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As there are different computational methods for simulating problems in
generalized mechanics, we present simple applications and their closed-form
solutions for verifying a numerical implementation. For such a benchmark, we
utilize these analytical solutions and examine three-dimensional numerical sim-
ulations by the finite elementmethod (FEM) using IsoGeometric Analysis (IGA)
with the aid of open source codes, called tIGAr, developed within the FEniCS
platform. A study for the so-called wedge forces and double tractions help to
comprehend their roles in the displacement solution as well as examine the sig-
nificance by comparing to the closed form solutions for given boundary condi-
tions. It is found that numerical results are in a good agreement with the ana-
lytical solutions if wedge forces and double tractions are considered. It is also
presented how the wedge forces become necessary in order to maintain equilib-
rium in strain gradient materials.
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1 INTRODUCTION

Miniaturization of sensors and actuators, such as micro-electro mechanical systems (MEMS), necessitates an accurate
modeling of materials at micrometer length scale (microscale). However, from experimental evidences [61] one can
observe stiffening or softening material responses at the microscale when compared to a solution based on the Cauchy–
Boltzmann continuum, that is, conventional elasticity theory. In order to capture these geometric length dependent phe-
nomena, which are commonly referred to as size effects, a generalization of standard elasticity theory is required, such
that the stored energy depends not only on strain but also on other primitive variables, for example, the spin or the strain
gradient [5, 16, 37, 62]. Various theories of such a generalized mechanics are described in the literature. They are mathe-
matically close andmay be considered as particular cases of a unified theory [64]. For historical and philosophical remarks
on the subject, we refer to [27, 29].
In the so-called strain gradient elasticity theory the stored energy is considered to be dependent on strains as well

as strain gradients. Motivation for introducing higher order gradient of strains in the stored energy arises from vari-
ous aspects, we refer to [1, 7, 11, 31, 36, 63, 86]. First, an investigation of highly localized phenomena, such as crack
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formation and propagation, may be realized by involving higher order gradients in order to regularize the solution of
cracks by penalizing the displacements, which are localized above a given threshold [17, 68, 71, 73, 78, 93]. Second, an
accurate modeling of metamaterials is achieved in the framework of strain gradient theory [16, 26, 28, 35, 38, 40, 45, 89].
Indeed, the behaviors of metamaterials depend on the morphology of microstructures [23, 43, 53, 54] and show peculiar
behaviors, such as size effects [3, 90–92] and band gaps [76, 80], which are not captured by the classical Cauchy con-
tinuum. Exotic material behaviors may be governed by internal or boundary layers of higher strain gradients [51]. As
an example of metamaterials we refer to materials with pantographic substructures [32, 34] having non-negligible strain
gradient terms in the formulation of deformation energy [24,25,41,65,88], which are found in recent numerical and exper-
imental evidences, for example, in shearing tests [15], three-point bending tests [94], compression tests [87], or torsion
tests [60]. A homogenization procedure of pantographic microstructures leading to second gradient materials is shown in
[12–14, 84]. Generally speaking, generalized mechanics at the macroscale results in as a homogenization procedure from
the Cauchy–Boltzmann continuum at the micrometer length-scale (microscale) [57]. Strain gradient theory is able to sus-
tain the so-called wedge forces [9, 56, 77], which are acting on corners (point forces) in 2D and edges (force distributions
along lines) in 3D, while the classical Cauchy continuum leads to singularities when handling such issues. From [8, 33, 48,
83], it becomes obvious that the reasons of inducing higher order strain gradient allows a continuum to sustain boundary
conditions on vertices and edges of a body.
Strain gradient theory leads to higher order partial differential equations and requires an interpolation scheme for the

finite element representation to guarantee a correspondingly higher order of continuity. For this reason, various numeri-
cal implementations of strain gradient theories are proposed in the literature, such as the mixed formulation [67, 85], 𝐶1

continuous elements [42, 66, 95], and isogeometric analysis [39, 56,81]. The concept of IGA [46] is a mesh-based numerical
approach using shape functions in FEM identical as the basic functions in CAD generated from NURBS (Non-Uniform
Rational B-Splines). In the context of strain gradient elasticity, such a formulation serves the 𝐶𝑛 continuity across the ele-
ment boundaries. The NURBS interpolation requires only displacements as nodal degrees of freedom, and no derivatives
of the displacement field are needed [39]. Some examples can be found in [19–21, 82]. From a general viewpoint, for ver-
ification purposes, a numerical solution have to be compared to analytical results [79]. Some analytical derivations were
presented for 2D cases [22, 69, 74, 75, 95]. Obtaining results of this kind for 3D cases is rather challenging.
In this paper, closed-form analytical solutions [70, 72, 74] are presented for cases of three dimensional benchmark prob-

lems for a centro-symmetric and isotropic material modeled by strain gradient theory. The balance equations and the
boundary terms (tractions, double tractions, and wedge forces on the boundaries) are derived by means of the variational
method. Numerical implementations have been developed based on IGA (Iso-Geometric Analysis) for these classical cases
in order to demonstrate the benchmarking procedure. The aim of the paper is to verify our implementation based on an
IGA library called tIGAr [49, 50] provided on the FEniCS platform.Moreover, a comparative study allows us to understand
the roles of wedge forces inmaintaining equilibrium. The code uses open-source packages under GNU public license [44],
and wemake the codes publicly available in [2] in order to enable a scientific exchange. The paper is organized as follows:
The variational formulation of strain gradient elasticity theory [1, 30] is outlined in Section 2. The formulation of three-
dimensional problem is shown in Section 3. In Section 4 analytical and numerical results are compared for three different
benchmark examples.

