, see [23, Lemma 5.1.19].

Exploting this monotonicity of σ we get

0 ≤

∫

Q
(σ(Dun) − σ(Dv))D(un − v) dxdt

=

∫

Q
(fn − un,t − (un · ∇)un)(un − v) − σ(Dv)D(un − v) dxdt. (2.8)

Here, we used that un is the weak solution of the state equation. By compact embeddings, we

have the strong convergence un → ū in L2(Q), which gives
∫

Q(fn−un,t)un →
∫

Q(f̄ − ūt)ū. Since

un and ū are divergence free, we can pass to the limit in the convective term. So we can pass to

the limit in (2.8) and obtain

0 ≤

∫

Q
(f̄ − ūt − (ū · ∇)ū)(ū − v) − σ(Dv)D(ū − v) dxdt. (2.9)
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We finish by Minty’s trick. Setting v := ū + εw, ε > 0, w smooth with div w = 0, we derive

0 ≤
∫

Q(f̄ − ūt − (ū · ∇)ū)(−εw) − σ(D(ū + εw))D(−εw). Dividing by −ε and letting ε → 0,

we obtain 0 ≥
∫

Q(f̄ − ūt − (ū · ∇)ū)w − σ(Dū)D(w). Here, we applied the continuity of σ, see

Lemma 3.1 below. Analogously, we get with v := ū− εw the reverse inequality 0 ≤
∫

Q(f̄ − ūt −

(ū · ∇)ū)w − σ(Dū)D(w), which proves that ū is the weak solution to f̄ of (1.2), since the test

function w was arbitrary. By lower semicontinuity of J , it follows by a standard argument, that

(ū, f̄) is indeed optimal. �

The regularity of weak solutions made it possible to prove the existence of solution. For our

purposes however, this so far stated regularity is not sufficient. We will need higher regularity

results to derive an optimality system. It turns out that even ∇u ∈ L∞(Q) is necessary to deal

with first-order optimality conditions.

Higher regularity results for non-Newtonian fluids are difficult to obtain in general. For optimal

control, we unfortunately need very strong regularity, namely boundedness of the velocity gradi-

ent. There are only few such results known up to nowadays. For Dirichlet boundary conditions,

we will base our considerations on the following result about regularity of solutions of (1.2)

which was proven in [15]. A similar result for space-periodic boundary condition can be found

in [16]. As already mentioned, analogous results for the spatially three-dimensional case does

not seem to be available.

Theorem 2.2 (Kaplický [15].) Let Ω ⊂ R
2 be a bounded domain with C2+µ boundary. Let the

assumptions (2.4)–(2.5) on σ hold with some p ∈ [2, 4). Let us assume that the right-hand side

f and the initial value u0 fulfill

f ∈ L∞(0, T ; L2(Ω)), f(0) ∈ L2(Ω), ft ∈ L2(0, T ; V ′) (2.10)

and

u0 ∈ W r,2(Ω) ∩ V, r > 2 (r = 2 if p = 2). (2.11)

Then the unique weak solution u of (1.2) satisfies for s ∈ (1, 2) (s = 2 if p = 2)

u ∈ L∞(0, T ; W 2,s(Ω)), ut ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; V ). (2.12)

If moreover there is a q̃ > 2 such that

f ∈ L∞(0, T ; Lq̃(Ω)), ft ∈ Lq̃(0, T ; W−1,q̃(Ω)), (2.13)

then there exist q > 2 and α > 0 such that for all ε ∈ (0, T ) it holds

∇u ∈ L∞(ε, T ; W 1,q(Ω)) ∩ C0,α(Ω̄ × [ε, T ]). (2.14)

This theorem provides us with bounded gradients of the solution u. However, the gradients stay

bounded only for positive times but not up to the initial time t = 0. To overcome this difficulty,

let us consider the following initial-boundary value problem

ut − div(σ(Du)) + (u · ∇)u + ∇π = f in Ω × (−τ, T ),

div u = 0 in Ω × (−τ, T ),

u = 0 on Γ × (−τ, T ),

u(−τ) = u−τ in Ω,

(2.15)
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which is the original equation but starts at some time −τ < 0. If we have that u−τ and f fulfill

all requirements of the previous theorem on the larger time interval, then we obtain boundedness

of the gradients of u on Q = Ω× (0, T ). This leads us to the following assumption on the initial

value u0 and the definition of the control space F .

Assumption 1 The initial value u0 is equal to u(0) with u being the solution of the problem

ut − div(σ(Du)) + (u · ∇)u + ∇π = 0 in Ω × (−τ, 0),

div u = 0 in Ω × (−τ, 0),

u = 0 on Γ × (−τ, 0),

u(−τ) = u−τ in Ω,

where the function u−τ satisfies (2.11) with u−τ in place of u0.

Let us now define the control space F s by

F s := {f : ∃f̃ ∈ F s
−τ with f̃ |Q = f and f̃ |Ω×(−τ,0) = 0}, (2.16)

where F s
−τ denotes the space

F s
−τ := W 1+s,2(−τ, T ; L2(Ω)) ∩ L2(−τ, T ; W s,2(Ω)).

For s ≥ 0, any function f ∈ F s
−τ satisfies the requirement (2.10) adapted to the time interval

(−τ, T ). For each s > 0 there is a q̃ > 2 such that even condition (2.13) is satisfied. Hence,

the solution u of (2.15) with right-hand sides f ∈ F s
−τ , s > 0, and initial values u−τ as above

will satisfy ∇u ∈ L∞(Q). Since the orginal control problem was formulated on the time interval

(0, T ), any admissible control has to be zero on the interval (−τ, 0). So we defined the control

space F s as the space of functions that have an extension in F s
−τ , which is zero on (−τ, 0), to

obtain the same solution regularity. Let us summarize all these considerations in the following

corollary.

