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Abstract

We consider the problem of scheduling unrelated parallel
machines so as to minimize the total weighted completion
time of jobs. Whereas the best previously known approxi-
mation algorithms for this problem are based on LP relax-
ations, we give a 3

2–approximation algorithm that relies on
a convex quadratic programming relaxation. For the spe-
cial case of two machines we present a further improvement
to a 1 � 2752–approximation; we introduce a more sophis-
ticated semidefinite programming relaxation and apply the
random hyperplane technique introduced by Goemans and
Williamson for the MAXCUT problem and its refined ver-
sion of Feige and Goemans. To the best of our knowledge,
this is the first time that convex and semidefinite program-
ming techniques (apart from LPs) are used in the area of
scheduling.

1 Introduction

The last years have witnessed a very fast development in
the area of approximation algorithms for NP-hard schedul-
ing problems. Apart from purely combinatorial approaches,
linear programming (LP) relaxations have been proved to
be a useful tool in the design and analysis of approximation
algorithms for several machine scheduling problems, see,
e. g., [27, 43, 33, 20, 40, 39, 19, 4, 34, 29, 10, 6, 42, 41, 14,
38, 31, 13, 44].

In this paper we pursue a somewhat different line of re-
search. We develop approximation algorithms that are not
based on polyhedral relaxations but on convex quadratic
programming relaxations which have never been used in the

�
Copyright 1998 IEEE. Published in the Proceedings of FOCS’98, 8-11

November 1998 in Palo Alto, CA. Personal use of this material is permit-
ted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works, must be obtained from the IEEE. Contact: Man-
ager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane
/ P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl.
732-562-3966.

area of scheduling before. Convex and more specifically
semidefinite programming relaxations of combinatorial op-
timization problems have attracted the attention of many re-
searchers [11]. Grötschel, Lovász, and Schrijver [17] used
semidefinite programming to design a polynomial-time al-
gorithm for finding the largest stable set in a perfect graph.
The use of semidefinite relaxations in the design of ap-
proximation algorithms was pioneered by Goemans and
Williamson [15] for the problems MAXCUT, MAXDICUT,
and MAX2SAT.

In semidefinite programming, one minimizes a linear
function subject to linear constraints and the additional con-
straint that certain matrices whose entries are affine lin-
ear functions in the variables of the program are positive
semidefinite. Since the subset of all positive semidefinite
matrices constitutes a cone in

� n � n , semidefinite programs
form a special class of convex programs. Under some re-
quirements on the feasible space, they can be solved within
an additive error of ε in polynomial time for any given
ε � 0, cf. [18]. Practical efficiency can be obtained through
interior point methods, see, e. g., [1]. More information
on semidefinite programming can for example be found in
[47].

Goemans and Williamson [15] formulated the problems
MAXCUT and MAXDICUT as integer quadratic programs
in � 1 �	� 1 
 –variables and considered a relaxation to a vec-
tor program which is equivalent to a semidefinite program.
They introduced the idea of rounding a solution to this re-
laxation to a feasible cut with a random hyperplane through
the origin. Their analysis is based on the observation that
the probability for an edge to lie in the (directed) cut can
be bounded from below in terms of the corresponding co-
efficient in the vector program. This leads to performance
ratios 0 � 878 and 0 � 796 for MAXCUT and MAXDICUT, re-
spectively.

Feige and Goemans [8] refined this approach by adding
additional constraints to the vector program and by mod-
ifying its solution before applying the random hyperplane
technique. This leads to an improvement in the performance
guarantee from 0 � 796 to 0 � 859 for MAXDICUT. More ap-
plications of semidefinite programming relaxations in the



design of approximation algorithms can for instance be
found in [22, 5, 9, 46].

