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Abstract

A combinatorial approach for the generation of hexahedral

meshes by means of successive dual cycle elimination has

been proposed by the second author in previous work.

We provide a case study for the applicability of our

hexahedral mesh generation approach to the simulation

of physiological stress scenarios of the human mandible.

Due to its complex and very detailed free-form geometry,

the mandible model is very demanding. This test case is

used as a running example to report on the progress and re-

cent advances of the cycle elimination scheme. The given

input data, a surface triangulation, requires a substantial

mesh reduction and a suitable conversion into a quadrilat-

eral surface mesh as a first step, for which we use mesh

clustering and b-matching techniques.

Several strategies for improved cycle elimination orders

are proposed. They lead to a significant reduction in the

mesh size and a better structural quality.

Based on the resulting combinatorial meshes, gradient-

based optimized smoothing with the condition number of

the Jacobian matrix as objective together with mesh un-

tangling techniques yielded embeddings of a satisfactory

quality.

We tested our hexahedral meshes for the mandible

model in an FEM simulation under the scenario of a bite

on a “hard nut.” Our simulation results are in good agree-

ment with observations from biomechanical experiments.
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1 Introduction

In a wide range of applications of numerical simulations

by means of the finite element method (FEM) the gener-

ation of hexahedral meshes is highly desirable. However,

in spite of enormous research efforts, the robust genera-

tion of such meshes with an acceptable quality is still a

challenge for complex domains.

Several promising approaches for hexahedral mesh gen-

eration work as follows: Given a prescribed quadrilateral

surface mesh they first build the combinatorial dual of

the hexahedral mesh. This dual mesh is converted into

the primal hexahedral mesh, and finally embedded and

smoothed into the given domain. Two such approaches,

the modified Whisker Weaving algorithm by Folwell and

Mitchell [FM99], as well as a method developed by the

second author [MH99a], rely on an iterative elimination

of certain dual cycles in the surface mesh. An intuitive in-

terpretation of the latter method is that cycle eliminations

correspond to complete sheets of hexahedra in the volume

mesh.

The purpose of this paper is twofold: on the one hand,

we want to report recent progress with our combinatorial

cycle elimination approach. On the other hand, we pro-

vide a case study of its application to the stress analysis

of a human mandible model. The study comprises the full

meshing process, starting from a given initial triangula-

tion, the conversion to a quadrilateral surface mesh, the

hexahedral mesh generation, and finally an illustrative test

case for the analysis run on the created hexahedral mesh.

To get an impression of the input complexity, see Fig. 1

for the mandible model given as a triangulation with

35432 triangles.

Application background. Numerical simulations are

widely used in the field of biomechanics for the predic-

tion of regional stress and stress-compatibility. In partic-

ular, experts in the field of biomechanics and medical re-

search are interested in a deeper understanding of the me-

chanical behavior of the human mandible. Our part in a
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Figure 1: View on the given mandible model.

project with H.-F. Zeilhofer and R. Sader from the depart-

ment of Oral and Maxillofacial Surgery at the University

of Technology Munich lies in the mathematical modeling,

the simulation, and as a prerequisite, the generation of a

hexahedral mesh.

Current work points are the simulation of traumato-

logic standard situations [KST+99] and the validation of

the modeling by resimulation of standard movements like

closing of the mouth, adduction and retraction [KST+00].

The long term goal is the development of a software tool

allowing individual numerical simulation of the human

jawbone. To give a few examples, the idea is to apply such

a tool in a clinical setting as a planning aid for difficult op-

erations, the design of implants, the layout of prostheses

for large bone deficiencies, and the optimization of new

methods for osteosynthesis [KBZ+00].

As a consequence, this implies for the mesh generation

process that we need relatively coarse meshes to ensure

that we can realize short computation times with a mod-

erately sized hardware equipment. Our coarsest mesh for

the mandible model consists of only 1300 quadrilaterals

and 2252 hexahedra. This allows to run the FEM simula-

tion on an ordinary workstation. Another justification for

coarse meshes lies in the fact that we have to face several

sources of imprecision in the whole experiment, for ex-

ample, coming from assumptions about the modeling of

the material or the load case. Hence, it makes no sense to

ask for a very fine mesh which would prelude an accuracy

which is already lost in other parts of the experiment.

On the other hand, an appropriate degree of the

coarseness has to be determined. Thus, the computation

with such extremely coarse meshes as we used requires

a validation of the simulation results with finer meshes.