Corollary 2.3 Let u0 fulfill Assumption 1. Then for every f ∈ F s, s ≥ 0 the problem (1.2)

admits a unique solution u. For s > 0 the regularity ∇u ∈ L∞(Q) holds.

3 First-order necessary optimality conditions

Due to the fact that σ is C2 we can write for u1, u2 ∈ Lq(0, T ; W 1,q(Ω)) and almost all ξ :=

(x, t) ∈ Q

σ
(

Du1(ξ)
)

− σ
(

Du2(ξ)
)

=

∫ 1

0
σ′

(

Du2(ξ) + s(Du1(ξ) − Du2(ξ))
)(

Du1(ξ) − Du2(ξ)
)

ds (3.17)

and

σ
(

Du1(ξ)
)

− σ
(

Du2(ξ)
)

− σ′
(

Du2(ξ)
)(

Du1(ξ) − Du2(ξ)
)

=

∫ 1

0

∫ s

0
σ′′

(

Du2(ξ) + τ(Du1(ξ) − Du2(ξ))
)(

Du1(ξ) − Du2(ξ)
)2

dτ ds. (3.18)
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These representations allow us to investigate the properties of the Nemytskĭı (or superposition)

operator induced by σ. In the sequel, we will denote by σ, σ′, σ′′ also the Nemytskĭı operators

induced by the function σ, σ′, σ′′, respectively.

Lemma 3.1 The Nemytskĭı-operator associated to σ and defined by

(σ(D))(x, t) = σ(D(x, t))

is continuous from Lr(0, T ; Lq(Ω; R2×2
sym

)) to L
r

p−1 (0, T ; L
q

p−1 (Ω; R2×2
sym

)) for q, r ≥ p − 1.

Moreover, the Nemytskĭı-operator is Fréchet differentiable from the space Lr(0, T ; Lq(Ω; R2×2
sym

))

to L
r

p−1 (0, T ; L
q

p−1 (Ω; R2×2
sym

)) for p > 3 and q, r ≥ p−1. For 2 ≤ p ≤ 3, it is Fréchet differentiable

from Lr(0, T ; Lq(Ω; R2×2
sym

)) to L
r
2 (0, T ; L

q

2 (Ω; R2×2
sym

)) for q, r ≥ 2.

Its Fréchet derivative is given by the Nemytskĭı operator induced by the function σ′.

Proof. The assumptions (2.4)–(2.6) imply that the Nemytskĭı operator σ maps the space

Lr(0, T ; Lq(Ω; R2×2
sym)) to L

r
p−1 (0, T ; L

q

p−1 (Ω; R2×2
sym)), see [22, Lemma 2.1]. Thus, it is continu-

ous.

The function σ is C2 by assumption, hence (3.18) holds for a.a. (x, t) ∈ Q. This representation

yields together with (2.6) that

∣

∣

∣
σ(D(x, t) + D̃(x, t)) − σ(D(x, t)) − σ′(D(x, t))D̃(x, t)

∣

∣

∣

≤
C3

2
|D̃(x, t)|2 ·

{

1 for p < 3,

(1 + |D(x, t)|+ |D̃(x, t)|)p−3 for p ≥ 3.

Hence we can estimate for p > 3

‖σ(D + D̃) − σ(D) − σ′(D + D̃)D̃‖
L

r
p−1 (L

q
p−1 )

≤ c(1 + ‖D‖ + ‖D̃‖)p−3
Lr(Lq)‖D̃‖2

Lr(Lq).

For 2 ≤ p < 3 we have a uniform bound on σ′′, and it holds

‖σ(D + D̃) − σ(D) − σ′(D + D̃)D̃‖
L

r
2 (L

q
2 )

≤ c‖D̃‖2
Lr(Lq).

Both estimates allow us to proof that appropriate norms of the remainder term σ(D + D̃) −

σ(D) − σ′(D + D̃)D̃ divided by ‖D̃‖Lr(Lq) vanishes as ‖D̃‖Lr(Lq) tends to zero. �

3.1 Lipschitz estimates and linearized equations

In order to prove differentiability of the control-to-state mapping, we first investigate its local

Lipschitz properties.

Lemma 3.2 Let f1, f2 ∈ F s, s > 0, be given together with their respective solutions u1, u2 of

(1.2). Then it holds with some constant c depending on u1, f1 but not on u2, f2

‖u1 − u2‖L2(V ) + ‖u1 − u2‖L∞(H) ≤ c‖f1 − f2‖L2(V ′).
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Furthermore it holds

‖u1,t − u2,t‖L2(V ′) ≤ c̄(‖f1‖F s , ‖f2‖F s)‖f1 − f2‖L2(V ′)

with a continuous function c̄ : R
2
+ → R+.

Proof. The first assertion follows immediately by the strong monotonicity of σ, i.e.

(σ(D1) − σ(D2)) : (D1 − D2) ≥ C1|D1 − D2|
2

for any D1, D2 ∈ R
2×2
sym with C1 from (2.4), and related estimates for the Navier-Stokes equations,

see e.g. [14]. Moreover, we can estimate the time derivative of the difference u1 − u2 by writing

u1,t − u2,t =

= f1 − f2 + div(σ(Du1) − σ(Du2)) − (u1 · ∇)(u1 − u2) − ((u1 − u2) · ∇)u2

= f1 − f2 + div σDu2

Du1
(Du1 − Du2) − (u1 · ∇)(u1 − u2) − ((u1 − u2) · ∇)u2,

where σDu2

Du1
(Du1 − Du2) =

∫ 1
0 σ′(Du2 + s(Du1 − Du2))(Du1 − Du2) ds is given by (3.17). Now,

we apply the assumption (2.5) on σ′ to estimate

∣

∣

∣
(σDu2

Du1
(Du1 − Du2), Dφ)

∣

∣

∣
≤

∥

∥σDu2

Du1

∥

∥

L∞
‖u1 − u2‖L2(V )‖φ‖L2(V )

≤ c
(

1 + ‖Du1‖
p−2
L∞ + ‖Du2‖

p−2
L∞

)

‖u1 − u2‖L2(V )‖φ‖L2(V ).