We contribute to this line of research: The only prob-
lems in combinatorial optimization where the random hy-
perplane technique discussed above has proved useful in
the design of approximation algorithms so far are maxi-
mization problems, see also [9, 46]. The reason is that up
to now only lower bounds on the crucial probabilities in-
volved have been attained, see [15, Lemmas 3.2 and 3.4;
Lemmas 7.3.1 and 7.3.2]. Inspired by the work of Feige
and Goemans we analyze a slightly modified rounding tech-
nique and prove upper bounds for those probabilities. To-
gether with a more sophisticated semidefinite programming
relaxation this leads to the first approximation algorithm for
a minimization problem that is based on the random hyper-
plane approach.

We consider the following scheduling problem. We are
given a set of n jobs J � � 1 � � �	� � n 
 and m parallel machines
or processors. Each job j has a positive integral processing
requirement pi j which depends on the machine i job j will
be processed on. Each job j must be processed for the re-
spective amount of time on one of the m machines, and may
be assigned to any of them. Every machine can process at
most one job at a time. The completion time of job j in
a schedule is denoted by C j . We aim to minimize the to-
tal weighted completion time ∑ j

�
J w jC j where w j denotes

a given nonnegative integral weight of job j which is a mea-
sure for its importance. In the standard notation of Graham
et al. [16], this problem reads R

���
∑w jC j. It is shown to be

NP-hard in [3, 26], even for a fixed number m � 2 of identi-
cal parallel machines. The special case of identical parallel
machines, i. e., for each job j and all machines i we have
pi j

� p j, is denoted by P
���

∑w jC j.
The corresponding single machine scheduling problem

can be solved in polynomial time using Smith’s Ratio Rule
[45]: Sequence the jobs in order of nonincreasing ratios
w j � p j. Therefore the only problem in constructing good
schedules for instances of R

���
∑w jC j is to assign the jobs

appropriately to machines. Afterwards one sequences all
jobs that have been assigned to machine i in order of non-
increasing ratios w j � pi j. Thus, whenever we talk about
an assignment of jobs to machines we associate a corre-
sponding schedule. We will always assume that whenever
wk � pik

� w j � pi j for a pair of jobs j � k and both jobs are as-
signed to machine i the job with smaller index is scheduled
first. For each machine i � 1 � �	� � � m we define a correspond-
ing total order � J �
	 i � on the set of jobs by setting j 	 i k if
either w j � pi j � wk � pik or w j � pi j

� wk � pik and j � k. For
the special case of identical parallel machines we always
assume that the jobs are indexed such that 1 	 2 	����	 n.

The first approximation result for minimizing the total
weighted completion time on unrelated parallel machines
was given by Phillips, Stein, and Wein [32] and achieves

performance ratio O � log2 n � . Hall, Schulz, Shmoys, and
Wein [19] presented a 16

3 –approximation algorithm that is
based on an LP relaxation in time-indexed variables and
uses the rounding technique of Shmoys and Tardos for the
generalized assignment problem [43]. This result was suc-
cessively improved by Schulz and Skutella to performance
ratios 2 � ε and 3

2 � ε [42, 41]. The � 3
2 � ε � –approximation

algorithm is also the best known result if the number of ma-
chines is fixed to m � 2. However, for the special case
of identical parallel machines Kawaguchi and Kyan [23]
showed that list scheduling in order of nonincreasing ratios
w j � p j is a 1 � 21–approximation algorithm. For any fixed
number of identical parallel machines Sahni [37] gave a
polynomial time approximation scheme which builds upon
a general dynamic programming technique of Rothkopf
[36] and Lawler and Moore [25]. It was observed by Woeg-
inger [48] that the result of Sahni can be extended to a fixed
number of uniform parallel machines which run at different
but not job-dependent speeds.