As a first step in this direction, we refined our coarse

mesh in such a way that the refined surface mesh is a

submesh of the coarser one, simply by subdivision of each

quadrilateral into four new ones. By that, we can specify

comparable boundary conditions in the FEM simulation.

Hexahedral mesh generation approaches. We briefly

review methods for hexahedral mesh generation starting

with a quadrilateral surface mesh. This restriction is justi-

fied by several reasons, most importantly by the fact that

only such methods can guarantee mesh compatibility be-

tween subdomains, either naturally induced by different

material or artificially created to simplify the mesh decom-

position of the remaining parts.

For a more general overview, we refer to the recent sur-

vey articles of Schneiders [Sch99] and Owen [Owe98], for

online information and data bases on meshing literature

see [Sch] and [Owe].

We distinguish between a combinatorial phase in which

a cell complex of hexahedra, a so-called hex complex, is

constructed, and the embedding phase which yields the

final hexahedral mesh. The theoretical basis for the com-

binatorial phase has been laid by Thurston [Thu93] and

Mitchell [Mit96]. They characterized independently the

combinatorial properties of quadrilateral surface meshes

which can be extended to hexahedral meshes. Namely,

for a domain which is topologically a ball and which

is equipped with an all-quadrilateral surface mesh, there

exists a combinatorial hexahedral mesh without further

boundary subdivision if and only if the number of quadri-

laterals is even. Furthermore, Eppstein [Epp96] used this

existence result and proved that a linear number of hexahe-

dra (in the number of quadrilaterals) are sufficient in such

cases. These results, however, are not fully constructive

and they do not tell how to derive a geometric embedding

of a combinatorial mesh with an acceptable quality.

Advancing front based methods like plastering [Can92,

BM93] maintain throughout the algorithm the meshing

front, that is a set of quadrilateral faces which represent the

boundary of the region(s) yet to be meshed. These heuris-

tics select iteratively one or more quadrilaterals from the

front, attach a new hexahedron to them, and update the

front until the volume is completely meshed.

Calvo & Idelsohn [CI98] recently presented rough ideas

of a recursive decomposition approach. They select a dual

cycle to divide the combinatorial dual of the surface mesh

into two subgraphs. This “cut” induces an interior two-

manifold which is remeshed simply by mapping or pro-

jecting one of the obtained subgraphs onto it. However,

fragments from previously used dual cycles are ignored in

this mapping. This splitting process is applied recursively

until there are no more unused dual cycles.

2



Whisker weaving [TBM96, TM95] first builds the com-

binatorial dual of a mesh and constructs the primal mesh

and its embedding only afterwards. As mentioned above,

the modified Whisker Weaving algorithm by Folwell &

Mitchell [FM99], as well as a method proposed by the

second author [MH99a], rely on an iterative elimination

of certain dual cycles in the surface mesh. The cru-

cial difference in these two approaches is that modified

whisker weaving eliminates cycles without restrictions,

whereas our approach requires additional structural prop-

erties. Most importantly, all dual cycles should be free of

self-intersections and a feasible elimination requires the

mesh to be simple, planar and three-connected graph af-

ter each elimination. An ordering of all but the last three

dual cycles with these properties is called a perfect cycle

elimination scheme.

These restrictions on cycle elimination, however, have

one important advantage: Empirically, they are likely

to yield meshes with a better structure. One possible

measure to compare the internal connectivity structure of

a combinatorial mesh is the distribution of node degrees.

Clearly, large node degrees are to be avoided. The

optimal node degree is that of a perfect grid, i.e. internal

nodes should have six incident edges and eight hexahedra

attached to it. For the mandible model, the maximal node

degree of our hexahedral mesh is eight.

Overview and contribution. The first major problem

we have been faced with in the meshing process of the

mandible model was the conversion of the given input tri-

angulation into a coarse quadrilateral mesh. In Section 2

we describe the steps taken to generate such an initial

quadrilateral mesh, called macro element mesh in the fol-

lowing. The surface of each macro element is represented

as a multi-patch of the triangulation such that no infor-

mation about the initial geometry is lost. The given very

complicated free-form surface and its triangulation make

a segmentation into nice clusters of triangles forming the

multi-patches very difficult.