Regarding the convective terms we do the following estimation

|((u1 · ∇)(u1 − u2) − ((u1 − u2) · ∇)u2, φ)| ≤ ‖u1‖L∞‖u1 − u2‖L2(V )‖φ‖L2(V )

+ ‖u1 − u2‖L2(V )‖φ‖L2(V )‖u2‖L∞ .

Altogether, we find for the L2(0, T ; V ′)-norm of the difference of the time derivatives the estimate

‖u1,t − u2,t‖L2(V ′) ≤ c
(

1 + ‖Du1‖
p−2
L∞ + ‖Du2‖

p−2
L∞ + ‖u1‖L∞ + ‖u2‖L∞

)

‖f1 − f2‖L2(V ′).

�

In the proof, it was essential to use the regularity ∇ui ∈ L∞(Q). If the controls f1, f2 are only in

F 0 then this regularity is not available, and one gets a Lipschitz estimate for the time derivatives

in weaker norms, i.e. only with respect to W−1−ε,2-norms, ε > 0.

Now let us investigate the linearized equation. To this end, let ū be a solution of the nonlinear

equation (1.2) that fulfills the regularity assertions of Corollary 2.3, e.g. ∇u ∈ L∞(Q). Then we

are looking for solutions of the following initial-boundary value problem with a given right-hand

side h
ut − div(σ′(Dū)Du) + (ū · ∇)u + (u · ∇)ū + ∇π = h in Q,

div u = 0 in Q,

u = 0 on Σ,

u(0) = 0 in Ω.

(3.19)
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In the weak formulation of this problem appears now the term σ′(Dū)DuDφ, which is to be

understood as

σ′(Dū)DuDφ =
2

∑

i,j,k,l=1

∂σij(Dū)

∂kl
(Du)kl(Dφ)ij . (3.20)

Lemma 3.3 Let us assume ∇ū ∈ L∞(Q). Then for all h ∈ L2(0, T ; V ′) the linearized equa-

tion (3.19) admits a unique weak solution u ∈ L2(0, T ; V ) with ut ∈ L2(0, T ; V ′). Moreover,

there is a constant c > 0 independent of u such that it holds

‖ut‖L2(V ′) + ‖u‖L2(V ) ≤ c‖h‖L2(V ′). (3.21)

Proof. The proof is carried out by a standard Galerkin procedure. Let uN be the solution of

the approximate problem. It fulfills

‖uN‖L2(V ) + ‖uN‖L∞(H) ≤ c‖h‖L2(V ′), (3.22)

with a constant c independent of N and h. Here, we used assumption (2.4) on the strong

monotonicity of σ′(Dū) : R
2×2
sym → R

2×2
sym. With the same arguments as in Lemma 3.2 above, one

can prove for the time derivative

‖uN
t ‖L2(V ′) ≤ c‖h‖L2(V ′). (3.23)

Hence, there exists a weak limit u ∈ L2(0, T ; V ) with ut ∈ L2(0, T ; V ′) such that, after extracting

a subsequence if necessary, uN ⇀ u in L2(0, T ; V ) and uN
t ⇀ ut in L2(0, T ; V ′). By the Aubin-

Lions theorem the space L2(0, T ; V ) ∩ W 1,2(0, T ; V ′) is compactly embedded in Lr(0, T ; H) for

every r < ∞. Hence, we have the strong convergence uN → u in Lr(0, T ; H), and we can pass

to the limit in the weak formulation. The solution u inherits the desired estimates from (3.22)

and (3.23). �

Here again, the regularity ∇ū ∈ L∞(Q) was crucial. If this is not fulfilled then the estimate of

the time derivative ut in L2(0, T ; V ′) is not available, which implies that the time derivative is

not in duality with the solution itself. Hence, we cannot test the equation (3.19) by the solution

to prove uniqueness.

Exploiting the regularity ∇ū ∈ L∞(Q) allows us to apply a result of Kaplický [15] for gen-

eralized Stokes equations. Consider the following system, which coincides with the linearized

system (3.19) except for the missing convective terms:

ut − div(σ′(Dū)Du) + ∇π = h in Q,

div u = 0 in Q,

u = 0 on Σ,

u(0) = 0 in Ω.

(3.24)

For the existence and regularity of solutions to that equation, we have the following.
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Proposition 3.4 There are positive constants C, L depending on Ω such that if for q ∈ (2, 2+δ),

δ = LC1/{C2(1 + ‖∇ū‖L∞)p−2}, the right-hand side fulfills h ∈ Lq(0, T ; W−1,q(Ω)), then the

unique weak solution u of (3.24) satisfies

‖u‖Lq(W 1,q) + ‖u‖L∞(Lq) ≤ C
C

1

q

2

C1
(1 + ‖∇ū‖L∞)

p−2

q ‖h‖Lq(W−1,q).

Here, C1, C2 are given by (2.4)–(2.5).

Proof. The proof follows immediately from [15, Proposition 2.4] using (2.4)–(2.5) to compute

uniform bounds of the smallest and largest eigenvalue of σ′. �

With the previous result at hand, we can prove regularity of solutions of (3.19) as well as a

Lipschitz continuity result stronger than in Lemma 3.2.

Lemma 3.5 Let right-hand sides f1, f2 ∈ F s, s > 0 be given. Then for the associated solutions

u1, u2 of the nonlinear equation (1.2) there is a constant L depending on Ω and a constant δ

given by

δ = min
{

2, LC1C
−1
2 (1 + ‖∇u1‖L∞ + ‖∇u2‖L∞)−(p−2)

}

such that for every q ∈ (2, 2 + δ) it holds

‖u1 − u2‖Lq(W 1,q) + ‖u1 − u2‖L∞(Lq) ≤ c(u1, u2)‖f1 − f2‖Lq(W−1,q),

where the constant c depends continuously on ‖∇u1‖L∞ , ‖∇u2‖L∞, ‖u1‖L∞ , and ‖u2‖L∞.