In this paper we introduce a new technique. We start with
a formulation of R

���
∑w jC j as an integer quadratic program

in Section 2, consider its continuous relaxation, and discuss
a simple randomized rounding heuristic. In Section 3 we
describe how the objective function of the quadratic pro-
gram can be convexified yielding a convex programming
relaxation that can be solved in polynomial time. Together
with randomized rounding this leads to an approximation
algorithm with performance guarantee 3

2 which is an ε–
improvement on the previously best known result. In Sec-
tion 4 we present a more sophisticated vector programming
relaxation for the special case of two machines. We show
that a modification of the random hyperplane approach of
Goemans and Williamson leads to a 1 � 339–approximation
algorithm for R2

���
∑w jC j. A combination of this algo-

rithm with the 3
2–approximation leads to an improved per-

formance guarantee 1 � 276. In Section 5 we discuss relations
between MAXCUT and scheduling on identical parallel ma-
chines. In particular, we present an approximation preserv-
ing reduction of Pm

���
∑w jC j to MAXkCUT where k � m.

Throughout the paper we will use the following conven-
tion: The value of an optimum solution to the scheduling
problem under consideration is denoted by Z � . For a relax-
ation � R � we denote the optimum value of � R � by Z �R and the
value of an arbitrary feasible solution a to � R � by ZR � a � . In
this extended abstract we omit some details and proofs for
reasons of brevity. A more detailed version can be found in
[44, Chapter 3].

2 Quadratic programming formulations

The problem of scheduling a set of jobs on unrelated par-
allel machines can be formulated as an integer quadratic
program in assignment variables. We introduce for each



machine i � 1 �	� � � � m and each job j � J a binary variable
ai j

� � 0 � 1 
 which is set to 1 if and only if job j is being
processed on machine i. Lenstra, Shmoys, and Tardos [27]
used the same variables to formulate the problem of mini-
mizing the makespan of unrelated parallel machines as an
integer linear program. However, minimizing the average
weighted completion time forces quadratic terms and leads
to the following program � IQP � :

min ∑
j � J

w jC j

s. t.
m

∑
i � 1

ai j
� 1 for j

�
J (1)

C j
� m

∑
i � 1

ai j 
�

pi j � ∑
k � i j

aik  pik � for j
�

J (2)

ai j
� � 0 � 1 
 for all i � j (3)

Constraints (1) ensure that each job is assigned to exactly
one of the m machines. If job j has been assigned to ma-
chine i, its completion time is the sum of its own processing
time pi j and the processing times of other jobs k 	 i j that
are also scheduled on machine i. The right hand side of
(2) is the sum of these expressions over all the machines i
weighted by ai j. It is thus equal to the completion time of
j. Notice that we could remove constraints (2) and replace
C j in the objective function by the right hand side of (2).

We denote the relaxation of � IQP � that we get by relax-
ing the integrality conditions (3) to ai j � 0, for all i � j, by
� QP � . A feasible solution ā to � QP � can be turned into a
feasible solution to � IQP � , i. e., a feasible schedule, by ran-
domized rounding: Each job j is assigned independently
at random to one of the machines with probabilities given
through the values āi j; notice that ∑m

i � 1 āi j
� 1 by (1). We

refer to this rounding technique as Algorithm RANDOM-
IZED ROUNDING. A similar algorithm, however based on
a time-indexed LP relaxation, has been studied by Schulz
and Skutella [41]. The idea of using randomized rounding
in the study of approximation algorithms was introduced by
Raghavan and Thompson [35], an overview can be found in
[30].

Theorem 2.1. Given a feasible solution ā to � QP � , the ex-
pected value of the schedule computed by Algorithm RAN-
DOMIZED ROUNDING is equal to ZQP � ā � .

The proof of Theorem 2.1 relies on the following lemma
whose proof is straightforward and therefore omitted for
reasons of brevity.

Lemma 2.2. Consider an algorithm that assigns each job
j randomly to one of the m machines. Then, the expected
completion time of job j is given by

E � C j � �
m

∑
i � 1

�
Pr � j �� i �  pi j � ∑

k � i j

Pr � j � k �� i �  pik �

where “ j � k �� i” (“ j �� i”) denotes the event that both jobs
j and k (job j) are assigned to machine i.