The key idea of our approach is to use an extremely

coarse quadrilateral surface mesh which has a perfect cy-

cle elimination scheme. A crucial property of a combi-

natorial, b-matching based mesh refinement algorithm de-

scribed in [MH00] is the following: Given a surface mesh

with a perfect cycle elimination scheme, any mesh refine-

ment produced by our algorithm also has a perfect elimi-

nation order.

Then, in Section 3, we report recent advances in the

cycle elimination approach. Experiments showed that a

careful cycle selection is needed to reduce the size of the

hex complexes and to improve their structure. We explain

several new strategies which improve over previous meth-

ods:

1. a generalization of a cycle elimination to a multi-step

cycle elimination;

2. a splitting into two submeshes by insertion of an in-

ternal 2-manifold;

3. a changed hex complex construction which allows to

eliminate cycles which otherwise would imply an in-

ferior mesh quality.

When we are dealing with mechanical parts there is

often a “natural” decomposition into convex parts along

clearly distinguishable sharp concave edges. In contrast,

for the mandible model such a decomposition is not pos-

sible.

This has also consequences for the geometric embed-

ding phase which we describe in Section 4. In the early

stage of the development of our code we used the barycen-

tric embedding algorithm (often referred to as Laplacian

smoothing). However, for this simple to implement and

fast algorithm it is well-known that it might fail to produce

valid meshes (i.e., all elements are embedded inside the

domain and are non-inverted) for a non-convex domain.

In addition, recent experiments with complicated whisker

weaving meshes [Knu99a] show that this can also happen

with convex domains. Therefore, following the pioneering

work of Freitag and Knupp [FK99, Knu99b, Knu99a] we

incorporated two additional embedding algorithms into

our code. One algorithm is for local node position op-

timization based on the squared condition number of the

Jacobian matrices attached to mesh nodes. The other al-

gorithm is used “to untangle” the mesh, i.e., to find node

positions such that all Jacobian determinants are strictly

positive.

For the node position optimization of an untangled

mesh, we apply a gradient based optimization routine

with line search and thereby significantly increase the

overall mesh quality. In contrast to reports by Fre-

itag and Knupp [FK99] about numerical difficulties with

this approach for tetrahedral meshes, our implementation

seemed to work in a robust way for our test instances.

In Section 5, we apply the created hexahedral mesh to

an interesting test case, and thereby show that we have

achieved a mesh quality which allows a successful numer-

ical analysis. In this experiment, we simulated a bite on

a hard nut. The outcome agrees well with observations

made in previous biomechanical experiments.

Finally, in Section 6, we summarize the main features

of our approach and give directions for future work.
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Figure 2: Removal of extreme triangles by iterated edge

contractions.

2 From Computed Tomography

Data Towards a Quadrilateral

Surface Mesh

The starting point of our investigation is a surface trian-

gulation of the mandible with more than 35000 triangles.

This data basis originally stems from computed tomogra-

phy (CT) data from a tooth-less male. Iso-surfaces of the

tissue density represented by the CT data are computed

using the marching cubes method [LC87] with the help of

SIPFaSy.

The given initial triangulation contained numerous

poorly shaped triangles (with minimum interior angle less

than 5 degrees). To avoid numerical problems in the multi-

patching and to reduce the size of the triangulation we ap-

plied iterative edge contractions as a first preprocessing

step.

Fig. 2 shows the typical effect of this method for a small

detail. Although this method reduces the mesh size al-

ready significantly, the triangulation is still too large by

several orders of magnitude. Hence the next goal is a re-

duction to only about a few hundred multi-patches with

the side constraint that the patches should be reasonably

well-shaped.

2.1 Mesh clustering and multi-patches

The simplification of surface triangulations (or more gen-

erally of polygonal surface meshes) has been intensively

studied, mostly in computer graphics with the purpose

of fast rendering, see the survey of Heckbert & Gar-

land [HG97] for an overview.

Several methods have been developed which are specif-

ically designed for the use in finite element meshes

[VSBJ98, She00, IIY+99]. The most important clustering

ySIPFaS (Simulated Interactive Plastic Facial Surgery) is a software

package developed at TU Munich, chair of Applied Mathematics.

Figure 3: The clustering of one half of the mandible into

multi-patches.

criteria in these approaches are region size, region cur-

vature change (flatness), the preservation of sharp edges

and corners, and simple boundary shape. These criteria

are conflicting so that clustering methods usually take a

weighted combination. However, the given triangulation

is so “wild” (the “true” surface is smooth, whereas the tri-

angulation preludes the existence of sharp edges) that it is

not clear whether we can get satisfying results from these

methods.