Proof. Obviously, the right-hand sides f1, f2 are in Lq(0, T ; W−1,q(Ω)) by assumption. Let us

denote by d the difference of u1 and u2, i.e. d := u1 −u2. By construction, d fulfills the equation

dt − div σDu2

Du1
(Du1 − Du2) + ∇π = f1 − f2 − (u1 · ∇)d − (d · ∇)u2 in Q,

div d = 0 in Q,

d = 0 on Σ,

d(0) = 0 in Ω

with σDu2

Du1
as in the proof of Lemma 3.2. Now, we use again the regularity result [15, Proposition

2.4] for the generalized Stokes system with L∞-coefficients. To apply this result, we have to

derive uniform lower and upper eigenvalue bounds γ1 and γ2 of σDu2

Du1
. By assumption (2.4), we

have γ1 = C1 as a lower bound. For the upper bound we use (2.5) and get γ2 = C2(1+‖∇u1‖L∞+

‖∇u2‖L∞)p−2. Hence, we obtain δ := Lγ1/γ2 = LC1/(C2(1+‖∇u1‖L∞+‖∇u2‖L∞)p−2) as upper

bound for the integrability exponent. Then the mentioned result of [15] yields for q ∈ (2, 2 + δ)

the estimate

‖d‖Lq(W 1,q) + ‖d‖L∞(Lq) ≤ C(1 + ‖∇u1‖L∞ + ‖∇u2‖L∞)
p−2

q ·

·
(

‖f1 − f2‖Lq(W−1,q) + ‖(u1 · ∇)d + (d · ∇)u2‖Lq(W−1,q)

)

.

It remains to investigate the last addend on the right-hand side. We obtain with integration by

parts
∫

Q
((u1 · ∇)d + (d · ∇)u2) · φdxdt =

∫

Q
−(u1 · ∇)φ · d − (d · ∇)φ · u2 dxdt.
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Then for q ≤ 4, q′ = q/(q − 1) ≥ 4/3 we can estimate

∣

∣

∣

∣

∫

Q
(u1 · ∇)φ · d + (d · ∇)φ · u2 dxdt

∣

∣

∣

∣

≤ c (‖u1‖∞ + ‖u2‖∞) ‖φ‖Lq′ (W 1,q′)‖d‖L4 .

By Lemma 3.2, we have already ‖d‖L4 ≤ c ‖f1 − f2‖L2(V ′), and the claimed Lipschitz inequality

is proven. �

Corollary 3.6 Let ∇ū ∈ L∞(Q) be satisfied. Then for every h in the space Lq(0, T ; W−1,q(Ω))

with q ∈ [2, 2 + δ), where δ is as in Proposition 3.4, the system (3.19) has a unique solution u

that satisfies

‖u‖Lq(W 1,q) + ‖u‖L∞(Lq) ≤ c‖h‖Lq(W−1,q)

with a constant c > 0 depending on ū but not on h.

Proof. By Lemma 3.3, we get the existence of a unique weak solution u in the space L2(0, T ; V )

with ut ∈ L2(0, T ; V ′). Now we put the terms (ū · ∇)u + (u · ∇)ū on the right-hand side, and

estimate their Lq(0, T ; W−1,q(Ω) as in the proof of the previous lemma. Then the claim follows

from Proposition 3.4. �

3.2 Differentiability of the control-to-state mapping

We already know that for each control right-hand side f the nonlinear state equation admits a

unique solution. Let us denote by S the underlying mapping from controls to states, S(f) = u.

In the previous sections we studied continuity properties of that mapping. In order to prove

necessary optimality conditions, we have to investigate the differentiability of S. Although it

would suffice for first-order optimality conditions to have Gâteaux differentiability, we prove

Fréchet differentiability of S. We will show that the Fréchet derivative S′(f̄)h is the unique

weak solution of the following system with ū = S(f̄)

ut − div(σ′(Dū)Du) + (ū · ∇)u + (u · ∇)ū + ∇π = h in Q,

div u = 0 in Q,

u = 0 on Σ,

u(0) = 0 in Ω.

(3.25)

Here, we heavily rely on the fact that the coefficients of σ′ in this linearized equation are in

L∞(Q).

Lemma 3.7 Let the parameter s be greater than zero. Then the control-to-state mapping S :

f 7→ u is Fréchet differentiable from F s, see (2.16), to L2(0, T ; V )∩L∞(0, T ; L2(Ω)). Moreover,

for each f̄ ∈ F s there is δ̄ > 0 such that the mapping S is Fréchet differentiable at f̄ from F s to

Lq(0, T ; W 1,q(Ω) ∩ V ) ∩ L∞(0, T ; Lq(Ω)) for all q ∈ [2, 2 + δ̄).

Proof. Let us only prove the local differentiability result. Fréchet differentiability of S into

L2(0, T ; W 1,2(Ω)) ∩ L∞(0, T ; L2(Ω)) follows by embedding arguments.
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Let us take f̄ ∈ F s and fix an open and bounded neighborhood B(f̄) in F s and set B =

B(f̄) ∩ F s. By Theorem 2.2, we have that the L∞(0, T ; W 1,∞(Ω))-norms of the functions in

S(B) are bounded. Let us denote this bound by M , e.g. ‖∇u‖L∞(0,T ;L∞) < M for all u ∈ S(B).

Furthermore, we define δ̄ by

δ̄ := min
{

2, LC1C
−1
2 (1 + 2M)−(p−2)

}

,

compare with the expressions for δ in Proposition 3.4 and Lemma 3.5.