Proof of Theorem 2.1. Since for each machine i and each
pair of jobs j �� k the random variables ai j and aik are drawn
independently from each other in Algorithm RANDOMIZED

ROUNDING, we get

Pr � j � k �� i � � Pr � j �� i �  Pr � k �� i � � āi j  āik �
Lemma 2.2 yields the result by constraints (2) and linearity
of expectations.

Algorithm RANDOMIZED ROUNDING can easily be de-
randomized by the method of conditional probabilities.
We refer to its derandomized version as DERANDOM-
IZED ROUNDING. If Algorithm RANDOMIZED ROUNDING

starts with an optimum solution to � QP � , it computes an in-
tegral solution the expected value of which is equal to the
optimum value Z �QP by Theorem 2.1. Thus there must ex-
ist at least one random choice that yields a schedule whose
value is bounded from above by Z �QP. On the other hand we
know that each feasible solution to � IQP � is by definition
also feasible for � QP � . This yields the following theorem:

Theorem 2.3. The optimal values of � IQP � and � QP � are
equal. Moreover, given an optimum solution ā to � QP � one
can construct an optimum solution to � IQP � by assigning
each job j to an arbitrary machine i with āi j � 0.

Bertsimas, Teo, and Vohra [2] used similar techniques to
establish the integrality of several polyhedra.

It follows from Theorem 2.3 that it is still NP-hard to
find an optimum solution to the quadratic program � QP � . In
the following two sections we consider relaxations of � IQP �
that can be solved in polynomial time. The idea of the first
relaxation is to convexify the objective function of � QP � in
order to get a convex quadratic program. The second relax-
ation is a semidefinite programming relaxation of � IQP � for
the special case of two machines which extends the ideas
used in [15] and [8] for MAX2SAT and MAXDICUT.

3 A convex quadratic programming relax-
ation

The quadratic program � QP � can be rewritten as

min cT a � 1
2 aT Da (4)

s. t.
m

∑
i � 1

ai j
� 1 for j � J

a � 0

where a
� � mn denotes the vector consisting of all variables

ai j lexicographically ordered with respect to the natural or-
der 1 � 2 � � �	� � m of the machines and then, for each machine



i, the jobs ordered according to 	 i. The vector c � � mn

is given by ci j
� w j pi j and D � � d � i j � � hk � � is a symmetric

mn � mn–matrix given through

d � i j � � hk � � ��� �� 0 if i �� h or j � k ,

w j pik if i � h and k 	 i j ,

wk pi j if i � h and j 	 i k .

Because of the lexicographic order of the indices the matrix
D is decomposed into m diagonal blocks Di, i � 1 � �	� � � m,
corresponding to the m machines. If we assume that the jobs
are indexed according to 	 i and if we denote pi j simply by
p j, the i–th block Di has the following form:

Di
�

������	
0 w2 p1 w3 p1 
� wn p1

w2 p1 0 w3 p2 
� wn p2

w3 p1 w3 p2 0 wn p3
...

...
. . .

...
wn p1 wn p2 wn p3 
� 0


������ (5)

Consider an instance consisting of 2 jobs where all weights
and processing times on the i–th machine are equal to one.
In this case we get

Di
��� 0 1

1 0 � ; (6)

in particular, detDi
� � 1 and D is not positive semidefinite.

It is well known that the objective function (4) is convex if
and only if the matrix D is positive semidefinite. Moreover,
a convex quadratic program of the form mincT x � 1

2 xT Dx
subject to Ax � b, x � 0, can be solved in polynomial time
(see, e. g., [24, 7]). Thus we get a polynomially solvable
relaxation of � QP � if we manage to convexify its objective
function. The rough idea is to raise the diagonal entries of
D above 0 until D is positive semidefinite.