As long as this question is unsettled, we take a different

approach, involving the following steps:

1. superimpose a very coarse but well structured quadri-

lateral surface mesh on the triangulation;

2. split all triangles which intersect with the boundary

of quadrilaterals;

3. define clusters as all triangles lying inside a quadri-

lateral;

We partition the triangulation into clusters by coloring.

This partitioning is induced by the equivalence relation

that two triangles belong to the same cluster if they share

an edge and are colored by the same color. Hence, uni-

formly colored sets of edge-connected triangles define a

cluster.

See Figs. 3 and 4 for our clustering of the mandible

model. The structure of the macro element mesh used for

the clustering was designed by hand. For the embedding

of this mesh onto the surface triangulation, the following

procedure can be used: first, fix the position of certain

macro element nodes on the surface. Given an appropriate

coordinate system for the mandible model, one can choose

extreme points with respect to the coordinate axes. Sec-
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Figure 4: A detailed view on the multi-patches.

ond, determine all other point positions by a variation of a

stable projection technique [KVLS99].

2.2 Quadrilateral mesh refinement without

self-intersecting dual cycles

With the clustering of the previous section we have

achieved an extremely coarse quadrilateral mesh without

self-intersecting dual cycles. The next step is to refine

such a mesh to the desired mesh density keeping the prop-

erty that all dual cycles are simple.

The recent paper [MH00] describes in detail how this

can be achieved in a robust way: This method sets up

and solves an auxiliary weighted b-matching problem de-

fined on the dual of the surface mesh. The resulting b-

matching solution is carefully decomposed into cycles and

paths which can be realized and embedded as a quadrilat-

eral mesh refinement without self-intersections.

Fig. 5 shows an example of such a refinement for the

mandible model.

3 Improved cycle eliminations

As mentioned in the Introduction, the order in which

cycles are selected for elimination has a great impact

on the size of the resulting hexahedral mesh and of its

quality. In this section, we describe two new strategies

which are designed to reduce the size of the meshes.

Multi-step cycle eliminations. We generalize the con-

cept of a feasible elimination of a single dual cycle to a

multi-step cycle elimination. (See [MH99a, MH99b] for

a detailed description of cycle eliminations.) A single cy-

cle elimination on the surface graph corresponds in the

construction phase to the addition of a sheet of hexahedra

enclosed on one side of the cycle, the elimination side of

a cycle.

A k-step cycle elimination selects k pairwise node-

disjoint, simple cycles, say C

1

; C

2

; : : : ; C

k

, for a simul-

taneous elimination and determines an elimination side

for each of them. Denote by Q

i

the enclosed quadrilat-

erals of cycle C

i

on its elimination side, and let Q =

Q

1

\ Q

2

\ � � � \ Q

k

be the common intersection. For

a feasible k-step cycle elimination it is required that

1. the graph of the remaining cycle configuration is sim-

ple, planar and three-connected;

2. the set of quadrilaterals Q is edge-connected;

3. if k > 1, then the unionQ[Q

i

contains more quadri-

laterals than Q, for all i = 1; : : : ; k.

The hex complex is constructed sheet by sheet in re-

versed order of the cycle elimination in such a way that the

new sheet is always placed onto the bounding surface of

the so far constructed hex complex at the time it is added.

More precisely, we place a new hexahedron on top of each

quadrilateral contained in the set Q. Hence, we get a layer

bounded by the selected cycles. In this sense, the new

sheet is an external sheet. See Fig. 6 for an example where

a 3-step elimination can be applied.

Note that an iterative elimination of the same set of cy-

cles would lead to a larger hex complex (by the third con-

dition on feasibility).

As for the special case k = 1 we can check feasibility

of a k-step cycle elimination in linear time for any k.
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Figure 5: The b-matching problem defined on the dual graph of the coarse multi-patch quadrangulation, the given

numbers attached to the edges are the b-matching values and denote the number of dual cycles crossing each primal

edge (left), and the embedding without self-intersections of the b-matching decomposition into dual cycles (right).

Figure 6: Example: Three-step-elimination (arrows point

to the three selected dual cycles.

