Optimization over Integers with Robustness in Cost and Few
Constraints

Kai-Simon Goetzmann!*, Sebastian Stiller>**, and Claudio Telha®

! goetzman@math.tu-berlin.de, Institut fiir Mathematik, Technische Universitét Berlin
sebastia@mit.edu, Sloan School of Management, Massachusetts Institute of Technology
3 ctelha@mit.edu, Operations Research Center, Massachusetts Institute of Technology

2

Abstract. Robust optimization is an approach for optimization under uncertainty that has recently
attracted attention both from theory and practitioners. While there is an elaborate and powerful
machinery for continuous robust optimization problems, results on robust combinatorial optimization
and robust linear integer programs are still rare and hardly general. In a seminal paper Bertsimas
and Sim [7] show that for an arbitrary, linear 0-1-problem, over which one can optimize, one can
also optimize the cost-robust counterpart. They explicitly note that this method is confined to binary
problems. We present a result of this type for general integer programs. Further, we extend the result
to integer programs with uncertainty in one constraint.

We show that one can optimize a not necessarily binary, cost robust problem, for which one can optimize
a slightly modified version of the deterministic problem. Further, in case there is a p—approximation
for the modified deterministic problem, we give a method for the cost robust counterpart to attain a
(p + &)-approximation (for minimization problems; for maximization we get a 2p—approximation), or
again a p—approximation in a slightly more restricted case.

We further show that general integer linear programs where a single or few constraints are subject
to uncertainty can be solved, in case the problem can be solved for constraints on piecewise linear
functions. In case the programs are again binary, it suffices to solve the underlying non-robust program
n + 1 times.

To demonstrate the progress achieved by our general techniques for non-binary integer programs,
we apply them to two classes of integer programs, namely, totally unimodular integer programs and
integer programs with two variables per inequality. We also exemplify the power of our approach for
combinatorial optimization problems. Here the method yields polynomial time approximations and
pseudopolynomial, exact algorithms for Unbounded Knapsack Problems. We derive an algorithm for
problems with both cost and constraint robustness.

As the general results of this paper could be applied so broadly and quickly already here, we believe
they will also be a fruitful method for future research in robust optimization over integers.

* Supported by the Deutsche Forschungsgemeinschaft within the research training group ‘Methods for Discrete
Structures’ (GRK 1408).
** Marie-Curie Fellow of the European Commission under the ROSES-Project (FP7-PEOPLE-2009-10F 254402).

1 Introduction

A solution to an optimization problem often has to be good not just for one instance but for a set of
scenarios. This can either be due to uncertainty as to which of the scenarios will eventually occur, or because
the solution shall be used several times in different scenarios.

One solution concept for optimization over scenarios is Robust Optimization. In the robust paradigm
feasibility and cost of a solution is measured by those scenarios in which the solution performs worst. This
worst case approach contrasts to stochastic programming, where the cost of a solution is typically a weighted
average over all scenarios, good ones and bad ones.

As an illustration, suppose we choose a route for regularly driving to work. It makes sense to use some
type of average as a measure for fuel consumption in this case. But as far as safety is concerned, one will
consider each route according to the risk in its worst case scenario.

Robust optimization has thriven in the past decade, partly because its applicability became apparent,
partly because the resulting mathematical models allow for strong solution methods. For continuous problems
a cohesive body of quite general methods has been developed. For combinatorial problems and integer linear
programs the picture is a lot more scattered. Typically, the results cover a specific combinatorial problem.
This is of course a consequence of the richness of combinatorial optimization and integer linear programming,.
General results for all of these problems as in the continuous case are unlikely. Therefore the following result
by Bertsimas and Sim is even more remarkable:

In [7], they show that

— for uncertain cost coeflicients, where at most I" of them can deviate from the nominal setting at the
same time, solvability or approximability of any problem with binary decision variables extends to the
robust case, as it suffices to solve a linear number of instances of the deterministic problem.

Unfortunately, this result is intrinsically limited to binary variables. We give a corresponding result for
integer, not-necessarily binary cost robust programs. Further, we can extend our method to general robust
integer programs with uncertainty in one (or few) constraint(s). Restricting this result again to binary
problems gives the exact sibling of the cost robust result in [7] for robustness in constraints.

Our Contribution: The main results of this paper are the following:

— The cost robust counterpart (in the same sense as in [7]) of an integer problem can be solved or approx-
imated if the original problem can be solved for piecewise linear convex cost functions with at most two
bends.

— To solve integer problems with uncertainty in a constant number of linear constraints, one has to solve
a modified problem where the left hand sides of the constraints are replaced by piecewise linear convex
functions.

— For binary problems with uncertainty in a constant number of linear constraints, it suffices to solve a
polynomial number of instances of the original problem with slightly modified coefficients in the con-
straints.

These general results allow us to develop methods for cost robust counterparts of entire classes of integer
linear programs, notably, totally unimodular programs (TUM) and integer programs with two variables per
constraint (IP2). Both classes have been studied intensely in the deterministic case, but we are not aware of
any general results on their robust counterparts. Our general result on cost robust TUM problems broadly
extends results on Robust Min Cost Flows in [7]. Further, we apply our general results to a combinatorial
problem, namely, Unbounded Knapsack. In this case we derive an algorithm that handles cost robustness
and robustness in the constraints at the same time.

Our result on integer programs with uncertainty in the constraints is limited to a constant number of
disturbed constraints. A path breaking work [8] on robust linear programs (and other continuous optimization
classes) gives a method to solve robust LPs where potentially every constraints is subject to disturbances.
This paper [8] has established the role of I' scenario sets in robust optimization, i.e., the set of all scenarios
where each input parameter can vary in its own interval, but the absolute, normalized sum of all variations is
limited by a constant I'. The major part of [3] is devoted to show that these sets imply a good probability for
a robust solutions to be feasible outside the assumed scenarios set. This result holds only for small, constant

numbers of constraints being subject to uncertainty. Also, primary examples in [8] feature uncertainty in one
constraint only. Hence, the loss in solvability for the integer case seems not very important, as already the
scenario sets are not well justified for the general case.