Now let us take f from the neighborhood B and set h = f − f̄ . Let ū = S(f̄), u = S(f̄ + h) be

the weak solutions of the nonlinear equation. Let d = S′(f̄)h be the solution of (3.25), which

exists and is unique by Corollary 3.6. Then the remainder r = u − ū − d fulfills the equation

rt − div(σ′(Dū)Dr) + ∇π = −(d · ∇)d − div σ′Du
DūD(u−ū)D(u−ū) in Q,

div r = 0 in Q,

r = 0 on Σ,

r(0) = 0 in Ω,

(3.26)

with σ′Du
Dū =

∫ 1
0

∫ s1

0 σ′′(Dū+s2D(u−ū))) ds2 ds1, cf. (3.18). In order to apply Proposition 3.4, we

have to estimate the terms on the right-hand side. With that proposition, we obtain a maximal

integrability of the solution with respect to some Lq-norms, q ∈ (2, 2 + δ), where δ depends on

bounds of the coefficients of the differential operator. The above defined constant δ̄ fulfills the

requirements of Proposition 3.4. Hence, we can take q̃ ∈ (2, 2 + δ̄) and set q̄ = 1
2

(

q̃ + 2 + δ̄
)

∈

(q̃, 2 + δ̄).

We estimate the convective term on the right-hand side of (3.26) using by-part integration.

Applying the result of Corollary 3.6 we have with q̄ > q̃

‖(d · ∇)d‖Lq̃(W−1,q̃) ≤ c‖d‖2
L2q̃ ≤ c‖d‖L∞(Lq̄)‖d‖Lq̄(L∞) ≤ c‖h‖2

Lq̄(W−1,q̄).

The addend involving the second-order remainder term σ′Du
Dū is then estimated by

∣

∣

∣

∣

∫

Q

(
∫ 1

0

∫ s1

0
σ′′(Dū + s2D(u − ū))) ds2 ds1

)

D(u − ū)D(u − ū)Dφdxdt

∣

∣

∣

∣

≤ c
(

1 + ‖Dū‖p−3
L∞ + ‖Du‖p−3

L∞

)

‖D(u − ū)‖2
L2q̃‖Dφ‖Lq̃′

≤ c
(

1 + ‖Dū‖p−3
L∞ + ‖Du‖p−3

L∞

)

‖D(u − ū)‖2θ
Lq̄‖D(u − ū)‖2−2θ

L∞ ‖Dφ‖Lq̃′

(3.27)

with θ = 1
2

q̄
q̃ > 1

2 by construction. Since ū, u are solutions of the nonlinear equation, the factors

on the right-hand side of (3.27) are bounded. This proves that the right-hand side of (3.26) is

in Lq̃(0, T ; W−1,q̃(Ω)). Furthermore, Lemma 3.5 yields the Lipschitz-type estimate

‖D(u − ū)‖Lq̄ ≤ c‖h‖Lq̄(W−1,q̄).

Here again, the constant δ̄ fulfills the assumptions of that lemma. Now, we can apply Proposi-

tion 3.4 to get

‖r‖Lq̃(W 1,q̃) + ‖r‖L∞(Lq̃) ≤ c
(

‖h‖2
Lq̄(W−1,q̄) + c

(

1 + ‖Dū‖p−3
L∞ + ‖Du‖p−3

L∞

)

·

· ‖D(u − ū)‖2−2θ
L∞ ‖h‖2θ

Lq̄(W−1,q̄)

)

.
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The constants involved in this estimate stay bounded as h → 0 in F . Hence it holds

‖r‖Lq̃(W 1,q̃) + ‖r‖L∞(Lq̃)

‖h‖Lq̄(W−1,q̄)
→ 0 as ‖h‖Lq̄(W−1,q̄) → 0.

Thus, we proved Fréchet differentiability of S at f̄ from F to the space Lq̃(0, T ; W 1,q̃) ∩

L∞(0, T ; Lq̃) for all q̃ ∈ (2, 2 + δ̄). �

Let us remark, that the proof for Fréchet differentiability of S mapping to L2(0, T ; W 1,2(Ω)) ∩

L∞(0, T ; L2(Ω)) can not be proven directly using the Lipschitz estimate for ‖D(u − ū)‖L2 of

Lemma 3.3. Then (3.27) holds only with θ = 1/2, which is not enough to prove that the

remainder term vanishes as h → 0. Hence, the detour via Lq-spaces was necessary.

It remains to investigate the adjoint operator of S′(f̄). By Corollary 3.6 it is continuous from

L2(0, T ; V ′) to L2(0, T ; V )∩L∞(0, T ; L2). The adjoint operator S′(f̄)∗ is then linear and continu-

ous from the dual space of L2(0, T ; V )∩L∞(0, T ; L2) to L2(0, T ; V ). By transposition arguments

as in [14, Prop. 3.3], one finds that it is the solution operator of the so-called adjoint system

−wt − div(σ′(Dū)⊤Dw) − (ū · ∇)w + (∇ū)⊤w + ∇µ = z in Q,

div w = 0 in Q,

w = 0 on Σ,

w(T ) = 0 in Ω,

(3.28)

given in the very weak formulation

∫ T

0
〈w, φt〉V ′,V dt +

∫

Q
σ′(Dū)⊤DwDφ + (ū · ∇)φw + (φ · ∇)ūw dxdt =

∫ T

0
〈z, φ〉V ′,V dt

for all φ ∈ L2(0, T ; V ) with φt ∈ L2(0, T ; V ′) and φ(0) = 0. Likewise (3.20), the term involving

σ′ is to be understood as

σ′(Dū)⊤DwDφ =
2

∑

i,j,k,l=1

∂σij(Dū)

∂kl
(Dφ)kl(Dw)ij = σ′(Dū)DφDw.

Let us finally consider the solvability of the system (3.28) and the regularity of its solution.