Insertion of internal sheets. Suppose that a dual cycle

C fulfills the structural criteria for a feasible elimination

but the placement of an external sheet would lead to bad

elements regardless which elimination side we would

choose. Typically, this occurs in regions of local mesh

refinements, see Fig. 7 for an example. For such cases,

we now also allow the insert of internal sheets. By

that we mean a sheet which has only the quadrilaterals

corresponding to the dual cycle in common with the

current surface (so strictly speaking, the new sheet is

only “almost internal”). Such a sheet is incident to all

hexahedra lying directly below the enclosed quadrilaterals

on the elimination side. See Fig. 8 for an example. For

an internal sheet, we have the freedom to choose the

Figure 7: Local mesh refinement at the biting point (indi-

cated by the arrow).

smaller side with respect to the number of enclosed

quadrilaterals as the elimination side. This typically leads

to a remarkable reduction in the size of the hex complex.

Decomposition into subdomains. Practical experience

shows that for achieving an acceptable mesh quality a dual

cycle should only be eliminated and used in the construc-

tion as an external sheet if one of its neighboring primal

cycles consists only of sharp edges. Hence, we are often

faced with the problem that no dual cycle meets this elim-

ination criterion. In such a situation a split into several

subdomains is often very helpful. In contrast to Calvo &

Idelsohn [CI98], we split the domain along a primal cycle

of the current surface mesh and insert an additional inter-
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Figure 8: Example: Insertion of internal sheets.

nal two-manifold bounded by this primal cycle.

In [MH00], it has been explained how to find a suitable

primal cycle for such a split and has been shown how to

mesh such an internal two-manifold subject to the con-

straint that no self-intersection will be introduced in one

of the two induced components.

We give an example for the mandible model where

such a split has been performed. It yielded two almost

equally sized submeshes, the left part of which is shown

in Fig. 9. In this case, the internal surface consists of 28

quadrilaterals.

(Re)ordering of the hexahedra. Note that the shelling of

the hex complex corresponds to an ordering of the hexahe-

dra which is rather inefficient for the LR-decomposition of

the matrix assembled from the hexahedral mesh within the

FEM simulation. For the mandible, the simplest reorder-

ing strategy, namely a breadth first search, started from

one boundary hexahedron at the left condyle, led to a de-

cisive improvement.

4 Mesh untangling and smoothing

After the generation of a combinatorial hex complex, a

careful geometric embedding is needed to get a valid

mesh. By a valid mesh we mean that all elements are

embedded inside the domain and are non-inverted. In the

early stage of the development of our code we used only a

barycentric embedding algorithm (Laplacian smoothing).

However, for this simple to implement and comparably

fast algorithm it is well-known that it might fail to pro-

duce valid meshes (and, indeed, it fails for our hexahedral

mesh of the mandible).

Following the pioneering work of Freitag and

Knupp [FK99, Knu99a, Knu99b] we incorporated two

additional embedding algorithms into our code, one for

mesh optimization and one for untangling.

Quality measures. For a vertex of a hexahedron the Ja-

cobian matrix is formed as follows. For that, let x 2 R

3

be the position of this vertex and x

i

2 R

3 for i = 1; 2; 3

be the position of its three neighbors in some fixed order.

Using edge vectors e
i

= x

i

� x with i = 1; 2; 3 the Ja-

cobian matrix is then A = [e

1

; e

2

; e

3

℄. The determinant

of the Jacobian matrix is usually called Jacobian. If the

edge vectors are scaled to unit length, we get the scaled

Jacobian with values in the range -1.0 to 1.0. An element

is said to be inverted if one of its Jacobians is less or equal

to zero. As the sign of a determinant depends on the order

of its column entries, the latter definition is only useful

for checking the quality of an element if the order of its

neighbors is carefully chosen for each node. However, a

consistent and fixed ordering of the nodes can easily be

derived from the combinatorial hex complex by a graph

search from some hexahedron lying at the bounding sur-

face. Hence, in the following we will always assume that

the numbering of the nodes for all hexahedra are consis-

tent.

As a matrix norm, we always use the Frobenius norm,

defined as jAj = (tr(A

T

A))

1=2. The condition number

�(A) of A is the quantity �(A) = jAjjA

�1

j. For the eval-

uation of the mesh quality, we also use another hexahedral

shape measure, the so-called Oddy metric [OGMB88],

which can be written in matrix form as

f(A) = det(A)

�4=3

(jA

T

Aj

2

�

1

3

jAj

4

):

Optimization based on the condition number. Let

us assume for the moment that we have a valid mesh

which we want to optimize with respect to the sum of

the squared condition numbers as the objective function.