Often optimization problems with a natural, non-binary, integer linear programming description can be
reformulated as binary integer linear programs. Even granted the incurred blow-up of the instance, this does
usually not yield a workaround to apply results for robust binary IPs to the naturally non-binary problem.
The hindrance is usually that the scenarios sets of the robust counterparts make no sense once the problem
is transformed into an unnatural binary program.

Related Work: To the best of our knowledge we give the first results on cost robust counterparts of general
integer programs.

Modern continuous robust optimization started with [21] for convex uncertainty sets and [4,5,6] for
ellipsoidal uncertainty sets. Still a good overview for the state of the art is [1]. The I'-scenario setting
from [7,8] has found frequent application. It has also been applied to certain covering problems in a two-
stage robust setting [10,15].

Robust Knapsack has so far only been considered in the binary setting. Yu [23] considered the Knapsack
Problem with general scenarios for uncertain costs and showed that unless the number of scenarios is constant,
the problem is strongly NP-hard. Aissi et al. [2] remarked that Yu’s proof already shows that there is no
approximation algorithm for this problem at all. For I'-scenarios, however, the result from [7] applies and gives
an FPTAS. Klopfenstein and Nace [16,17] considered polyhedral aspects of the robust Knapsack Problem,
and in the context of the chance-constraint version also a weight robust Knapsack Problem. For deterministic
Unbounded Knapsack Hochbaum [11] considered a non-linear extension of the problem with concave and
convex functions for the cost and weight of the items, respectively. This problem is similar to some of the
modified Knapsack problems we use.

Integer linear programs with two variables per inequalities and positive objective function coeflicients are a
generalization of the minimum weight vertex cover and the minimum weight 2-satisfiability problem (2SAT).
Hochbaum et al. [12] and Bar-Yehuda and Rawitz [3] provide a pseudopolynomial time 2-approximation algo-
rithm for this class of integer programs. In case the inequalities are restricted to be monotone, Hochbaum and
Naor [13] and Bar-Yehuda and Rawitz [3] provide a pseudopolynomial time exact algorithm. All algorithms
explicitly assume that the variables are bounded.

Our results for totally unimodular integer programs generalize results on specific totally unimodular
problems, e.g., Min Cost Flows [7].

Structure of the paper. The remainder of this paper is organized as follows: In Section 2 we present the general
results on cost robust integer problems, and apply them to problems with a total unimodular description
(Section 2.1) and Integer Programs with two variables per inequality (Section 2.2). Section 3 is devoted to
the general result on constraint robustness, which is then applied, together with the results from Section 2,
to the Unbounded Knapsack Problem (Section 3.1).

2 Uncertainty in the Objective

We start with the general result on cost robust, not necessarily binary problems. We will use [n] for the set
{1,...,n} and IN for the non-negative integers (including 0) here and throughout. By T(.4) we denote the
running time of an algorithm .A. The formal definition for the considered class of problems reads as follows:

Definition 1 (Cost Robust Optimization Problem). For the optimization problems min,c x{c*z} and
max,cx{cTz}, given by P = (¢, X) where X C Z" and ¢ € R", and a non-negative integer vector d € IN"
together with I' € [n], the minimization (maximization) (d,I")-Cost Robust Counterpart (CRC) of P is
defined by

min < ¢’z + max Z |d;z;] and max { ¢’z — max Z |dz;| ¢ (2.1)
zeX SCln] 4 zeX SCl[n] “
|s|<r7€8 EEh

respectively.

Our main goal is to show that one can solve or approximate the CRC of P, if one can solve or approximate
the following variant of P:

Definition 2 (Modified Optimization Problem). For the minimization (mazimization) problem given
by P = (X,c), a vector ¢' € RY, and a number o > 0, the (', a)-Modified Minimization (Maximization)
Problem (MMin, MMax) of P is

min Z c;(z;) and max Z ci(z;) ¢ (2.2)
i€ln] j€ln]

respectively, where ¢;(z) := c;r + max{c;z — a,0} + max{—cjz — a,0} for minimization, ¢;(z) := c;z —

max{c;z — a,0} — max{—c;z — a,0} for mazimization problems.

At this point minimization and maximization are fully symmetric. At a later stage it will come in handy to
have them defined separately.

Theorem 3. Consider the optimization problem of P = (¢, X) with X C Z™ and ¢ € R". Suppose for some
p > 1 there is a p—approzimation algorithm Ay for the (¢, a)-MMin (MMaz) of P and arbitrary ¢’ and a.
Further suppose, for given d € IN™ and I" € [n] there is an algorithm Ay that computes upper bounds u; on
the absolute value of each variable z; in the optimal solution of the (d,I')-CRC of P.

Then there is a p-approzimation algorithm A for the (d,I")-CRC of P with running time T(A) €
O(T(Az) + max;{u;d;} - T(A1)).

Note that for p = 1, i.e., if we have an exact algorithm for the modified problem, we can solve the CRC
exactly.

Proof. We only consider minimization problems, since we can transform any maximization problem into a
minimization problem by taking the negative of the costs. We formulate the inner maximization problem
of (2.1) as an integer program (IP). This IP is totally unimodular, thus we can substitute it by its dual
LP-relaxation. Then the CRC reads as follows:

min ¢"z + I'9 + 3. (Y5 + 25)
s.t. y;i +9 >djz; Vi€ [n]
zj + 9 > —djﬂfj Vje [’fl] (23)
Y,2,020
zeX.

In an optimum, y; = max{d;z; — ¢,0} and z; = max{—d;z; — 9,0}, so (2.3) is equivalent to

meI)I(l,1119120 T+ I+ ;} (max{d;z; — 9,0} + max{—d;z; —9,0}) ». (2.4)
JjEln

For a fixed ¢, this is equivalent to the (d;,)-MMin of P. By the conditions of the Theorem, we can compute
a p-approximate solution to this problem.