Corollary 3.8 Let ∇ū ∈ L∞(Q) be given. Then, for each right-hand side z ∈ Lq(0, T ; W−1,q(Ω))

with q ∈ [2, 2 + δ), where δ is as in Proposition 3.4, the system (3.28) has a unique solution w

that satisfies

‖w‖Lq(W 1,q) + ‖w‖L∞(Lq) ≤ c‖z‖Lq(W−1,q)

with a constant c > 0 depending on ū but not on z.

The proof is identical to the proof of Corollary 3.6, since Kaplický’s result [15] works also for

the ’transposed’ coefficients σ(Dū)⊤ in the differential operator. Here, again the smoothness

∇ū ∈ L∞(Q) is essential.
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3.3 Necessary optimality conditions

Now, we have everything at hand to investigate necessary optimality conditions. Let us define

the reduced cost functional using the control-to-state mapping S by

Φ(f) = J(S(f), f).

Obviously, the minimization of J subject to the state equation is equivalent to minimize Φ over

all admissible controls.

Now, let f̄ be a locally optimal control in F s, s > 0, with associated state ū = S(f̄). Then f̄

is also a local minimum of the reduced cost function Φ. The first-order necessary optimality

condition is given by

Φ′(f̄)h = 0 ∀h ∈ F s.

Let S′(f̄)h be the solution of the linearized equation (3.25) with right-hand side h. Further,

let us denote the embedding F s → L2(0, T ; V ′) by E. Then the derivative Φ′ can be written

explicitly as

Φ′(f̄)h = (ū − ud, S′(f̄)Eh)L2(Q) + (f̄ , h)F s = 0.

Using the method of transposition, we can write

(S′(f̄)∗(ū − ud), Eh)F s = (w, Eh) =

∫

Q
wh dxdt,

where w is the very weak solution of (3.28) with right-hand side z = ū−ud. Summarizing these

arguments, we proved the following.

Theorem 3.9 Let f̄ be a locally optimal control in F s, s > 0, with associated state ū = S(f̄).

Then there is an adjoint state w̄ ∈ L2(0, T ; V ) as the unique very weak solution of the adjoint

system

−wt − div(σ′(Dū)⊤Dw) − (ū · ∇)w + (∇ū)⊤w + ∇µ = ū − ud in Q,

div w = 0 in Q,

w = 0 on Σ,

w(T ) = 0 in Ω,

(3.29)

such that ∫

Q
wh dxdt + (f̄ , h)F s = 0

is fulfilled for all h ∈ F s.

This necessary optimality conditions can be expressed equivalently in terms of the Langrangian

functional, which we define by

L(u, f, w) = J(u, f) −

∫ T

0
〈ut, w〉V ′,V dt −

∫

Q
(σ(Du)Dw + (u · ∇)uw) dxdt

+

∫

Q
fw dxdt. (3.30)

The adjoint state w plays now the role of a Lagrangian multiplier to the state equation constraint.

Then the statement of Theorem 3.9 is equivalent to:
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Corollary 3.10 Let (ū, f̄) be a pair of locally optimal control and state. Then it is necessary

that there exists a multiplier w ∈ L2(0, T ; V ) such that

∂L

∂u
(ū, f̄ , w̄)φ = 0 ∀φ ∈ L2(0, T ; V ) ∩ H1(0, T ; V ′)

and
∂L

∂f
(ū, f̄ , w̄)h = 0 ∀h ∈ F s.

4 Second-order sufficient optimality conditions

In this section, we will briefly discuss sufficient optimality conditions. Let f̄ ∈ F s, s > 0 be

given such that (ū, f̄ , w̄) fulfill optimality system of Theorem 3.9. Additionally, let us assume

the following coercivity condition on the second derivative of the Lagrangian: there exists α > 0

such that for all h ∈ F s with associated z = S′(f̄)h it holds

L′′

u,f (ū, f̄ , w̄)[(z, h)2] ≥ α‖h‖2
F s . (4.31)

For convenience we write this second derivative explicitly as

L′′

u,f (ū, f̄ , w̄)[(z, h)2] = ‖z‖2
L2(Q) + γ‖h‖2

F s +

∫

Q
σ′′(Dū)[Dz, Dz]Dw + 2(z · ∇)zw dxdt

with

σ′′(Dū)[Dz1, Dz2]Dw =

2
∑

i,j,k,l,m,n=1

∂2σij(Dū)

∂kl∂mn
· (Dz1)kl(Dz2)mn(Dw)ij .

Here, one can see that new difficulties arise: the integral of this quantities must exist. Hence, we

need higher regularity of solutions of the linearized as well as the adjoint equations. On Q the

gradient Dū is essentially bounded. Thus, the regularity Dz, Dw ∈ L3(Q) would be sufficient to

obtain σ′′(Dū)[Dz, Dz]Dw ∈ L1(Q). If Dw ∈ L∞(Q) holds, we can estimate for instance

∣

∣

∣

∣

∫

Q
σ′′(Dū)[Dz1, Dz2]Dw dxdt

∣

∣

∣

∣

≤ c(‖Dū‖L∞)‖Dz1‖L2‖Dz2‖L2‖Dw‖L∞ . (4.32)

4.1 Higher regularity results

To prove higher regularity of the solutions of the linearized and of the adjoint system, we will

rely on a recently published result by Bothe and Prüss [4] concerning maximal regularity of

generalized Stokes systems. The key assumption is that the coefficients in the main part of

the differential operator are continuous. This is indeed satisfied in our case: Theorem 2.2 gives

∇ū ∈ C(Q̄) and hence σ′(Dū) ∈ C(Q̄).