For binary vectors a � � 0 � 1 
 mn we can rewrite the linear
term cT a in (4) as aT diag � c � a, where diag � c � denotes the
diagonal matrix whose diagonal entries coincide with the
entries of c. We try to convexify the objective function of
� QP � by adding a positive fraction 2γ  diag � c � , 0 � γ � 1,
to D such that D � 2γ  diag � c � is positive semidefinite. This
leads to the following modified objective function:

min � 1 � γ �  cTa � 1
2 aT � D � 2γ  diag � c � � a (7)

Since c � 0, the value of the linear function cT a is
greater than or equal to the value of the quadratic func-
tion aT diag � c � a for arbitrary a

��� 0 � 1 � mn; equality holds for
a

� � 0 � 1 
 mn. Therefore the modified objective function (7)
underestimates (4). Since we want to keep the gap as small
as possible and since (7) is nonincreasing in γ for each fixed
vector a, we are looking for a smallest possible value of γ
such that D � 2γ  diag � c � is positive semidefinite.

Lemma 3.1. The function

a �� � 1 � γ �  cT a � 1
2

aT � D � 2γ  diag � c � � a
is convex for arbitrary instances of R

� �
∑w jC j if and only

if γ � 1
2 .

Proof. In order to show that the positive semidefiniteness
of D � 2γ  diag � c � for arbitrary instances implies γ � 1

2 , we
consider the example given in (6). Here, the diagonal entries
of the i–th block of D � 2γ  diag � c � are equal to 2γ such
that this block is positive semidefinite if and only if γ � 1

2 .
Thus, we consider the case γ � 1

2 and show that D � diag � c �
is positive semidefinite for arbitrary instances. Using the
same notation as in (5) the i–th block of D � diag � c � has the
form

A �

������	
w1 p1 w2 p1 w3 p1 �
 wn p1

w2 p1 w2 p2 w3 p2 �
 wn p2

w3 p1 w3 p2 w3 p3 �
 wn p3
...

...
...

. . .
...

wn p1 wn p2 wn p3 �
 wn pn


������ � (8)

An easy calculation shows that the matrix A is positive
semidefinite since w1 � p1 ������ wn � pn.

Since for γ � 1
2 the matrix D � 2γ  diag � c � is the sum

of the two positive semidefinite matrices D � diag � c � and
� 2γ � 1 �  diag � c � , the result follows.

Lemma 3.1 and the remarks above motivate the consid-
eration of the following convex quadratic programming re-
laxation � CQP � :

min 1
2 cT a � 1

2 aT � D � diag � c � � a
s. t.

m

∑
i � 1

ai j
� 1 for j � J (9)

a � 0 (10)

As mentioned above � CQP � can be solved in polynomial
time. If we consider the special case of identical parallel
machines P

���
∑w jC j , we can directly give a Karush-Kuhn-

Tucker point and therefore an optimum solution to � CQP � .
The following result can be proved by a simple symmetry
argument. We omit the proof for reasons of brevity.

Lemma 3.2. For instances of P
� �

∑w jC j the vector ā with
āi j

� 1
m , for all i � j, is an optimum solution to � CQP � . This

optimum solution is unique if all ratios w j � p j, j � 1 � � �	� � n,
are different and positive.

Theorem 3.3.
a) Computing an optimum solution ā to � CQP � and us-

ing RANDOMIZED ROUNDING to construct a fea-
sible schedule is a 2–approximation algorithm for
R
���

∑w jC j.



b) Assigning each job independently and uniformly at
random to one of the m machines is a � 3

2 � 1
2m � –

approximation algorithm for P
���

∑w jC j.

Proof. Notice that the algorithm described in part b) coin-
cides with the algorithm of part a) for the optimum solution
ā to � CQP � given in Lemma 3.2. Theorem 2.1 yields

E
�
∑

j
w jC j � � ZCQP � ā � � 1

2 � cT ā � āT diag � c � ā �� 2  ZCQP � ā � � 2  Z �CQP �

The inequality follows from ZCQP � ā � � 1
2 cT ā and

āT diag � c � ā � 0. Since ā can be computed in polynomial
time and Z �CQP is a lower bound on Z � , we have found a
2–approximation algorithm.