In an optimum we have |z;| < u;, so if 9 > max; u;d; =: 9, for all j both maxima vanish. Hence, if we
increase ¢ beyond this number, the objective value increases. Therefore ¥ is an upper bound for the optimal
value of .

Also, the optimal ¥ is integral: Denote by

C*(9) =T+ nél)rgl Z c;z; + max{d;z; — 9,0} + max{—d;z; — 9,0} (2.5)
7 el

the optimal cost for a fixed . Since z and d are integral, this function is linear in 1 within each interval
[k, k + 1],k € IN. In such an interval the local maximum is obtained for ¥ = k or for ¢ = k + 1, and thus the
global maximum is obtained for some integral 4.

We compute all corresponding p-approximate solutions and choose the best among them, resulting in the
claimed running time. O

Remark. Our model of robustness limits to deviation in at most I' cost coeflicients. The resulting inner
maximization problem, which we dualized in the previous proof, is totally unimodular. Therefore a standard
argument originating from [7] gives that this model is equivalent to protecting against any cost function
¢+ 6d with ¢ in the set {6 € R" : 37,1,y |6;] < I'}.

Unless max; u;d; is polynomial in the input, in Theorem 3 one ends up with a pseudopolynomial algorithm
for the CRC, even if one has a polynomial algorithm for the modified optimization problem. This can be
overcome if p =1 and C* as defined in (2.5) is convex as a function of ¢, in which case the correct 9* can
be found via a carefully constructed binary search (similar to the one in proof of Theorem 7 in [7]).

Theorem 4. Consider the minimization problem of P = (¢, X) with X C IN" and ¢ € IRY,. Under the
conditions of Theorem 3, if p = 1 and C* is a convex function, then there is an exact algorithm A for the
(d, I')-CRC of P with running time T(A) € O(T(Az) + max; log(u;d;) - T(A1)).

For a detailed description of an application of this result we refer the reader to section 2.1.

When p > 1 or C* is not convex, we can still restrict the number of calls of the oracle 4; to O(max; log(u;d;))
in exchange for a slightly weaker approximation guarantee. But for this result we have to consider minimiza-
tion and maximization separately and restrict to combinatorial problems with non-negative cost coefficients
and variables. Note that in this case the second maximum in both the definition of MMin and MMax vanishes.

Theorem 5 (Minimization Problem). Consider the minimization problem of P = (¢, X) with X C IN"
and c €]Rgo, Under the conditions of Theorem 3, for all € > 0 there is a (p + €)—approzimation algorithm

A for the (d,I')~CRC of P with running time T(A) € O(T(Az) + 1 - max; log(u;d;) - T(A1)).

Proof. We start as in the proof of Theorem 3. To attain the claimed running time, however, for any given
€ > 0, we now solve (2.5) approximately for all ¥ € {0} U {(1 +¢)* : k € IN, (1 + ¢)*~! < 9}, and return the
best of all these solutions. This yields a (p + ¢)-approximation for the CRC:

Denote the optimal value of ¥ by 9*. In case 9* € {0, 1}, our solution is within a factor of p of the
optimum, since these two values for 9 are checked. Otherwise, let ks € IN \. {0} be such that (1 +¢)*o~! <
9* < (1 +¢)ko =: 9. Since I',9*,c, and z > 0, we get*

C* (%) I, mingex {Z] T + max{dj:vj — do, 0}}
s < max L
c (0) Iy ming x {Z] c;Ty + max{djzj — 19*,0}}

<l+e.

Since we can compute p-approximations to C* (1), the best solution we find is a (p +¢)-approximation for the
CRC. Further, the oracle A; is called O(log(1+.)9) = O(% - max;log(u;d;)) times, resulting in the claimed
running time. ad

For maximization the perturbed cost in a worst scenario can be relatively close to zero, while all numbers
involved are rather large. This, roughly speaking, spoils an approximation result for maximization similar to
Theorem 5—unless we impose a further condition:

Theorem 6 (Maximization Problems). Consider the mazimization problem of P = (¢, X) with X C IN"
and ¢ €]Rgo- Suppose the conditions of Theorem 3 hold, and suppose that the relative cost decrease in the
(d,I")-CRC of P is bounded from below by a positive constant 3, i.e.:

(¢j —dj)
¢j

i18>0: >p Vje[n].

Then there is a 2p—approzimation algorithm A for the (d,I')-CRC of P with running time T(A) €
O(T(A2) + max; IOg(Ujdj) . T(Al)) .

* Using ‘;ig gmax{%,%} Ve, d>0.

Proof. As in the proof of Theorem 5, we solve the MMax of P for ¥ = (1 + ¢)* for some k € IN and a
particular £ > 0. For the choice of ¢, consider an optimal solution (z*,9*) with value OPT. We get that

ry* <roé+ Z max{d;z; —¥*,0} = c'z* — OPT < d"z" < (1-p)c'z", (2.6)
i€ln] (1)
where (*) holds because (1) is the cost we loose due to the decrease of some of the coefficients, and this cost

is bounded by dTz*.
We now set € := 8/2(1—-8) (w.l.o.g. 8 >1). Then

(2.6)
OPT > (c—d)"z" > fcTz" = 2e(1 — B)cTz™ > 2eI'9" . (2.7)

With this, we can bound the error that arises from approximating J:
Denote by C*(9) := —I'Y + max,ex {Ejew c;jz; — max{d;z; — 19,0}} the optimal cost for a fixed 9.
With 99 as in the proof of Theorem 5 we then get
OPT OPT

: <
C*(do) —I'¥y + maxgex {Zje[n} (cjz; — max{d;z; — 19*,0})}

(since ¥9 > 9%)

= OPT (since 9" optimal)
~ "I'dy + OPT + I'9* p

OPT — eI'9* + el9*
= _I'(1 +¢)9* + OPT + I'9"

(since ¥y < (14 €)9™)

4 el (2<7) 5
OPT —el'v* —)

Since we are able to approximate the optimal solution to the MMax of P within a factor of p, the
considerations above prove that our algorithm yields a 2p-approximation.