This objective goes to infinity if some determinant ap-

proaches zero, but does not distinguish between inverted

and non-inverted elements. Therefore, the modified con-

dition number �0 is defined to be � if the determinant is

strictly positive and set to plus infinity, otherwise. In prin-

ciple, one would like to minimize �

0 over all hexahedra

simultaneously; unfortunately, due to its size this global

optimization problem is intractable.

This means that only iterative local node improvements

based on this objective function restricted to the neigh-

borhood of an interior node are possible, and this is the

approach usually taken.

For the optimal node placement problem we compute

a steepest descent direction and combine it with standard

line search techniques to find an appropriate step size. (For

details, see Dennis and Schnabel [DS83], for example.)

As a side constraint, we have to maintain the validity

of the mesh. As a consequence, we need to check the

Jacobians for all pairs of nodes and attached hexahedra
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Figure 9: Hexahedral mesh for the mandible with 2252 elements (left), and one part of it after a split (right).

incident to edges for which we want to change the position

of one endpoint, which we call a validity test. Note that it

does not suffice to check only the Jacobians attached to

the node we want to move.

To implement these checks efficiently one has to

provide an iterator data structure giving access to the

elements to be checked in constant time per element. But

even then, these checks seem to be too expensive if they

are executed after each step. Therefore, we perform the

validity test only after a constant number of steps and at

the end of each node optimization phase. If we detect

at such a point an invalidity, we backtrack to a valid

stage. For that, we only need to store the node position

at the beginning of a phase or immediately after the last

successful check.

Mesh untangling. The optimization procedure from

the previous paragraphs requires a valid mesh as a

starting point. Hence, we also implemented an algorithm

which tries to maximize the minimum Jacobian of all

the hexahedra attached to an interior node. To this end,

we adapted in a straightforward way a procedure for

tetrahedral meshes from Freitag and Knupp [FK99].

Combined embedding algorithm. We use a combined

embedding algorithm. To get a fast initial embedding,

we use the barycentring smoothing algorithm. After the

barycentring embedding a check is needed that all hexa-

hedra are embedded inside the prescribed surface mesh.

Nodes failing this check are moved into the domain. If

the mesh is not valid after this initialization, we invoke

an untangling phase. The number of iterations over all

nodes is controlled by a termination criterion based on

the maximum relative node movement within an iteration.

Of course, this phase is also stopped immediately when

the mesh becomes untangled. If the untangling phase

terminates without finding a valid mesh, this may have

two reasons: either we are stuck in a local minimum, or,

if we are in a global minimum, the combinatorial mesh

has no valid embedding. In any case, we start afterwards

a gradient based optimization phase with respect to the

squared condition number to improve the quality. If

the mesh is still untangled, this is followed by a new

invocation of the mesh untangling procedure.

Computational results. Table 1 shows the results of the

embedding phases with respect to different quality mea-

sures (scaled Jacobian, condition number, and Oddy met-

ric) for the mandible mesh with 2252 hexahedra. For the

interpretation, recall that the scaled Jacobian is to be max-

imized with an upper limit of 1.0, whereas condition num-

ber (with minimum 3.0), and the Oddy metric measure are

to be minimized.

The initial barycentring embedding produces an invalid

mesh with 39 inverted elements, and rather extreme values

for the condition number and Oddy metric among the non-

inverted elements. The first untangling phase considerably

improves the mesh quality but still fails to yield a valid

mesh as is contains one remaining inverted hexahedron.

However, after a few optimization and untangling phases

we get rid of all degeneracies and finally end up with a

valid mesh and an overall average of 0.83 for the scaled

Jacobian, 4.2 for the condition number, and 3.5 for the

Oddy metric.
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quality measure scaled Jacobian condition number Oddy metric #inverted

min aver. max min aver. max min aver. max elements

barycentring embedding 0.001 0.817 0.999 3.01 4.46 1978.6 0.009 4.453 14355.4 39

after (first) untangling 0.048 0.813 0.999 3.01 4.37 95.1 0.009 3.677 779.4 1

final optimization 0.087 0.831 0.999 3.01 4.23 20.7 0.006 3.459 591.2 0

Table 1: Quality statistics for the embedding of the hexahedral mesh shown in Fig. 9 with 2252 elements.

Figure 10: Part of the hexahedral mesh for the mandible.