2 STRAIN GRADIENT ELASTICITY

2.1 Variational formulation

In this section, strain gradient elasticity as in [58, 59]will be revisited. Conventional continuummechanics theories assume
that stress at a material point is a function of state variables, such as strain, at the same point. This local assumption is
adequate when the wavelength of a deformation field is orders in magnitude greater than the dominant micro-structural
material length scale. However, when these two length scales are comparable, an extension becomes necessary, herein we
use the strain gradient theory. Unlike the classical elasticity, in strain gradient theory the stored energy density depends
on the strain, 𝜀𝑖𝑗 , and on the strain gradient, 𝜂𝑖𝑗𝑘:

𝜀𝑖𝑗 =
𝑢𝑖,𝑗 + 𝑢𝑗,𝑖

2
, 𝜂𝑖𝑗𝑘 = 𝜀𝑖𝑗,𝑘 =

𝑢𝑖,𝑗𝑘 + 𝑢𝑗,𝑖𝑘

2
. (1)
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Here 𝒖 denotes the displacement field and a comma means differentiation in space, 𝑿, expressed in Cartesian coordi-
nates,

𝑢𝑖,𝑗 =
𝜕𝑢𝑖
𝜕𝑋𝑗

, 𝑋𝑗 ∈ Ω ⊂ ℝ3 (2)

For strain gradient materials, the stored energy density, 𝑤, depends on the first and second gradients of the displacement
field

𝑤 = 𝑤(𝜀𝑖𝑗, 𝜂𝑖𝑗𝑘). (3)

We compute the first variation of functional for the internal energy of the body𝑊int:

𝑊int = ∫
Ω

𝑤 d𝑉, (4)

such that we have

𝛿𝑊int = ∫
Ω

δ𝑤 d𝑉 =∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗
δ𝑢𝑖,𝑗 +

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗𝑘

)
d𝑉, (5)

where the variation of displacement δ𝑢𝑖 is the test function in the finite element method to be used in simulations. After
applying integration by parts, for the details we refer to the Appendix, we obtain

∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗
δ𝑢𝑖,𝑗 +

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗𝑘

)
d𝑉

= ∫
Ω

(
−

𝜕𝑤

𝜕𝑢𝑖,𝑗
+

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

)
,𝑗

δ𝑢𝑖 d𝑉 + ∫
𝜕Ω

𝑛𝑗

(
𝜕𝑤

𝜕𝑢𝑖,𝑗
−

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

)
δ𝑢𝑖 d𝐴 + ∫

𝜕Ω

𝑛𝑘
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗 d𝐴.

(6)

In the third integral of the right hand side of the equation above, on the boundary surface, the gradient of test function
δ𝑢𝑖,𝑗 can be decomposed into a gradient within and normal to the surface [10, 18, 47, 52]:

δ𝑢𝑖,𝑗 = 𝐷𝑗(δ𝑢𝑖) + 𝑛𝑗𝐷(δ𝑢𝑖), (7)

where the operators 𝐷 and 𝐷𝑗 read

𝐷(⋅) = 𝑛𝑘
𝜕(⋅)

𝜕𝑋𝑘
, 𝐷𝑗(⋅) = (𝛿𝑗𝑘 − 𝑛𝑗𝑛𝑘)

𝜕(⋅)

𝜕𝑋𝑘
, (8)

and 𝑛𝑖 is the unit surface normal vector. Considering Equation (7), the last integral in Equation (6) becomes

∫
𝜕Ω

𝑛𝑘
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗 d𝐴 = ∫

𝜕Ω

𝑛𝑘
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
𝐷𝑗(δ𝑢𝑖) d𝐴 + ∫

𝜕Ω

𝑛𝑘
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
𝑛𝑗𝐷(δ𝑢𝑖) d𝐴. (9)

The boundary surface is assumed to be divisible into a finite number of smooth parts, 𝜕Ω𝑚, each bounded by an edge,
𝜕𝜕Ω𝑚. Using Stokes’ divergence theorem by following [18] on each smooth surface, the following equation is obtained
[52]

∫
𝜕Ω𝑚

𝐷𝑗

(
𝑛𝑘

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖

)
d𝐴 = ∫

𝜕Ω𝑚

𝑛𝑗𝑛𝑘
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
𝐷𝑝(𝑛𝑝)δ𝑢𝑖 d𝐴 + ∮

𝜕𝜕Ω𝑚

𝜈𝑗𝑛𝑘
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖 d𝑙, (10)

where 𝜈𝑗 is the unit tangent vector and belongs to the tangent space to 𝜕Ω𝑚. According to the chain rule, we have

∫
𝜕Ω

𝐷𝑗

(
𝑛𝑘

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖

)
d𝐴 = ∫

𝜕Ω

𝐷𝑗

(
𝑛𝑘

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
δ𝑢𝑖 d𝐴 + ∫

𝜕Ω

𝐷𝑗(δ𝑢𝑖)

(
𝑛𝑘

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
d𝐴. (11)
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Then the first integral on the right hand side of Equation (9) is written as

∫
𝜕Ω

𝑛𝑘
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
𝐷𝑗(δ𝑢𝑖) d𝐴 = ∫

𝜕Ω

𝑛𝑖𝑛𝑘
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
(𝐷𝑝𝑛𝑝)δ𝑢𝑖 d𝐴 +

∑
𝑚

∮
𝜕𝜕Ω𝑚

Δ

(
𝜈𝑗𝑛𝑘

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
δ𝑢𝑖 d𝑙 − ∫

𝜕Ω

𝐷𝑗

(
𝑛𝑘

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
δ𝑢𝑖 d𝐴.

(12)

By Δ(⋅), we denote the difference between values of the expression in the parentheses, which are calculated at different
sides of a sharp edge. Note that integration domain of the third integral in Equation (10) is the boundary of a smooth
surface. The whole body is composed of several smooth surfaces. By

∑
𝑚
, the sharp edges of the body are summed up.

We stress that every edge line enters twice since it belongs to two adjacent surface regions [18]. By inserting the latter into
Equation (11), the last surface integral in Equation (6) becomes

∫
𝜕Ω

𝑛𝑘
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗 d𝐴 =∫

𝜕Ω

𝑛𝑖𝑛𝑗
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
(𝐷𝑝𝑛𝑝)δ𝑢𝑖 d𝐴 +

∑
𝑚

∮
𝜕𝜕Ω𝑚

Δ

(
𝜈𝑗𝑛𝑘

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
δ𝑢𝑖 d𝑙

− ∫
𝜕Ω

𝐷𝑗

(
𝑛𝑘

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
δ𝑢𝑖 d𝐴 + ∫

𝜕Ω

𝑛𝑘
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
𝑛𝑗𝐷δ𝑢𝑖 d𝐴.