To prove part b) we use a second lower bound on Z � .
For the case of identical parallel machines constraints (9)
imply cT a � ∑ j w j p j � Z � for every feasible solution a to
� CQP � . Since āT diag � c � ā � 1

m cT ā, the same arguments as
above yield E � ∑ j w jC j � � � 3

2 � 1
2m �  Z � .

It also follows from Theorem 3.3 that � CQP � is a 2–
relaxation, i. e., Z � � 2  Z �CQP. This bound is tight even for
the case of identical parallel machines. Consider an instance
with one job of size and weight one such that the value Z � of
an optimum schedule is equal to one. By Lemma 3.2 we get
Z �CQP

� m
�

1
2m . Thus, if m goes to infinity the ratio Z � � Z �CQP

converges to two.
Unfortunately, we cannot directly carry over the 3

2 –
approximation to the setting of unrelated parallel machines.
The reason is that cT a is not necessarily a lower bound on
Z � for every feasible solution a to � CQP � . However, the
value of each binary solution a is bounded from below by
cT a. The idea for an improved approximation result is to
add this lower bound as a constraint to � CQP � . In the con-
text of LP based approximations, the second part of Theo-
rem 3.3 and a similar idea has been given in [41]. It leads
to the following strengthened relaxation � CQP

� � , which is
a convex program and can therefore be solved through the
ellipsoid algorithm within any additive error ε � 0 in poly-
nomial time, see [18].

min ZCQP �
s. t.

m

∑
i � 1

ai j
� 1 for j � J

ZCQP � � 1
2 cT a � 1

2 aT � D � diag � c � � a (11)

ZCQP � � cT a (12)

a � 0

We show that � CQP
� � is actually equivalent to a semidef-

inite program.

Lemma 3.4. There exists a symmetric mn � mn–matrix
M � Z � a � which can be computed in polynomial time and
whose entries are linear functions in the variables Z and
ai j, such that

Z � 1
2 cT a � 1

2aT � D � diag � c � � a
if and only if M � Z � a � is positive semidefinite. In particular,
� CQP

� � can be interpreted as a semidefinite program.

Sketch of proof. As proposed in [47, Section 2] we define

M � Z � a � �
�

Emn � 1 Ba

� Ba � T 2Z � cT a �
where Emn � 1 denotes the � mn � 1 � –dimensional identity
matrix and the matrix B is defined by the Cholesky decom-
position � D � diag � c � � � BT B. An easy calculation yields
the result.

The next lemma follows from the proof of Theorem 3.3
and constraint (12).

Lemma 3.5. Given a feasible solution ā to � CQP
� � Al-

gorithm RANDOMIZED ROUNDING computes a sched-
ule whose expected value is bounded from above by 3

2 
ZCQP � � ā � .

Lemma 3.5 yields that � CQP
� � is a 3

2–relaxation for
R
���

∑w jC j . We get a randomized approximation algorithm
with expected performance guarantee 3

2 � ε if we apply Al-
gorithm RANDOMIZED ROUNDING to an almost optimal
solution to � CQP

� � which can be computed in polynomial
time. We can prove a slightly better bound for the deran-
domized version.

Theorem 3.6. Computing a near optimal solution to
� CQP

� � and using Algorithm DERANDOMIZED ROUNDING

to get a feasible schedule is a 3
2 –approximation algorithm

for R
� �

∑w jC j.