Figure 11: A refinement of the hexahedral mesh in Fig. 9

with 18674 hexahedra.

5 Simulation: Bite on a Hard Nut

We now present the results of an FEM simulation with

our coarsest hexahedral mesh. As an illustrative test case,

we selected the situation of a lateral bite (on the right

hand side). Based on the biomechanical experiments of

Moog [Moo91], the boundary loads were situated (the col-

ors in Fig. 13 show the placement of the masticatory mus-

cles and the biting point in our FEM model). For sake of

a worst case test, a very “hard nut” is to be masticated.

By that, we can assume approximately zero deformation

at the biting point. In the mathematical modeling this is

equivalent with the assumption of homogeneous Dirichlet

boundary conditions. Bone tissue is modeled as homo-

geneous and isotropic, a linear material law is used with

elasticity module of 11 GPa and Poisson number 0.28. A

detailed discussion of the taken approach and its limita-

tions goes beyond the scope of this paper. The interested

reader is referred to Kober et al. [KBZ+00].

For the FEM simulation we used the non-commercial

FEM software package FeliCs [EG97]z.

The ansatz described above allows the calculation of the

biting force out of the FEM results. The orientation of the

force vector (see Fig. 13) and the order of magnitude of

its absolute value (here: about 600 N) give some hints

on the quality of the simulations. Here, both lie in the

realistic range. The same is true for the order of magni-

tude of the deformation (5 � 10�5m). Earlier studies have

shown that von Mises equivalent stress is an appropriate

post-processing variable [KBZ+00]. Fig. 12 shows the

von Mises equivalent stresses after the bite, with a max-

imum of about 9 MPa appearing directly at the area of

the biting point. The deformation (100 times exaggerated)

of the mandible is shown in Fig. 13. The shown results

agree with observation from biomechanical experiments

of Moog [Moo91].

zFeliCs has been developed at the chair of Applied Mathematics, TU

Munich.
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Figure 12: Von Mises equivalent stresses occurring at a lateral bite on a hard nut.

Figure 13: Deformation of the mandible (100 times exaggerated, order of magnitude 5:0 �10�5m) occurring at a lateral

bite: the colors show the placement of the masticatory muscles and the biting point. The arrows indicate the assumed

muscle forces.

10



6 Conclusions

We have presented a case study for the generation of hex-

ahedral meshes with a high quality allowing successful

FEM simulations in the field of biomechanics. As a first

step, the given triangulation of a complex free-form geom-

etry had to be converted into a suitable quadrilateral sur-

face mesh. In absence of a robust clustering method, we

took the approach to design a very coarse idealized macro

element mesh for a mandible model by hand and to super-

impose it on the given triangulation to form multi-patches.

The creation of the idealized macro element mesh is done

only once for the restricted domain of mandible models.

This is an acceptable solution in view of the goal of an in-

dividual simulation with many variants of mandible mod-

els. But certainly more research on mesh coarsening ap-

plied to general free-from geometries for the purpose of

quadrilateral meshing would be highly appreciated.

As soon as a coarse macro element mesh is available,

we can use our mesh refinement techniques based on b-

matching algorithms to yield a quadrilateral mesh refine-

ment with any desired local mesh density (without self-

intersecting dual cycles).

For the combinatorial phase of the hexahedral mesh

generation, we presented new strategies for improved cy-

cle elimination schemes. These methods effectively re-

duce the size of the hexahedral meshes and improve the

structural quality of the meshes. In particular, we observed

that most interior nodes have optimal degree six, and the

maximal degree was only eight.

Gradient based mesh smoothing turned out to work

well. At the current stage, we have concentrated our re-

search concerning the embedding phase on finding the

best quality, neglecting speed considerations to a certain

degree. Future work must address the acceleration of the

mesh embedding algorithms. Apart from further code

fine-tuning we see potential for improved efficiency in the

application of variants of quasi-Newton methods and other

step-size rules in the line-search, as well as in more so-

phisticated node selection schemes for the order of local

node optimizations.

We have presented one illustrative test case for the ap-

plication of our hexahedral meshes to an FEM simulation

of the human mandible. As noted above, our simulation

results are in line with previous experiments. We have

also successfully applied our mesh generation methods to

a mandible model with a slightly different shape. Our cur-

rent goal is to extend the simulation experiment and to

study the effect of such a geometry change (a “sane” vs.

an “ill” mandible) on the stress distribution and deforma-

tion after a bite.
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