(13)

Thus the final integral form reads

∫
Ω

δ𝑤 d𝑉 =∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗
δ𝑢𝑖,𝑗 +

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗𝑘

)
d𝑉 = ∫

Ω

(
−

𝜕𝑤

𝜕𝑢𝑖,𝑗
+

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

)
,𝑗

δ𝑢𝑖 d𝑉

+ ∫
𝜕Ω

(
𝑛𝑗

(
𝜕𝑤

𝜕𝑢𝑖,𝑗
−

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

)
+ 𝑛𝑘𝑛𝑗

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
(𝐷𝑝𝑛𝑝) − 𝐷𝑗

(
𝑛𝑘

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

))
δ𝑢𝑖 d𝐴

+ ∫
𝜕Ω

𝑛𝑘
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
𝑛𝑗𝐷(δ𝑢𝑖) d𝐴 +

∑
𝑚

∮
𝜕𝜕Ω𝑚

Δ

(
𝜈𝑗𝑛𝑘

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
δ𝑢𝑖 d𝑙.

(14)

For a better analogy, we define stress and hyperstress as follows:

𝜎𝑖𝑗 =
𝜕𝑤

𝜕𝑢𝑖,𝑗
, 𝜏𝑖𝑗𝑘 =

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
. (15)

It is observed from the last two integrals in Equation (14) that second gradient continua can sustain external surface double
forces and sustain external line forces [10].
According to the principle of virtual work,

𝛿𝑊int − 𝛿𝑊ext = 0, (16)

𝑊ext is the external work done on the body. It is assumed to have the form [10, 52]:

𝑊ext = ∫
Ω

𝑏𝑖𝑢𝑖 d𝑉 + ∫
𝜕Ω

(𝑡𝑖𝑢𝑖 + 𝑟𝑖𝐷(𝑢𝑖)) d𝐴 +
∑
𝑚

∮
𝜕𝜕Ω𝑚

𝑓𝑖𝑢𝑖 d𝑙. (17)

The first part, 𝑏𝑖𝑢𝑖 , is the energy density because of the specific force, 𝑏𝑖 [4]. By Equations (14), (16), and (17), the so-called
tractions 𝑡𝑖 , double tractions 𝑟𝑖 and wedge forces 𝑓𝑘 are expressed as

𝑡𝑖 = 𝑛𝑗(𝜎𝑖𝑗 − 𝜏𝑖𝑗𝑘,𝑘) + 𝑛𝑘𝑛𝑗𝜏𝑖𝑗𝑘(𝐷𝑝𝑛𝑝) − 𝐷𝑗(𝑛𝑘𝜏𝑖𝑗𝑘),

𝑟𝑖 = 𝑛𝑗𝑛𝑘𝜏𝑖𝑗𝑘,

𝑓𝑖 = Δ𝜈𝑗𝑛𝑘𝜏𝑖𝑗𝑘.

(18)

By inserting Equation (15), Equation (18) into Equation (16) with the aid of Equation (14), we find out the so-called gov-
erning equation:

(𝜎𝑖𝑗 − 𝜏𝑖𝑗𝑘,𝑘),𝑗 + 𝑏𝑖 = 0. (19)
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F IGURE 1 The schematic of a 3D block. A
3D block with numbered edges. (b) Unit
tangential vector and unit normal vector

2.2 Constitutive laws

Strain energy density in case of centrosymmetric materials reads

𝑤(𝜀𝑖𝑗, 𝜂𝑖𝑗𝑘) =
1

2
𝜀𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 +

1

2
𝜂𝑖𝑗𝑘𝐷𝑖𝑗𝑘𝑙𝑚𝑛𝜂𝑙𝑚𝑛, (20)

where 𝐶𝑖𝑗𝑘𝑙 and 𝐷𝑖𝑗𝑘𝑙𝑚𝑛 are the first and the second gradient elastic stiffness tensors, respectively. For isotropic materials,
they are given by

𝐶𝑖𝑗𝑘𝑙 = 𝑐1𝛿𝑖𝑗𝛿𝑘𝑙 + 𝑐2(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘), (21)

𝐷𝑖𝑗𝑘𝑙𝑚𝑛 = 𝑐3(𝛿𝑖𝑗𝛿𝑘𝑙𝛿𝑚𝑛 + 𝛿𝑖𝑛𝛿𝑗𝑘𝛿𝑙𝑚 + 𝛿𝑖𝑗𝛿𝑘𝑚𝛿𝑙𝑛 + 𝛿𝑖𝑘𝛿𝑗𝑛𝛿𝑙𝑚)

+ 𝑐4𝛿𝑖𝑗𝛿𝑘𝑛𝛿𝑚𝑙 + 𝑐5(𝛿𝑖𝑘𝛿𝑗𝑙𝛿𝑚𝑛 + 𝛿𝑖𝑚𝛿𝑗𝑘𝛿𝑙𝑛 + 𝛿𝑖𝑘𝛿𝑗𝑚𝛿𝑙𝑛 + 𝛿𝑖𝑙𝛿𝑗𝑘𝛿𝑚𝑛)

+ 𝑐6(𝛿𝑖𝑙𝛿𝑗𝑚𝛿𝑘𝑛 + 𝛿𝑖𝑚𝛿𝑗𝑙𝛿𝑘𝑛) + 𝑐7(𝛿𝑖𝑙𝛿𝑗𝑛𝛿𝑚𝑘 + 𝛿𝑖𝑚𝛿𝑗𝑛𝛿𝑙𝑘 + 𝛿𝑖𝑛𝛿𝑗𝑙𝛿𝑘𝑚 + 𝛿𝑖𝑛𝛿𝑗𝑚𝛿𝑘𝑙).