The number of calls of A; is the same as in the proof of Theorem 5. Since € is constant, we get the
claimed overall running time. O

=1

2.1 Problems with Totally Unimodular Description

The concept of totally unimodular matrices is arguably the most successful concept for solving a large class
of integer programs. In general, robust counterparts need not inherit total unimodularity. We show that
in general the CRC of P can be solved exactly for those problems where the solution space of P can be
described by a totally unimodular matrix of size polynomial in the size of the input of P.

This generalizes results on specific totally unimodular problems. In particular, it broadly generalizes the
results on Robust Network Flows in [7], since the Min Cost Flow Problem is totally unimodular.

In this section we do not require non-negativity of the cost vector, so the minimization results we show
can be used for maximization problems as well. The structure of the problems considered here is as follows:

Definition 7. A minimization problem P = (¢, X) is said to have a bounded TUM description (4,b,u) if
the set of feasible solutions X C IN™ is described by a totally unimodular matriz A € R™*™, an integral
right-hand-side b, and an integral vector of upper bounds u, i.e.

conv(X)={z € R": Az < b,z < u}, A TUM, b,u € ZZ™.

Remark. The non-negativity condition can be lifted. Still this yields much less readable results that rest on
similar arguments.

For totally unimodular problems we first show that we can always solve MMin:

Lemma 8. If the minimization problem P = (¢, X) is given by a bounded TUM description (A,b,u), then
the Modified Minimization Problem can be solved in polynomial time.

Proof. Let ¢ be an arbitrary vector of piecewise linear cost functions as defined in Definition 2. Note that
since > 0, the second maximum in the cost functions vanishes and they have a single bend at «/c/.

We split up each variable into three new variables with slightly different cost coeflicients. Their upper
bounds are chosen such that their sum corresponds to the original variable. Set Z; := [«/¢;]. Bounds and
costs are set as follows:

Variable‘Upper Bound‘Cost Coeflicient

i — i
m%zi z; —1 0%2; =y
z; 1 ¢, =cj+ c;-xj a
23 U; —T; P S +c

J J J J J J

i 5% 1)+ 1)

st. 2 + 23 4208 ¢ X
2 <z -1 (2.8)
z? <1
z® <u—7.

Since cg-l) < c§-2) < 05-3), it is equivalent to the Modified Minimization Problem (2.2).
On the other hand we have

@™ + 23 4 26) € conv(X) AAA (1) b
:W <z 1 o |00 o _|z-1
22 <1 0I0 i(s) = 1
B<y—7 001~ u—7T
T u—T
> ———
—. A’ = —:b'

where [is the n-dimensional identity matrix.
The matrix A’ is again totally unimodular, and the right-hand-side b’ is obviously integral. Therefore the
optimum of

min Eje[n] cg-l)z;l) + 0;2):135-2) + c§-3)z§»3)
s.t.) + 23 4+ 26) ¢ conv(X)
2 <z -1 (2.9)
£ <1
z® <u—7=T
is integral and thus an optimal solution of (2.8). Also, it can be computed in polynomial time. |

Further, in this setting C* is convex:

Lemma 9. Let C*(9) be defined as in (2.5). Then for a minimization problem P = (¢, X) with a bounded
TUM description (A,b,u), C* is convez for any c € R",d € IN", I" € [n].

Proof. Consider problem (2.3), where because z > 0 the variables z; and corresponding constraints are
removed, and let (z(V),y™) and (z(®,3®)) be optimal solutions to this problem for ¥ = ¥; and ¢ = 05,
respectively. Then for arbitrary A € [0,1], (Az(") + (1 — N)z(®, Ay + (1 — X)y(?)) is a feasible solution for
9 = Ad; + (1 — A)I2, if in the last constraint of (2.3) we replace X by conv(X).

The proof of Lemma 8 tells us that the optimal solution of this problem is always integral. Hence we get

C*(A91 + (1 = N)¥2)
<tz + (1= Nz®) £ Ty + (1= N)D,) + 17y + (1= N)y@)
= AC*(91) + (1 — A\)C*(9) .

This proves that C* is indeed convex. O

We can now apply Theorem 4 and get that we can solve the CRC of any problem with a bounded totally
unimodular description in polynomial time:

Theorem 10. If the minimization problem P = (¢,X) is given by a bounded TUM description (A,b,u),
then for any c € R"™,d € IN" and I € [n], there is an ezact algorithm for the (d,I')-CRC of P that runs in
polynomial time.

2.2 Integer Programs with Two Variables per Inequality

We now apply our main results to a second, large, and intensely studied class of integer programs, namely
integer programs with two variables per inequality (IP2).

Definition 11 (Integer Programs with Two Variables per Inequality). A bounded integer program
with two variables per inequality (bounded IP2) is a system of the form

min{c"z: ajx >b; fori=1,...,m, L <z < u, ¢ inleger},

where be Z™, byu € Z", c € Q™ and each vector a; € Z™ has two non-zero components.
A bounded IP2 is called monotone if the non-zero coefficients of a; have opposite signs.

The conditions required in Section 2 allow to intensely use the existing techniques for non-robust IP2, in
particular [12], [13] and [3]. We obtain a pseudopolynomial time 2-approximation for the CRC of bounded
IP2s and an exact pseudopolynomial time algorithm for the CRC of bounded, monotone IP2s.

Theorem 12. The cost robust counterpart of a bounded monotone IP2 can be solved in pseudopolynomial
time.