Proof. We compute a feasible solution ā to � CQP
� � satisfy-

ing ZCQP � � ā � � Z �CQP � � 1
3 . By Lemma 3.5 Algorithm DE-

RANDOMIZED ROUNDING converts this solution into a fea-
sible schedule whose value is bounded by 3

2  ZCQP � � ā � �
3
2  Z �CQP � � 1

2 � 3
2  Z � � 1

2 . Since all the weights and pro-
cessing times are integral, the same holds for Z � . The value
of our schedule can therefore be bounded by 3

2  Z � .
The performance ratios given in Lemma 3.5 and Theo-

rem 3.6 are only tight if (12) is tight for the solution ā to
� CQP

� � . In general, if ZCQP � � ā � is much larger than cT ā, we
get a better performance ratio (see Figure 2 below).

Corollary 3.7. For any feasible solution ā to � CQP
� � Al-

gorithm RANDOMIZED ROUNDING computes a feasible
schedule whose expected value is bounded from above by
� 1 � cT ā

2ZCQP � � ā � �  ZCQP � � ā � .



Approximation algorithms with the same or slightly
worse performance ratios than those presented in Theo-
rems 3.3 and 3.6 have already been given by Schulz and
Skutella [42, 41]. In contrast to our approach here they used
LP relaxations in time-indexed variables together with ran-
domized rounding. However, the underlying intuition of our
quadratic programs and their LPs is similar.

4 A semidefinite relaxation for two machines

In this section we consider the problem of scheduling
two unrelated parallel machines which is usually denoted
by R2

� �
∑w jC j. To keep the notation as simple as possible

we assume that the two machines are numbered 0 and � 1
throughout this section.

We start with a reformulation of � IQP � in variables
x j

� � 1 � � 1 
 , for j
�

J, and additional variables x0 � x � 1
�

� 1 �	� 1 
 with x � 1
� � x0; job j is being assigned to machine

0 if x j
� x0 and to machine � 1 otherwise. Therefore the as-

signment variables ai j in � IQP � are replaced by
1

�
xix j
2 and

the quadratic terms ai jaik by
x jxk

�
xix j

�
xixk

�
1

4 . Note that we
have introduced the variable x � 1 only to keep notation sim-
ple; it could as well be replaced by � x0. We get a relaxation
of � IQP � to a vector program � VP � if we replace the one-
dimensional variables x j with absolute value 1 by vectors
v j

� � n
�

1 of unit length.

min ∑
j

w jC j

s. t. C j
� 0

∑
i � � 1

� 1 � viv j

2
 pi j

� ∑
k � i j

v jvk � viv j � vivk � 1
4

 pik �
(13)

v � 1v0
� � 1

v jv j
� 1 for j � J

� � 0 �	� 1 

Here v jvk denotes the scalar product of the vectors v j and
vk. It is well known that such a program is equivalent to
a semidefinite program in variables corresponding to the
scalar products (see, e. g., [15]). This program can be
strengthened by adding the constraints

v jvk � viv j � vivk � 1 � 0 (14)

for i � � 0 �	� 1 
 and j � k � J. Constraints of the same form
have been used by Feige and Goemans [8] to improve some
of the approximation results of Goemans and Williamson
[15].

It is one of the key insights of this paper that the vec-
tor program can be further strengthened with the quadratic
constraint (11) from the convex quadratic program � CQP

� � .
For a feasible solution v to � VP � we denote by a � a � v � the

corresponding solution to � CQP � , i. e., ai j
� 1

�
viv j
2 , and add

the constraint

∑
j

w jC j � 1
2 cT a � 1

2aT � D � diag � c � � a (15)

� ∑
j

w j

0

∑
i � � 1

ai j 
� 1 � ai j

2
pi j � ∑

k � i j

aik  pik �
to the vector program � VP � . The resulting program with the
additional constraints (14) and (15) is denoted by � SDP � .
Note that constraint (12) is included in (13) and (14).

By Lemma 3.4 and our remark above � SDP � can be inter-
preted as a semidefinite program in variables corresponding
to the scalar products v jvk. For a feasible solution to � SDP �
we consider the random hyperplane rounding of Goemans
and Williamson:

Algorithm RANDOM HYPERPLANE

1) Draw a vector r randomly and uniformly distributed
from the unit-sphere of

� n
�

1 .