(22)

By 𝑐1 and 𝑐2 the Lamé constants are denoted. It is worth mentioning here that for a 3D case there are five additional
parameters 𝑐3, 𝑐4, 𝑐5, 𝑐6, and 𝑐7 in the second gradient stiffness tensor 𝑫. By using Equations (20)–(22) we can rewrite
Equation (15) as

𝜎𝑖𝑗 =
𝜕𝑤

𝜕𝑢𝑖,𝑗
= 𝑐1𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝑐2𝜀𝑖𝑗, (23)

𝜏𝑖𝑗𝑘 =
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
= 𝑐3(𝛿𝑖𝑗𝜀𝑘𝑚,𝑚 + 𝛿𝑗𝑘𝜀𝑚𝑚,𝑖 + 𝛿𝑖𝑗𝜀𝑛𝑘,𝑛 + 𝛿𝑖𝑘𝜀𝑚𝑚,𝑗) + 𝑐4𝛿𝑖𝑗𝜀𝑙𝑙,𝑘

+ 𝑐5(𝛿𝑖𝑘𝜀𝑗𝑛,𝑛 + 𝛿𝑗𝑘𝜀𝑙𝑖,𝑙 + 𝛿𝑖𝑘𝜀𝑛𝑗,𝑛 + 𝛿𝑗𝑘𝜀𝑖𝑚,𝑚) + 𝑐6(𝜀𝑖𝑗,𝑘 + 𝜀𝑗𝑖,𝑘)

+ 𝑐7(𝜀𝑖𝑘,𝑗 + 𝜀𝑘𝑖,𝑗 + 𝜀𝑗𝑘,𝑖 + 𝜀𝑘𝑗,𝑖).

(24)

3 FORMULATION OF THE PROBLEM

A 3D block, as shown in Figure 1, is considered in the current section. The motivation for this selection is twofold. First,
all surface boundaries are flat, consequently, the boundary conditions are simplified. Second, the presence of sharp edges
would bring the wedge forces, and their importance will be demonstrated later on. We choose the length 𝑙, width 𝑤, and
height ℎ to be equal (𝑙 = 𝑤 = ℎ). Each of the 12 edges is characterized by a unique number, see Figure 1a. Unit tangential
vectors and unit normal vectors for the right and top surfaces are presented in Figure 1b.
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For the considered domain Ω its boundary 𝜕Ω is composed of flat surfaces leading to 𝐷𝑝(𝑛𝑝) = 0 on 𝜕Ω. Hence Equa-
tion (18) reads

𝑡𝑖 = 𝑛𝑗𝜎𝑖𝑗 − 𝑛𝑗(𝜏𝑖𝑗𝑘,𝑘 + 𝜏𝑖ℎ𝑗,ℎ) + 𝑛𝑗𝑛ℎ𝑛𝑘𝜏𝑖𝑗𝑘,ℎ,

𝑟𝑖 = 𝑛𝑗𝑛𝑘𝜏𝑖𝑗𝑘.
(25)

Thus, expressions of tractions and double tractions as well for the left surface are the following:

𝑡𝐿
1
= −𝜎11 + 𝜏111,1 + 𝜏112,2 + 𝜏113,3 + 𝜏121,2 + 𝜏131,3,

𝑡𝐿
2
= −𝜎21 + 𝜏211,1 + 𝜏212,2 + 𝜏213,3 + 𝜏221,2 + 𝜏231,3,

𝑡𝐿
3
= −𝜎31 + 𝜏311,1 + 𝜏312,2 + 𝜏313,3 + 𝜏321,2 + 𝜏331,3,

𝑟1 = 𝜏111,

𝑟2 = 𝜏211,

𝑟3 = 𝜏311.

(26)

According to Equation (18), the so-called wedge forces are

𝑓𝑖 = Δ𝜈𝑗𝑛𝑘𝜏𝑖𝑗𝑘. (27)

There are 12 edges in total for the 3D block. Let us take the edge number 6, which is blue in Figure 1b, as an example. The
unit normal vectors and tangent vectors for the right and top surfaces are

𝑛𝑅
𝑗
= 𝛿1𝑗, 𝑛𝑇

𝑗
= 𝛿2𝑗,

𝜈𝑅
𝑖
= 𝛿𝑖2, 𝜈𝑇

𝑖
= 𝛿𝑖1.

(28)

The wedge force on the edge number 6 is then calculated by

𝑓1 = 𝜈𝑅
𝑗
𝑛𝑅
𝑘
𝜏1𝑗𝑘 + 𝜈𝑇

𝑗
𝑛𝑇
𝑘
𝜏1𝑗𝑘 = 𝜏121 + 𝜏112,

𝑓2 = 𝜈𝑅
𝑗
𝑛𝑅
𝑘
𝜏2𝑗𝑘 + 𝜈𝑇

𝑗
𝑛𝑇
𝑘
𝜏2𝑗𝑘 = 𝜏221 + 𝜏212,

𝑓3 = 𝜈𝑅
𝑗
𝑛𝑅
𝑘
𝜏3𝑗𝑘 + 𝜈𝑇

𝑗
𝑛𝑇
𝑘
𝜏3𝑗𝑘 = 𝜏321 + 𝜏312.

(29)

Expressions for tractions, double tractions, and wedge forces on the remaining surfaces and edges respectively can be cal-
culated analogously. Expressions for the stress tensor, the hyperstress tensor, and balance equations can be given explicitly
in terms of the displacement by using Equations (23), (24), and (19) as shown in Appendix.