Lemma 4.1 Let ∇ū ∈ C(Q̄) be given. Then the solution u of the linearized system (3.25) for

h ∈ F s, s ≥ 0, satisfies ∇u ∈ L4(Q).
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Proof. For right-hand sides in L2(Q) the solutions of (3.24) are in W 1,2(0, T ; L2(Ω)) and in

L2(0, T ; H2(Ω) ∩ V ) by [4, Theorem 4.1]. This space is continuously embedded in L∞(0, T ; V )

and in L4(0, T ; W 1,4(Ω)). Hence it suffices to investigate the right-hand side h−(ū·∇)u−(u·∇)ū

of (3.25) in L2(Q). From the regularity of u provided by Corollary 3.6 and ∇ū ∈ L∞(Q) it follows

(ū · ∇)u + (u · ∇)ū ∈ L2(Q) immediately. Then the claim follows using the maximal regularity

result [4, Theorem 4.1]. �

This result can be directly transferred to the case of the adjoint system (3.29).

Corollary 4.2 Let ud ∈ L2(Q) be given, and let ū satisfy all regularity provided by Theorem 2.2.

Then the solution w of the adjoint system (3.28) satisfies Dw ∈ L4(Q).

Under higher regularity requirements on the right-hand sides or on the control space F , one can

proven even a W 1,∞-result for the linearized equation.

Lemma 4.3 Let ∇ū ∈ C(Q̄) be given. Then the solution u of the linearized system (3.25) for

h ∈ F s, s > 2/3, satisfies ∇u ∈ L∞(Q).

Proof. We want to show that the solution u belongs to the function space of maximal regularity

W 1,q(0, T ; Lq(Ω)) ∩ Lq(0, T ; W 2,q(Ω)) for some q > 2. Then w is also continuous on [0, T ] with

values in W 2−2/q,q(Ω). The latter space is continuously imbedded in W 1,∞(Ω) for q > 4, which

gives us ∇u ∈ L∞(Q).

The maximal solution regularity is provided by [4, Theorem 4.1] under the assumption that

h − (ū · ∇)u − (u · ∇)ū belongs to Lq(Q), q > 4.

Let us argue that for s > 2
3 every h ∈ F s is also in Lq(0, T ; Lq(Ω)) for q > 4 with continuous

(and compact) embedding. The space F s is compactly embedded in Lq(0, T ; W sθ,2(Ω)) with

θ ∈ (0, 1), −1
q < 1

2 − θ, see [3]. To allow q > 4 we have to choose θ < 3
4 . The space W sθ,2(Ω)

itself is embedded in Lr(Ω) with r ≤ 2
1−sθ provided sθ < 1. If sθ > 1 holds, r can be made

arbitrary large. That is, W sθ,2(Ω) is embedded in Lr(Ω) with r > 4 if sθ > 1
2 or θ > 1

2s holds.

Since s > 2
3 by assumption, we can choose θ from the open and non-empty interval ( 1

2s ,
3
4) to

allow for q > 4 and r > 4 in the above embeddings, which proves the embedding of F in Lq(Q)

for q > 4.

It remains to investigate the Lq-norm of (ū · ∇)u + (u · ∇)ū. At this point, we refer to the proof

of [26, Theorem 2.7], where a bootstrapping procedure is carried out to prove a similar result

for the linearized Navier-Stokes equations. In each step one has to apply the above mentioned

result of [4] instead of the analogon for the Stokes system, which was used in [26]. �

In the analysis of the second-order optimality conditions it will turn out that the regularity

Dw ∈ L∞(Q) would be benefitial, see below in the proof of Theorem 4.5 the discussion of the

remainder term r̃2.

Corollary 4.4 Let ū with ∇ū ∈ C(Q̄) and ud ∈ Lq(Q) with some q > 4 and be given. Then the

solution w of the adjoint system satisfies Dw ∈ L∞(Q).

Proof. Since u fulfills homogeneous boundary conditions, the right-hand side u − ud of the

adjoint equations is in Lq(Q) with q > 4. By a similar bootstrapping technique, we can prove
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the result following the lines of the analogous result [26, Theorem 3.3]. �

Let us observe that the regularity requirement on ū of that corollary is already fulfilled if ū is a

strong solution according to Theorem 2.2 and (2.12).

4.2 Sufficiency

Finally, we state and prove that the coercivity condition (4.31) is sufficient for local optimality.

Theorem 4.5 Let (ū, f̄ , w̄) fulfill the optimality system of Theorem 3.9. Suppose further that

there is a constant α > 0 such that the coercivity assumption (4.31) is satisfied. Moreover, let us

assume that σ is of class C3 in addition to the assumptions of Section 2. Let the desired state

ud be in Lq(Q), q > 4.

Then there are constants ρ > 0 and β > 0 such that the quadratic growth conditions

J(u, f) ≥ J(ū, f̄) + β‖f − f̄‖2
F s

holds for all f ∈ F s with ‖f − f̄‖F s < ρ and u = S(f), which implies that the control f̄ is locally

optimal.

Proof. Let (ū, f̄ , w̄) be given according to the assumptions. Let us choose a positive radius

ρ0 > 0. Let f ∈ F s be another feasible control with ‖f − f̄‖F s < ρ0. Define u := S(f). We then

have J(ū, f̄) = L(ū, f̄ , w̄) and J(u, f) = L(u, f, w̄), since both ū and u are solutions of the state

equation. Taylor expansion of the Lagrangian then yields

L(u, f, w̄) − L(ū, f̄ , w̄) = L′

u(ū, f̄ , w̄)(u − ū) + L′

F s(ū, f̄ , w̄)(f − f̄)

+
1

2
L′′

u,f (ū, f̄ , w̄)[(u − ū, f − f̄)2] + r2. (4.33)

Due to the optimality conditions, the first two addends vanish, see e.g. Corollary 3.10.

The remainder term in the expansion above is given by

r2 =

∫

Q

∫ 1

0

∫ s1

0

∫ s2

0
σ′′′(Dū + s3D(u − ū))(D(u − ū))3 ds3 ds2 ds1 dxdt.

The argument of σ′′′ is in L∞(Q), since f, f̄ and thus Dū, Du lie in bounded sets in F and L∞(Q),

respectively. Since σ is of class C3, we have |σ′′′(Dū + s3D(u − ū))| < M for all s3 ∈ (0, 1) a.e.

on Q. Thus, we can estimate the remainder term r2 as

|r2| ≤
1

6
M‖D(u − ū)‖3

L3 .