Remark. In the appendix, we prove Theorem 12 by extending (to handle piecewise linear functions) the
pseudopolynomial time algorithm of Hochbaum and Naor [13] for bounded monotone IP2. In [3], Bar-Yehuda
and Rawitz give an exact pseudopolynomial algorithm for monotone cost functions but non-negative lower
bounds.

Theorem 13. There is a pseudopolynomial time 2-approximation algorithm for the cost robust counterpart
of a bounded IP2 with non-negative coefficients in the objective function and non-negative lower bounds.

Remark. In the appendix, we prove 13 by extending (to handle piecewise linear functions) the pseudopoly-
nomial 2-approximation algorithm of Hochbaum et al. [12]. This result is also shown in [3].

3 Uncertainty in Constraints

We now turn to the case where the coefficients of a single linear constraint (or those of a constant number of
them) are uncertain. All results presented here hold both for minimization and maximization, so we restrict
to one of the two. The formal definition of the considered class of problems is as follows:

Definition 14 (Constraint Robust Maximization Problem). Consider the problem max,cx{c"z},
given by P = (¢, X) where c € R™ and X = {z € X' : a"z < r} for some X' C Z",a € R",r € R.
For a non-negative integer vector b € IN" together with I' € [n], the (b, I')—Constraint Robust Counterpart
(ConsRC) of P is defined by

maxc’x st. veX', a'z+ éréa[.;c} Z |bjz;| < (3.1)
S|<ries

As in the cost robust setting, the left hand side of the constraint with uncertain coefficients can be
transformed into a sum of piecewise linear convex function with two bends:

Lemma 15. The (b, I')-Constraint Robust Counterpart of the mazimization problem P = (¢, X) as defined
in Definition 14 is equivalent to

max max ¢’z (3.2)
£>0 zeX(€)

with X(&): =Sz e X' : T't+ Z ajr; + max{bjz; — & 0} + max{—bjz; — &0} <r
j€ln]

Proof. With the same transformations as in the cost robust setting, we get that (3.1) is equivalent to

maxc'z

st. ze€X', a"z+ r§n>1g ré+ Z a;z; + max{b;z; — {0} + max{—b;z; — &0} p <.
- j€ln]

Thus, for all feasible solutions z of (3.1) there exists some &(z) > 0 such that z € X (£(z)). Consequently, as
claimed (3.1) is equivalent to maxe>o max,cx(¢) ¢ 2. O

For the non-binary case, the optimal value £* can be found by enumeration, since it is integral and bounded
by the maximum deviation in the constraint coefficients.

Corollary 16. Consider the (b,I")-ConsRC of the mazimization problem P = (¢, X) as defined in Definition
14. Suppose there is an algorithm Ay computing a p-approrimation for max,cx) c*x for any £ > 0, and
an algorithm A, that computes upper bounds u; on the absolute value of each variable z; in the optimal

solution of (3.1). Then there is a p-approximation algorithm A for the (b,I")-ConsRC of P with running
time T(A) = O(T(.Az) + IIlan{’u,jb]'} . T(Al))

If all variables are binary, i.e. X' C {0,1}", there are only n + 1 possible values for £*, and for a fixed
& the constraint of problem (3.2) becomes linear again. Hence, to solve the (b, I')-ConsRC of P = (c, X), it
suffices to solve n + 1 problems of the type of P for slightly different coefficients in the linear constraint:

Theorem 17. If X' C {0,1}", the (b,I")-ConsRC of the maximization problem P = (¢, X) as defined in
Definition 14 is equivalent to

-1
T ! T L .
,_pax | maxctz st. z€X', I'bj+a z—l—z:l(bj bz, <r|,
J:

whereby w.l.o.g. we assume by, < bp,_1 < ... < by and define b1 := 0.

Remark. This result is an exact sibling of the result on cost robust binary problems in [7], but with uncer-
tainty in a constraint instead of the costs.

Proof. The optimal value £* lies in [0,b1]. We split up this interval at b;,£ = n...,2, and maximize over
each subinterval, i.e. we reformulate (3.2) to get
max (max (ma,x cTa:>>. (3.3)
£=1,...,n \E€[bgs1,be] \2EX(E)

For z € {0,1}" we have max{b;z; — £,0} = max{b; — £,0}z;, and thus for £ € [bey1,]

X&) = zGX':Ff—i—Zaja:j—i—max{bj—{,O}mjgr
j€ln]
£
={zeX :T{+a'z+) (bj—&z; <7 ;. (3.4)

j=1

For any fixed z, the left hand side of the constraint in (3.4) is a linear function in ¢ that has to be no greater
than r somewhere in [by41, bs] for z to be feasible. Thus, if the constraint is satisfied for any ¢ in this interval,
because of linearity it will be satisfied for at least one of the values £ = bsy1 or £ = by,. As a consequence,

max (max ch> = max <max cTac>. (3.5)

€€[bey1,be] \zEX(E) £=bey1,b0 \z€X(E)
Combining (3.3)—(3.5) this yields the claimed result. |

Remark. A direct corollary from Theorem 17 is the existence of an FPTAS for the weight robust counterpart
of the binary Knapsack Problem, generalizing a result from [17].

All the results from this section hold as well if there is a constant number & of constraints with uncertain
coefficients. The problem max,cx () would then have to be solved (max;{u;b;})* times in the setting of
Corollary 16 and (n + 1)* times in the binary case.

3.1 Robust Unbounded Knapsack Problems

To demonstrate how versatile our main results are for combinatorial problems, we apply them to the Un-
bounded Knapsack Problem, the non-binary extension of the classical Knapsack Problem (KP). For this
problem we will be able to handle counterparts that feature both, cost robustness and robustness in the
constraint.

To distinguish between the standard version of the Unbounded Knapsack and a technically relevant
modification used further below, we speak of the Linear and the Concave Unbounded Knapsack Problem.