4 ANALYTICAL AND NUMERICAL SOLUTIONS AND COMPARATIVE STUDIES OF A
SECOND GRADIENTMODEL FOR A 3D BLOCK

Let us consider the deformation modes of a block corresponding to particular components of the strain gradient tensor
as shown in Table 1 [6, 55]. We emphasize that for underlined indices no summation convention is applied. There are
four distinct modes of deformations: Extension, torsion, non-conventional bending, and trapezoid [55, 72, 75]. These four
modes correspond to specific non-zero strain gradient components, whichwill result in strain gradient effects ofmaterials.
For example, a trapezoid loading deforms the block to be trapezoid-shaped with non-zero strain gradient components 𝜂121
as shown in [55]. In this work, the extension, torsion, and non-conventional bending deformation modes are studied by
considering specific displacement field solution corresponding to these non-zero strain gradient components as illustrated
in Figure 2. The solutions of displacement fields are imposed, the corresponding boundary conditions (tractions, double
tractions, and wedge forces) are found. This idea is based on the work in [9, 72, 75]. Numerical simulations are conducted
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TABLE 1 Characterization of deformation patterns associated
with 𝜼. The summation convention is not applied over underlined
indices. Unique indices are not equal (𝑖 ≠ 𝑗, 𝑗 ≠ 𝑘, 𝑖 ≠ 𝑘 )

Deformation patterns Non-zero components of 𝜼
Extension 𝜂𝑖𝑖𝑖

Torsion 𝜂𝑖𝑗𝑘

Non-conventional bending 𝜂𝑖𝑗𝑗

Trapezoid 𝜂𝑖𝑗𝑖

F IGURE 2 Deformation patterns associated with non-zero 𝜼. Extension: 𝜂222. Torsion: 𝜂123. Non-conventional bending: 𝜂211

based on the derived boundary conditions, and the calculated results are compared with the displacement fields. The
weak form and its numerical implementation can be found in Appendix.
The geometry sizes and constitutive parameters of the block are shown in Table 2. The values of strain gradient related

parameters may be possibly given as shown in Table 2 [9]. For defining the body forces, gravitational forces are imple-
mented by the specific force 𝑔=10 N/kg. Three cases of different boundary conditions are investigated throughout this sec-
tion.

4.1 Extension

The following displacement fields leading to a non-zero 𝜂222 are considered:

𝑢1 = 0, 𝑢2 =
𝜌𝑔(𝑋2 − 𝑙)(3𝑙 + 𝑋2)

2(𝑐1 + 2𝑐2)
, 𝑢3 = 0. (30)

This solution of displacement fields can be achieved by the following body forces:

𝑏1 = 0, 𝑏2 = −𝜌𝑔, 𝑏3 = 0, (31)

TABLE 2 Numerical data used for simulations

𝒍m 𝝆 kg/m𝟑 𝑬 Pa 𝒄𝟏 Pa 𝒄𝟐 Pa 𝒄𝟑 N 𝒄𝟒 N 𝒄𝟓 N 𝒄𝟔N 𝒄𝟕N
0.1 105 26 × 106 15 × 106 10 × 106 2600 2600 5200 2600 1300
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F IGURE 3 Graphical representation of the boundary conditions for the extension problem. It is visualized for a cut slice (z=0.05 m)

as well as the following surface boundary conditions:

Left surface∶ 𝑢𝐿
1
= 0, 𝑡𝐿

2
= 0, 𝑡𝐿

3
= 0, 𝜏𝐿

1
= 0, 𝜏𝐿

2
= 𝜏211 = (𝑐3 + 2𝑐5)

𝜌𝑔

𝑐1 + 2𝑐2
, 𝜏𝐿

3
= 0,

Right surface∶ 𝑢𝑅
1
= 0, 𝑡𝑅

2
= 0, 𝑡𝑅

3
= 0, 𝜏𝑅

1
= 0, 𝜏𝑅

2
= 𝜏211 = (𝑐3 + 2𝑐5)

𝜌𝑔

𝑐1 + 2𝑐2
, 𝜏𝑅

3
= 0,

Top surface∶ 𝑡𝑇
1
= 0, 𝑢𝑇

2
= 0, 𝑡𝑇

3
= 0, 𝜏𝑇

1
= 0,

𝜏𝑇
2
= (4𝑐3 + 𝑐4 + 4𝑐5 + 2𝑐6 + 4𝑐7)

𝜌𝑔

𝑐1 + 2𝑐2
, 𝜏𝑇

3
= 0,

Bottom surface∶ 𝑡𝐵
1
= 0, 𝑡𝐵

2
= −𝜌𝑔(𝑥2 + 𝑙), 𝑡𝐵

3
= 0, 𝜏𝐵

1
= 0,

𝜏𝐵
2
= (4𝑐3 + 𝑐4 + 4𝑐5 + 2𝑐6 + 4𝑐7)

𝜌𝑔

𝑐1 + 2𝑐2
, 𝜏𝐵

3
= 0,

Front surface∶ 𝑡𝐹
1
= 0, 𝑡𝐹

2
= 0, 𝑢𝐹

3
= 0, 𝜏𝐹

1
= 0, 𝜏𝐹

2
= 𝜏233 = (𝑐3 + 2𝑐5)

𝜌𝑔

𝑐1 + 2𝑐2
, 𝜏𝐹

3
= 0,

Back surface∶ 𝑡𝐾
1
= 0, 𝑡𝐾

2
= 0, 𝑢𝐾

3
= 0, 𝜏𝐾

1
= 0, 𝜏𝐾

2
= 𝜏233 = (𝑐3 + 2𝑐5)

𝜌𝑔

𝑐1 + 2𝑐2
, 𝜏𝐾

3
= 0.

(32)

Due to the kinematic restrictions, the wedge forces are not imposed in this case. The imposed kinematical constraints
and boundary conditions are also shown in Figure 3 for a cut slice. Plots for numerically obtained total displacement are
presented in Figure 4. In Figure 5, perfect overlap is observed between the analytical and numerical results. A difference
is shown for numerical solutions if double tractions are not taken into account.