Analogously to the discussion in Lemma 3.7, there is a δ > 0 such that the Lipschitz estimate

of Lemma 3.5 holds for all q ∈ (2, 2 + δ) and all f in the neigborhood of f̄ . This allows us to

estimate for some q > 2

|r2| ≤
M

6
‖D(u − ū)‖q

Lq‖D(u − ū)‖3−q
L∞ ≤ c‖f − f̄‖q

F s .
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Let us denote by v the solution of the linearized equation with the right-hand side f − f̄ ,

i.e. v = S′(f̄)(f − f̄). If we use v instead of u − ū, we will introduce an additional error

r1 := (u− ū)−v = S(f)−S(f̄)−S′(f̄)(f − f̄). The solution mapping S is Fréchet differentiable

from F s to L2(0, T ; V ) by Lemma 3.7, which yields

‖r1‖L2(V ) = o(‖f − f̄‖F s) for ‖f − f̄‖F s → 0. (4.34)

Now, let us replace the argument u − ū of L′′ in (4.33) by v + r1. We obtain

1

2
L′′

u,f (ū, f̄ , w̄)[(u − ū, f − f̄)2] =
1

2
L′′

u,f (ū, f̄ , w̄)[(v, f − f̄)2]

+ L′′

u(ū, f̄ , w̄)[v, r1] +
1

2
L′′

u(ū, f̄ , w̄)[r1, r1].

Then the first addend fulfills the coercivity requirement (4.31). We know Dū, Dw ∈ L∞(Q) by

Theorem 2.2 and Corollary 4.4, respectively. By Corollary 3.8, we know ‖v‖L2(V ) ≤ c‖f − f̄‖F s .

Hence it follows from the property (4.34) of r1 and the bound on L′′ in (4.32)

|r̃2| :=

∣

∣

∣

∣

∂2L

∂u2
(ū, f̄ , w̄)[v, r1] +

1

2

∂2L

∂u2
(ū, f̄ , w̄)[r1, r1]

∣

∣

∣

∣

= o(‖f − f̄‖2
F s) for ‖f − f̄‖F s → 0.

Collecting all these estimates, we finally obtain

J(u, f) − J(ū, f̄) ≥
α

2
‖f − f̄‖2

F s − |r2| − |r̃2|.

Since both |r2| and |r̃2| are of size o(‖f− f̄‖2
F s), there is ρ1 > 0 such that |r2|+ |r̃2| ≤

α
4 ‖f− f̄‖2

F s

holds for all ‖f−f̄‖F s < ρ1. Thus, the quadratic growth holds with β := α
4 and ρ := min{ρ0, ρ1}.

�

5 Concluding remarks

We investigated optimal control problems for non-Newtonian fluids. The existence of optimal

controls was proven. Here, it was important to be able to pass to the limit in the state equation.

For the development of optimality conditions, it was essential that a solution theory providing

Du ∈ L∞ was available.

Let us now comment on two other situations: the case of periodic boundary condition and a

possible extension of our work to the three-dimensional case.

5.1 Space-periodic boundary conditions

Based on the regularity results of Kaplický, Málek, Stará [16] we could reformulate our results

for spatially periodic boundary conditions on a square domain even for controlling the system

from the origin, i.e. 0 = 0 could be allowed. Furthermore, this result is available for a wider range

of exponents p in the assumptions on the nonlinearity, namely it was proven for p > 4
3 . Under

similar assumptions on the controls f as in Theorem 2.2, they prove the regularity u ∈ C1,α(Q̄).

Here, again the parameter s in the definition of the control space is required to be positive.

With these results at hand, one can prove existence of optimal controls as well as necessary

and sufficient optimality conditions following the lines of the proofs of Proposition 2.1 and

Theorems 3.9 and 4.5, respectively.
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5.2 The spatially three-dimensional case

Existence of a unique solution of the equation holds for p ≥ 9
4 , cf. [23]. This is a tremendous

benefit from considering non-Newtonian fluids, because such uniqueness result is not available

for Newtonian fluids, where it was selected by Clay Mathematical Institute as one out of seven

most challenging mathematical “Millennium problems”. In time of writing this article this

problem was still waiting for its (affirmative or not) answer. On the other hand, although some

regularity results are available for 9
4 ≤ p < 3, see [22], even first-order optimality conditions are

still not available. It seems that the Gâteaux differentiability of the solution mapping requires

L∞(Q)-estimate for ∇u or ∇w (not available upto nowadays knowledge), a strategy we applied

to the two-dimensional case in this article. Rather it indicates that the control-to-state mapping

is not differentiable in the three-dimensional case, and some non-smooth methods are to be

applied.

On the other hand, we can easily prove existence of optimal controls in L2(Q) for p ≥ 9
4 . Let

us fix the assumptions for the rest of this section: Let Ω ⊂ R
3 be a bounded domain with a

C3-boundary. Additionally, we assume that (2.4)–(2.5) is satisfied for

9

4
= 2.25 ≤ p.

Furthermore, we define the control space

F := L2(Q).

The existence proof works also with pointwise constraints on the control as long as the resulting

set of admissible controls is closed in L2, convex, and of course non-empty.

Proposition 5.1 Let the parameter p of σ in (2.4)–(2.5) satisfy p ≥ 9
4 . Let an initial value

u0 ∈ W 1,p(Ω) ∩ V be given. Furthermore, assume that the parameter γ is positive. Then there

exists an optimal control f̄ ∈ L2(Q) for the optimal control problem (1.1)-(1.2).

Proof. The proof follows the lines of the proof of Proposition 2.1. The uniqueness of solutions

of (1.2) for p ≥ 5
2 goes back to Ladyzhenskaya [18]. This result was later improved to allow for

p ∈ [94 , 3) in [22]. �
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