Definition 18 (Linear Unbounded Knapsack Problem). An instance of the Linear Unbounded Knap-
sack Problem (UKP) is given by a knapsack capacity W > 0 and n types of items with weights w; € IN and
costs ¢; € Rxo, j € [n]. The task is to find a vector x € IN" with 3>, wjz; < W mazimizing the cost 3, c;z;.

The linear UKP and its later defined extensions, in particular its robust counterparts, are NP-hard, by
the weak NP-hardness of the binary KP. Intuitively, UKP seems to be more complex than the binary KP,
since the input is more compact. Still, as for KP, there is both a pseudopolynomial Dynamic Program (DP)
and an FPTAS [18,14].

We now consider the robust versions of the Unbounded Knapsack Problem.

Cost Robust UKP. While the result for binary cost robust programs [7] can be applied to the standard
Knapsack Problem, the CRC of the UKP surpasses the reach of [7]. One may argue that the UKP can
be formulated as a binary integer program spending a variable for each potentially useful copy of an item.
But, apart from the enormous blow up in size, the robust counterpart of such an IP, where at most a fixed
number of cost coefficients may vary, is completely different to that of the UKP—and apparently does not
make much sense.

To tackle the Cost Robust Unbounded Knapsack Problem (CRUKP) with our results from Section 2, we
consider the following problem:

Definition 19 (Concave Unbounded Knapsack Problem). An instance of the Concave Unbounded
Knapsack Problem (ConcUKP) is given by a knapsack capacity W, weights w; € IN, j € [n], and monotoni-
cally increasing, concave cost functions ¢; : R>o = R>o, j € [n], given by an oracle.

The task is to find a vector z € IN" with), wjz; < W mazimizing the cost) c;(z;).

This problem has been considered in literature before, as it has a lot of applications. Hochbaum presented
an FPTAS for it in [11]. We sketch an alternative FPTAS based on a dynamic program (DP). The detailed
proofs are moved to the appendix.

To construct the FPTAS, we consider the following DP for ConcUKP: Iteratively compute state spaces
S;yj=1,...,n. A state [Y,C] € S; represents a partial solution with weight ¥ and cost C using only items
from the subset {1,...,;j}. S; is created by adding any feasible number of items of type j to each state in

S;_1, starting with S := {[0,0]}. Through elimination of dominated states we can ensure |S;| < W + 1 at
all times, thus bounding the number of calls to the cost oracle by O(n?W).

This DP can be transformed into an FPTAS by a general scheme due to Woeginger [22]. To get polynomial
running time, however, it has to be slightly modified: Instead of considering every possible number of items of
each type to be added to the knapsack, we only consider powers of 1+ €. The concavity of the cost functions
ensures that the loss arising through this is bounded by a factor of 1 + ¢, preserving the approximation
guarantee of the FPTAS.

Now observe that the cost functions of the Modified Maximization Problem for UKP are feasible cost
functions for ConcUKP. Also, |W/w;]| is an upper bound on z; with a polynomial encoding length. Therefore,
we can apply Theorem 6 to get the following result:

Theorem 20. For all € > 0, there is a (2 + €)—approzimation algorithm for CRUKP, if the relative cost
decrease is bounded from below by a constant.

Weight Robust UKP. Next we turn to the Unbounded Knapsack Problem where weights instead of costs
are uncertain. At most I" types of items can increase their weight, and we are looking for a solution that is
feasible in all scenarios, maximizing the cost. In terms of section 3, we have uncertainty in the only constraint.
Let Aw; denote the possible increase in weight of items of type j. We consider the (Aw, I")-ConsRC of UKP,
also called the Weight Robust Unbounded Knapsack Problem (WRUKP).

From Corollary 16 we learn that we have to solve max,cx () ¢’z in order to get a pseudopolynomial
algorithm for WRUKP. The FPTAS from [11] could be used for this, but we will focus on computing an
exact algorithm in pseudopolynomial time here. This can be done by the DP presented above for ConcUKP,
slightly modified to work with piecewise linear weight functions with a single bend. With u; = wmj, we get

an algorithm for WRUKP with running time O (ma,x Aw; n2W2).

wj

General Robust UKP. Finally, we consider a version of UKP where both weights and costs are uncertain,
called the General Robust Unbounded Knapsack Problem (RUKP). At most I, types of items can increase
their weight, and at most I, cost coefficients decrease. The goal is to find a solution z that is feasible in all
scenarios and maximizes the worst-case cost:

max E C;T; — max E d;x; s.t. E w;T; + max E Aw;z; p <W .
e | &= 77 scmy | &2 7 L I s,Cln)] e
J€[n] |S.]< T, JES. J€[n] [Sw<T JESw

This is the (Aw, I',)-ConsRC of CRUKP. We adapt the DP for ConcUKP such that it works for piecewise
linear weight functions. By Theorem 3 we get an exact algorithm .4; for CRUKP on the modified solution

space X (£) with a running time of T(A4;) = O (maxj % . n2W2). Thus we can solve RUKP exactly in a
running time of O (maxj % - max; % -n2W3).

Alternatively, if the relative cost decrease is bounded from below by a constant, we can use the (2 + €)—
approximation algorithm A4} for CRUKP with polynomial running time to get a (2 + £)—approximation for
RUKP in time O (ma,xj Auy gy T(A’l)).

J

Acknowledgement

We are grateful to Martin Skutella and Giinter Rote for discussions that substantially enhanced this paper.

References

1. Special issue on robust optimization. Mathematical Programming B, 107(1-2), 2006.
2. H. Aissi, C. Bazgan, and D. Vanderpooten. Approximation of min-max and min-max regret versions of some
combinatorial optimization problems. European Journal of Operational Research, 179(2):281-290, 2007.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. R. Bar-Yehuda and D. Rawitz. Efficient algorithms for integer programs with two variables per constraint 1.
Algorithmica, 29(4):595-609, 2001.

A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operations Research, 23(4):769-805,
1998.