4.2 Torsion

Lets now consider a torsion problem with the following displacement fields:

𝑢1 = 𝑇𝑋2𝑋3, 𝑢2 = 𝑇𝑋1𝑋3, 𝑢3 = 𝑇𝑋1𝑋2, (33)
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F IGURE 4 Total displacement of the extensional case

F IGURE 5 Comparisons for analytical solution and numerical ones. (a) Comparisons between the exact solution and the numerical one
through a cut along X2. (b) Comparisons between simulations through a cut along X2

where 𝑇 is a small constant with the physical dimension of the inverse of a length (𝑇 is set to be equal to 0.1 m−1). The
analytical solution is achieved by the following body forces:

𝑏1 = 0, 𝑏2 = 0, 𝑏3 = 0, (34)

as well as the following boundary conditions:

Left surface∶ 𝑡𝐿
1
= 0, 𝑢𝐿

2
= 0, 𝑢𝐿

3
= 0, 𝜏𝐿

1
= 0, 𝜏𝐿

2
= 0, 𝜏𝐿

3
= 0,

Right surface∶ 𝑡𝑅
1
= 0, 𝑡𝑅

2
= 2𝑇𝑐2𝑋3, 𝑡

𝑅
3
= 2𝑇𝑐2𝑋2, 𝜏

𝑅
1
= 0, 𝜏𝑅

2
= 0, 𝜏𝑅

3
= 0,

Top surface∶ 𝑡𝑇
1
= −2𝑇𝑐2𝑋3, 𝑡

𝑇
2
= 0, 𝑡𝑇

3
= 2𝑇𝑐2𝑋1, 𝜏

𝑇
1
= 0, 𝜏𝑇

2
= 0, 𝜏𝑇

3
= 0,

Bottom surface∶ 𝑢𝐵
1
= 0, 𝑡𝐵

2
= 0, 𝑢𝐵

3
= 0, 𝜏𝐵

1
= 0, 𝜏𝐵

2
= 0, 𝜏𝐵

3
= 0,

Front surface∶ 𝑡𝐹
1
= 2𝑇𝑐2𝑋2, 𝑡

𝐹
2
= 2𝑇𝑐2𝑋1, 𝑡

𝐹
3
= 0, 𝜏𝐹

1
= 0, 𝜏𝐹

2
= 0, 𝜏𝐹

3
= 0,

Back surface∶ 𝑢𝐾
1
= 0, 𝑢𝐾

2
= 0, 𝑡𝐾

3
= 0, 𝜏𝐾

1
= 0, 𝜏𝐾

2
= 0, 𝜏𝐾

3
= 0.

(35)
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F IGURE 6 Graphical representation of the boundary conditions for the torsion problem. It is visualized for a cut slice (z = 0.05 m)

F IGURE 7 Comparisons between the exact solution and the numerical ones through three different cut

We emphasize that the double tractions on all of the surfaces are equal to zero. According to the kinematical restrictions,
the imposed non-zero wedge forces are calculated by Equation (27)

Edge 2∶ 𝑓1 = 𝜏132 + 𝜏123 = 𝑇(4𝑐6 + 8𝑐7),

Edge 3∶ 𝑓2 = 𝜏213 + 𝜏231 = 𝑇(4𝑐6 + 8𝑐7),

Edge 6∶ 𝑓3 = 𝜏321 + 𝜏312 = 𝑇(4𝑐6 + 8𝑐7).

(36)

Figure 6 presents the imposed kinematical constraints and boundary conditions for a cut slice. Comparing the exact solu-
tion with the numerical outcomes on three different cuts (line1, line2, line3), see Figure 7, we observe that the plot for
simulation incorporating wedge forces demonstrate an almost perfect overlapping with the plot of the analytical solution.
Figure 8 indicates differences for total displacement plots for different boundary conditions. It is well known that a sin-



YANG et al. 11 of 20

F IGURE 8 Comparisons between numerical solutions for the torsion tests (Scaling factor = 40). On the left hand side, the blocks are
presented in the current configuration by two different colors for these two different numerical solutions

F IGURE 9 Graphical representation of the boundary conditions for the non-conventional bending problem. It is visualized for a cut
slice (z=0.05 m)

gularity results under line loads for classical Cauchy continuum. However, the line loads (or wedge forces) in the strain
gradient continuum are necessary and yield a continuous solution for the displacement fields.

4.3 Non-conventional bending

The so-called non-conventional bending problem is considered. The displacement field equations are conceived as

𝑢1 = 0, 𝑢2 = −𝐵
𝑋2
1

2
, 𝑢3 = 0, (37)



12 of 20 YANG et al.

F IGURE 10 Comparisons between the exact solution and the numerical ones through a cut indicated as line 1

F IGURE 11 Total displacement for the non-conventional bending problem (scaling factor 50). Four different colors are used to
demonstrate differences of the numerical solutions on the left hand side

where 𝐵 is a small constant with the physical dimension of the inverse of a length (𝐵 is set to be equal to 0.1 m−1). The
solution of the displacement field is acquired by the following body forces:

𝑏1 = 0, 𝑏2 = 𝐵𝑐2, 𝑏3 = 0, (38)
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F IGURE 1 2 Comparisons for strain energies among analytical solutions and numerical ones. (a) Strain energies for the extensional
case. (b) Strain energies for the torsion case. (c) Strain energies for the non-conventional bending case

as well as the following boundary conditions:

Left surface∶ 𝑢𝐿
1
= 0, 𝑢𝐿

2
= 0, 𝑢𝐿

3
= 0, 𝜏𝐿

1
= 0, 𝜏𝐿

2
= 𝜏211 = (−𝐵)(𝑐5 + 𝑐6 + 𝑐7), 𝜏

𝐿
3
= 0,

Right surface∶ 𝑡𝑅
1
= 0, 𝑡𝑅

2
= −𝐵𝑐2𝑋1, 𝑡

𝑅
3
= 0, 𝜏𝑅

1
= 0, 𝜏𝑅

2
= (−𝐵)(𝑐5 + 𝑐6 + 𝑐7), 𝜏

𝑅
3
= 0,

Top surface∶ 𝑡𝑇
1
= −𝐵𝑐2𝑋1, 𝑡

𝑇
2
= 0, 𝑡𝑇

3
= 0, 𝜏𝑇

1
= 0, 𝜏𝑇

2
= (−𝐵)(𝑐3 + 2𝑐5), 𝜏

𝑇
3
= 0,

Bottom surface∶ 𝑡𝐵
1
= 𝐵𝑐2𝑋1, 𝑡

𝐵
2
= 0, 𝑡𝐵

3
= 0, 𝜏𝐵

1
= 0, 𝜏𝐵

2
= (−𝐵)(𝑐3 + 2𝑐5), 𝜏

𝐵
3
= 0,

Front surface∶ 𝑡𝐹
1
= 0, 𝑡𝐹

2
= 0, 𝑡𝐹

3
= 0, 𝜏𝐹

1
= 0, 𝜏𝐹

2
= −𝐵𝑐5, 𝜏

𝐹
3
= 0,

Back surface∶ 𝑡𝐾
1
= 0, 𝑡𝐾

2
= 0, 𝑡𝐾

3
= 0, 𝜏𝐾

1
= 0, 𝜏𝐾

2
= −𝐵𝑐5, 𝜏

𝐾
3
= 0.

(39)

The following wedge forces calculated by Equation (27) are imposed

Edge 2∶ 𝑓3 = 𝜏332 + 𝜏323 = (−𝐵)(𝑐3 + 𝑐5),

Edge 4∶ 𝑓3 = 𝜏121 + 𝜏112 = 𝐵(𝑐3 + 𝑐5),

Edge 6∶ 𝑓1 = 𝜏121 + 𝜏112 = (−𝐵)(𝑐3 + 𝑐5 + 𝑐6 + 3𝑐7),
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Edge 7∶ 𝑓1 = −𝜏121 − 𝜏112 = 𝐵(𝑐3 + 𝑐5 + 𝑐6 + 3𝑐7),

Edge 10∶ 𝑓3 = −𝜏332 − 𝜏323 = (−𝐵)(𝑐3 + 𝑐5),

Edge 12∶ 𝑓3 = 𝜏332 + 𝜏323 = 𝐵(𝑐3 + 𝑐5). (40)

The imposed kinematical constraints and boundary conditions are presented in Figure 9 for a cut slice.
A comparison between the analytical solutions and the numerical ones along a line cut (line 1) are shown in Figure 10.

Obviously, when the double tractions and wedge forces are both imposed, the numerical results are in good agreement
with the analytical solutions as also observed in Figure 11.
The strain energies are calculated and presented here for the analytical and numerical solutions as shown in Figure 12.

First order 1

2
𝜀𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 and second order

1

2
𝜂𝑖𝑗𝑘𝐷𝑖𝑗𝑘𝑙𝑚𝑛𝜂𝑙𝑚𝑛 energies contribute differently in different cases. With the cor-

rectly imposed boundaries conditions the strain energies of the numerical solutions show an adequate agreement with
the analytical solutions.

5 CONCLUSIONS

In this paper, numerical simulations based on IGA are performed in order to be compared with an analytical solution
obtained using the inversemethod. Three exemplary cases of different boundary conditions were considered in 3D: Exten-
sion, torsion, and non-conventional bending. Numerical simulations were performed with and without taking the so-
called wedge forces and double tractions into account. It was shown that the numerical results are in good agreement
with the analytical solutions if the wedge forces and double tractions are considered. Besides that, we presented com-
parisons between the numerical simulations. Such a comparison helps to reveal and comprehend the roles of the wedge
forces and double tractions in the solutions. The numerical implementation was conducted by means of an open source
tool called tIGAr which is based on FEniCS library.
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APPENDIX
A.1 The weak form and its numerical implementation
According to Equations (4), (5), (16), and (17), the weak form is shown as

∫
Ω

(
𝜎𝑖𝑗𝛿𝑢𝑖,𝑗 + 𝜏𝑖𝑗𝑘𝛿𝑢𝑖,𝑗𝑘

)
d𝑉 = ∫

Ω

𝑏𝑖𝛿𝑢𝑖 d𝑉 + ∫
𝜕Ω

𝑡𝑖𝛿𝑢𝑖 d𝐴 + ∫
𝜕Ω

𝑟𝑖𝐷(𝛿𝑢𝑖) d𝐴 +
∑
𝑚

∮
𝜕𝜕Ω𝑚

𝑓𝑖𝛿𝑢𝑖 d𝑙, (A.1)

where 𝑟𝑖𝐷(𝛿𝑢𝑖) is equal to 𝑟𝑖𝑛𝑗
𝜕𝛿𝑢𝑖

𝜕𝑋𝑗
, and 𝑛𝑗 is the unit surface normal vector. For example, the 𝑛𝑗 of the right surface in

Figure 1(b) is equal to 𝛿1𝑗 .
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In this work, the wedge forces are constants and uniformly distributed on each edge with the unit of N/m. The total
force acting on each edge is equal to 𝑓𝑖𝑙 in N. 𝑙 in m is equal to the length of the corresponding edge. For example, in
Section 4.2, the wedge forces on edge 2 is 𝑓1. The total force acting on edge 2 is 𝑓1𝑙. Instead of implementing the wedge
forces directly, a traction with the amplitude of 𝑓1

2𝑙𝑚
in Pa is applied on a small region (area of the region is 2𝑙𝑚𝑙) near edge

2 as shown in Figure A.1.

F IGURE A . 1 The implementation of a wedge force on
edge 2

For a detailed introduction of IGA we refer to [46]. In tIGAr, a self-contained implementation of single-patch explicit
B-splines is realized by using a module called tIGAr.BSplines [50]. In this work, polynomial degree of the basis function
has been chosen as 2 in order to acquire 𝐶1-continuity for the formulation [39,81].

A.2 The derivation of Equation (6)
The derivation of Equation (6) is shown here. Equation (6) reads

∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗
δ𝑢𝑖,𝑗 +

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗𝑘

)
d𝑉 = ∫

Ω

(
−

𝜕𝑤

𝜕𝑢𝑖,𝑗
+

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

)
,𝑗

δ𝑢𝑖 d𝑉 + ∫
𝜕Ω

𝑛𝑗

(
𝜕𝑤

𝜕𝑢𝑖,𝑗
−

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

)
δ𝑢𝑖 d𝐴

+ ∫
𝜕Ω

𝑛𝑘
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗 d𝐴.

(A.2)

By using the divergence theorem, we can show that

∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗
δ𝑢𝑖

)
,𝑗

d𝑉 = ∫
𝜕Ω

𝑛𝑗

(
𝜕𝑤

𝜕𝑢𝑖,𝑗
δ𝑢𝑖

)
d𝐴. (A.3)

With the help of the product rule we have

∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗
δ𝑢𝑖

)
,𝑗

d𝑉 = ∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗

)
,𝑗

δ𝑢𝑖 d𝑉 + ∫
Ω

𝜕𝑤

𝜕𝑢𝑖,𝑗
δ𝑢𝑖,𝑗 d𝑉. (A.4)

Therefore, the first term in the left hand side in in Equation (6) is rewritten as

∫
Ω

𝜕𝑤

𝜕𝑢𝑖,𝑗
δ𝑢𝑖,𝑗 d𝑉 = −∫

Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗

)
,𝑗

δ𝑢𝑖 d𝑉 + ∫
𝜕Ω

𝑛𝑗

(
𝜕𝑤

𝜕𝑢𝑖,𝑗
δ𝑢𝑖

)
d𝐴. (A.5)

Likewise, from the divergence theorem, we can show that

∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗

)
,𝑘

d𝑉 = ∫
𝜕Ω

𝑛𝑘

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗

)
d𝐴. (A.6)
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By using the product rule, we have

∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗

)
,𝑘

d𝑉 = ∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

δ𝑢𝑖,𝑗 d𝑉 + ∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
δ𝑢𝑖,𝑗𝑘 d𝑉. (A.7)

Therefore, the second term in the left hand side in Equation (6) is rewritten as

∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
δ𝑢𝑖,𝑗𝑘 d𝑉 = ∫

𝜕Ω

𝑛𝑘

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗

)
d𝐴 − ∫

Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

δ𝑢𝑖,𝑗 d𝑉 (A.8)

By using the divergence theorem and the product rule again,

∫
Ω

((
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

δ𝑢𝑖

)
,𝑗

d𝑉 = ∫
𝜕Ω

𝑛𝑗

((
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

δ𝑢𝑖

)
d𝐴, (A.9)

∫
Ω

((
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

δ𝑢𝑖

)
,𝑗

d𝑉 = ∫
Ω

((
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

)
,𝑗

δ𝑢𝑖 d𝑉 + ∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

δ𝑢𝑖,𝑗 d𝑉. (A.10)

Therefore,

∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

δ𝑢𝑖,𝑗 d𝑉 = ∫
𝜕Ω

𝑛𝑗

((
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

δ𝑢𝑖

)
d𝐴 − ∫

Ω

((
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

)
,𝑗

δ𝑢𝑖 d𝑉. (A.11)

Consequently,

∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
δ𝑢𝑖,𝑗𝑘 d𝑉 = ∫

𝜕Ω

𝑛𝑘

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗

)
d𝐴 − ∫

𝜕Ω

𝑛𝑗

((
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

δ𝑢𝑖

)
d𝐴 + ∫

Ω

((
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

)
,𝑗

δ𝑢𝑖 d𝑉 (A.12)

Therefore, we have

∫
Ω

(
𝜕𝑤

𝜕𝑢𝑖,𝑗
δ𝑢𝑖,𝑗 +

𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗𝑘

)
d𝑉 = ∫

Ω

(
−

𝜕𝑤

𝜕𝑢𝑖,𝑗
+

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

)
,𝑗

δ𝑢𝑖 d𝑉

+ ∫
𝜕Ω

𝑛𝑗

(
𝜕𝑤

𝜕𝑢𝑖,𝑗
−

(
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘

)
,𝑘

)
δ𝑢𝑖 d𝐴 + ∫

𝜕Ω

𝑛𝑘
𝜕𝑤

𝜕𝑢𝑖,𝑗𝑘
δ𝑢𝑖,𝑗 d𝐴.

(A.13)

A.3 Components of stress, hyperstress, and balance equations
The expressions for stress component in terms of displacement is explicitly given by

𝜎11 = 𝑐1(𝜀11 + 𝜀22 + 𝜀33) + 2𝑐2𝜀11 = 𝑐1(𝑢1,1 + 𝑢2,2 + 𝑢3,3) + 2𝑐2𝑢1,1, (A.14)

and for hyperstress components

𝜏111 = 𝑐3(4𝑢1,11 + 𝑢1,22 + 3𝑢2,12 + 𝑢1,33 + 3𝑢3,13) + 𝑐4(𝑢1,11 + 𝑢2,21 + 𝑢3,31)

+ 𝑐5(4𝑢1,11 + 2𝑢1,22 + 2𝑢2,12 + 2𝑢1,33 + 2𝑢3,13) + 2𝑐6𝑢1,11 + 4𝑐7𝑢1,11.
(A.15)
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The other components can be calculated in the same manner. Equation (19) together with Equations (23)–(24) gives us
the system of partial differential equations. For example, the balance equation in 𝑋1 direction is

(𝑐1 + 2𝑐2)𝑢1,11 + (𝑐1 + 𝑐2)(𝑢2,21 + 𝑢3,31) + 𝑐2(𝑢1,22 + 𝑢1,33) = (3𝑐3 + 𝑐4 + 4𝑐5 + 2𝑐6 + 2𝑐7)

× (𝑢1,1111 + 𝑢2,2111 + 𝑢3,3111 + 𝑢1,1122 + 𝑢2,2122 + 𝑢3,3122 + 𝑢1,1133 + 𝑢3,3133 + 𝑢2,2133)

+ (𝑐3 + 2𝑐7)(𝑢1,1111 + 2𝑢1,1122 + 2𝑢1,1133 + 𝑢1,2222 + 2𝑢1,2323 + 𝑢1,3333) − 𝑏1.

(A.16)
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