A. Ben-Tal and A. Nemirovski. Robust solutions to uncertain linear programs. Operations Research Letters,
25(1):1-13, 1999.

A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contaminated with uncertain
data. Mathematical Programming, 88(3):411-424, 2000.

D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathematical Programming, 98(1-
3):49-71, 2003.

D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35-53, 2004.

E. Cohen and N. Megiddo. Improved algorithms for linear inequalities with two variables per inequality. In
Proceedings of the 25th Annual ACM symposium on Theory of Computing, pages 145-155. ACM, 1991.

U. Feige, K. Jain, M. Mahdian, and V. Mirrokni. Robust combinatorial optimization with exponential scenar-
ios. In IPCO ’07: Proceedings of the 12th International Conference on Integer Programming and Combinatorial
Optimization, pages 439-453, Berlin, Heidelberg, 2007. Springer-Verlag.

D. Hochbaum. A nonlinear knapsack problem. Operations Research Letters, 17(3):103-110, 1995.

D. Hochbaum, N. Megiddo, J. Naor, and A. Tamir. Tight bounds and 2-approximation algorithms for integer
programs with two variables per inequality. Mathematical Programming, 62(1):69-83, 1993.

D. Hochbaum and J. Naor. Simple and fast algorithms for linear and integer programs with two variables per
inequality. SIAM Journal on Computing, 23:1179-1192, 1994.

O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of subset problems.
Journal of ACM, 22:463-468, 1975.

R. Khandekar, G. Kortsarz, V. Mirrokni, and M. Salavatipour. Two-stage robust network design with exponential
scenarios. In ESA ’08: Proceedings of the 16th annual European Symposium on Algorithms, pages 589-600, Berlin,
Heidelberg, 2008. Springer-Verlag.

0. Klopfenstein and D. Nace. A note on polyhedral aspects of a robust knapsack problem. Available online at
http://www.optimization-online.org/DB_FILE/2006/04/1369.pdf, 2007.

0. Klopfenstein and D. Nace. A robust approach to the chance-constrained knapsack problem. Operations
Research Letters, 36(5):628-632, 2008.

S. Martello and P. Toth. Knapsack Problems. Algorithms and Computer Implementations. John Wiley and Sons,
1990.

N. Megiddo. Towards a genuinely polynomial algorithm for linear programming. SIAM J. Comput., 12(2):347—
353, 1983.

J. C. Picard. Maximal closure of a graph and applications to combinatorial problems. Management Science,
22(11):1268-1272, 1976.

A. L. Soyster. Convex programming with set-inclusive constraints and applications to inexact linear programming.
Operations Research, 21(5):1154-1157, 1973.

G. Woeginger. When does a dynamic programming formulation guarantee the existence of an FPTAS? In SODA
’99: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 820-829, Philadelphia,
PA, USA, 1999. Society for Industrial and Applied Mathematics.

G. Yu. On the max-min 0-1 knapsack problem with robust optimization applications. Operations Research,
44(2):407-415, 1996.

Appendix

An Algorithm for Bounded Monotone IP2

Theorem 12 (revisited). The cost robust counterpart of a bounded monotone IP2 can be solved in pseu-
dopolynomial time.

Proof. In what follows, we require the following graph concept. A closed set of a digraph is a subset of nodes
with no outgoing arcs to its complement. The minimum weight closure for a digraph is the problem of finding
a closed set with minimum weight. It was shown to be polynomial-time solvable by Picard [20].

Using Theorem 3, it is enough to solve the modified problem

Oy = min ZEj(xj): ajz>b;fori=1,...,m, £ <z < u, z integer
J

associated to a bounded monotone IP2 system
Q=min{c"z:ajz >b;fori=1,...,m, { <z < wu, z integer}

in pseudopolynomial time. Recall that ¢;(z;) = ¢;jz; + max{d;z; — ¢,0} + max{—d;z; — ¥,0}.

Hochbaum and Naor [13] proposed a pseudopolynomial time algorithm for a bounded monotone IP2
that reduces the problem to the minimum weight closure of a digraph with pseudopolynomially many nodes.
They established a bijection between the feasible solutions of @ and the non-empty closed sets of a certain
digraph G which we will also use: The variables £; < z; < u; are represented in G by disjoint directed paths
P; having u; — £; + 1 nodes identified with the numbers from u; to £; in consecutive decreasing order. Each
inequality a;rz, — a;sTs > b; of Q (where a;, - a;s > 0) is represented in G by a collection of arcs from P; to
P,: the node p of path P; is connected to the node [(a;sp + b;)/a;,| of path P., for every p such that the
latter node exists. Finally, there is a special vertex v which is connected, bidirectionally, to the last node
£; of every path P;. This ensures that any closed set S # () contains v, forcing P; NS to be a collection of
nodes with consecutive labels from p; to £;, for some ¢; < p; < u;. In the bijection, this is interpreted as
the assignment x; = p; for variable z;.

We use this bijection to solve Qs (see Algorithm 1). We need to set weights for the nodes of G so that
if S; is the closed set associated to the feasible solution x for Q,s, then the total weight of P; NS, is equal
to ¢;(z;). We achieve this with the following weights w;(p) for the nodes p € P;: Set w;(l;) = c;¢; and
w;(p) =¢j(p) —¢;(p—1) for £; + 1 < p < u;. Finally, we find, using Picard’s algorithm [20], the minimum
weight closure of G with weights {w;(-)}; and a suitable weight for v that makes the minimum closure
non-empty. a

A 2—-Approximation Algorithm for Bounded IP2

Theorem 13 (revisited). There is a pseudopolynomial time 2-approzimation algorithm for the cost robust
counterpart of a bounded IP2 with non-negative coefficients in the objective function and non-negative lower
bounds.

Proof. We closely follow the results in [12]. Consider the modified minimization problem Sy = min{} ¢;(z;):
b;, £ <z < u, z integer} of a bounded IP2 instance with non-negative coeflicients in the objective function
and non-negative lower bounds. In this case, we just need to consider ¢;(z;) = ¢;z; + max{d;z; — ¢, 0},
where ¢; and d; are non-negative numbers. We associate two variables zl and z; to each variable z; in Sy

J
and then define the following monotone system Sj;:

min %Z (EJ(zj) —|—5j(—z;))

=1

awzj — QiwT,y > b and —QiyT, + aiwwg >b;, Vaiy-ajw >0

aivxj + amaﬁ > b; and —Qiy Ty — QiwZy > biy Vi, -G <0
<zt <u —u<z” </

et ez

ajT >

Algorithm 1: Algorithm for bounded monotone IP2

1 V:{(]vp) ..7 € {1aan} a‘ndfj SpSUj}U{’U}
2 ™ ={((J,p),(5p—1)):j€{l,...,n} and {; +1 < p < u;}
3 BV ={((j,4),v) : j€{1,...,n}} U{(v, (5, &) : €{1,...,n}}
4 forall a;.z, —a;szs > b; of Q where a;r,a;s > 0 do
5 B = {((5,p) (1, [(asep + b)/ai])) : b SpS w3V x V
6 endfor
7 E=E"UE" U, B
8 for j:=1to n do
o w((5,4)) =cit;
10 w((,p)=cip)-cilp-1) forfj+1<p<u;
11 endfor
12 w(v) = —n - max;{|c;|} - max; {|¢;] + [u;[}
13 Find minimum weight closure S of G = (V, E) using w as weight function
14 for j:=1 to n do
15 z; =max{p:(j,p) €V NS}
16 endfor
17 return x
Note that if z is feasible for Sy, then £ = z, z~ = —z is feasible for S},. Moreover, their respective costs

coincide and therefore OPT(S},) < OPT(S)s). We can compute an optimal solution (Z7,Z~) for S}, using
the algorithm in Theorem 12 and we can also compute an arbitrary feasible solution z for Sps, using the
strongly polynomial time algorithm from [19,9]. Finally, we construct the 2-approximate solution Z for Sys
using z and % as follows:

— If z; lies in the interval between a"cj' and —Z;, we set Z; = z;.
— If 2; is less than both a":;r and —Z, , we set T; = min{a":j, -z }.
— If z; is greater than both i;r and —z T

;o weset T; = max{a":;r, -z}

In [12], they prove that this solution is feasible for Sps. In order to prove the approximation guarantee,
we need a introduce a new argument. Note that, since the objective function coefficients and the lower
bounds are non-negative, then ¢;(z;) < Ej(ij) + ¢j(—Z;). Therefore the value of 7 in Sy is at most
20PT(S};) <20PT(Su). It is easy to check the proposed algorithm runs in pseudopolynomial time. O

An FPTAS for ConcUKP

The details of the DP sketched in Section 3.1 are listed in Algorithm 2. By elimination of dominated states
the size of each S; can be reduced to at most W + 1. Every time a new state is created, we have to call the
oracle for the cost function, thus the number of these calls is in O(nW?).

As outlined above, the DP can be transformed into an FPTAS with the result from [22].

Lemma 21. There is an FPTAS for ConcUKP.

Proof. In Algorithm 2, out of each state we create up to u; + 1 new states, which is not polynomial in
the input size as demanded in [22], Condition C.4(ii). Therefore, we modify the DP as follows: For a given
accuracy € > 0, instead of all possible numbers of items, only consider powers of 1+ ¢ in line 6 of Algorithm
2.5

To see that the solution of the modified DP is within a factor of 1+ ¢ of the optimum, consider an optimal
solution z* and the corresponding DP solution z:

(I+e)h <azf < (14e)h™ = z;=(1+e).

® To get an integral solution, the powers (1 + £)* could be rounded up, preserving the approximation guarantee. To
simplify things, however, we consider the unrounded values.

Algorithm 2: DP for ConcUKP
1 uj = [W/w;] Vj€n]

2 So == {[0,0]}

3 for j:=1 to ndo

4 S; =0

5 forall [Y,C] € S;_1 do

6 for i := 0 to u; do

7 if Y +¢-w; >W then
8 break

9 endif
10 S; =8 U{[Y +i- -w;,C +c;(2)]}
11 endfor
12 endfor
13 endfor

14 return max{C : [Y,C] € S..}

Since ¢; is non-decreasing (¢), concave (¢) and non-negative (ii¢), for all j € [n] we get

Y, 1\ @ 1 . 1 (g5 1 .
@) 2 e (em) 2 e + (17 132) 0 2 o). (3.6)
Denote the best value found by the modified DP by Cpp and the optimal cost by OPT. Then it follows that
(36 1
Cpbp > Z cj(z;) > 1:z

j€ln] i€ln]

. 1

Therefore, the best solution found by the DP is indeed a (1 + ¢)-approximation.

Now we show that the modified DP satisfies the conditions from [22]. Let k := max{k € IN \ {0} :
(1+¢)* < max;(u;)}. We have a family of mappings F = {f, Fy, F,..., F}} creating new states out of a
state [Y, C] and an input vector [w;, ¢;], as well as a family H = {I:T, Hy, Hy,...,H;} with mappings checking
the feasibility of the new states. They are defined as follows:

=[Y,C]

We set the degree-vector D := [1, 1], and two relations on the states as follows:
S =<aem 8" & S§=5, YV,C] 2qua [Y',C'] & Y 2>Y'.

Conditions C.1 through C.3 from [22] can then be verified. With the modification from above, |F| is
linear in the input: 7
|F| =k +2 < log(;4.)(maxu;) + 2.
j€ln]

Thus the DP also satisfies C.4 and can therefore be turned into an FPTAS. Since the modified DP is itself
a (1 + e)-approximation, we get an FPTAS for ConcUKP. O

	Optimization over Integers with Robustness in Cost and Few Constraints