2) For each job j, assign j to the machine i with sgn � v jr � �
sgn � vir � .

In the second step ties can be broken arbitrarily; they occur
with probability zero. The random vector r can be inter-
preted as the normal vector of a random hyperplane through
the origin which partitions the set of vectors v j, j

�
J, and

therefore the jobs into two sets. In contrast to Algorithm
RANDOMIZED ROUNDING jobs are no longer assigned in-
dependently to the machines, but the hyperplane induces a
correlation between the random decisions.

To analyze � SDP � and Algorithm RANDOM HYPER-
PLANE we need the following lemma which is a restatement
of [15, Lemma 3.2 and Lemma 7.3.1]. For given vectors
v j � vk, j � k � J

� � 0 �	� 1 
 , we denote the enclosed angle by
α jk.

Lemma 4.1. For j � k � J, i � � 0 � � 1 
 , and for given unit
vectors vi � v j � vk, Algorithm RANDOM HYPERPLANE yields
the following probabilities:

a) Pr � j �� i � � 1 � αi j
π .

b) Pr � j � k �� i � � 1 � α jk
� αi j

� αik
2π .

As a result of Lemma 2.2 and Lemma 4.1 the expected
value of the completion time of job j in the schedule com-
puted by Algorithm RANDOM HYPERPLANE is given by

E � C j � �
0

∑
i � � 1

� �
1 � αi j

π �  pi j

� ∑
k � i j

�
1 � α jk � αi j � αik

2π �  pik � �
(16)



We want to compare the expected value of the schedule
computed by Algorithm RANDOM HYPERPLANE to the
value of the feasible solution to � SDP � we started with.

Lemma 4.2. Let v and a � a � v � be a feasible solution to
� SDP � with value Z and consider a random assignment of
jobs to machines satisfying

Pr � j �� i � � ρ1

2
� 1 � viv j

2
� 1 � ai j

2
 ai j �

and

Pr � j � k �� i � � ρ2

2
� v jvk � viv j � vivk � 1

4
� ai jaik �

for i
� � 0 � � 1 
 , j � k �

J, and for certain parameters 1 �
ρ1 � ρ2. Then the expected value of the computed schedule
is bounded from above by

ρ1
3cT a

4
� ρ2

�
Z � 3cT a

4 � � ρ2  Z �
Sketch of proof. Observe that the required bounds in
Lemma 4.2 compare the given probabilities to the average
of the corresponding coefficients in (13) and (15). It there-
fore follows from Lemma 2.2, linearity of expectations, and
an easy calculation that the expected value of the computed
schedule is bounded by max � ρ1 � ρ2 
  Z � ρ2  Z. A preciser
analysis yields the stronger bound given in the lemma.

Inspired by the work of Feige and Goemans [8] we give
a rounding scheme that fulfills the conditions described in
Lemma 4.2 for ρ1

� 1 � 1847 and ρ2
� 1 � 3388. We apply Al-

gorithm RANDOM HYPERPLANE to a set of modified vec-
tors u j, j

�
J, which are constructed from the vectors v j by

taking advantage of the special role of v0 and v � 1. For each
job j

�
J the vectors v0, v j, and u j are linearly dependent,

i. e., u j is coplanar with v0 and v j. Moreover, u j lies on the
same side of the hyperplane orthogonal to v0 as v j and its
distance to this hyperplane is increased compared to v j. In
other words, u j is attained by moving v j towards the nearer
of the two points v0 and v � 1, see Figure 1.

We describe this mapping of v j to u j by a function f :� 0 � π � � � 0 � π � where f � αi j � equals the angle formed by u j

and vi for i � � 0 � � 1 
 . In particular, f has the property that
f � π � θ � � π � f � θ � such that both machines are treated
in the same manner. In order to compute the probability
Pr � j � k �� i � for Algorithm RANDOM HYPERPLANE based
on the modified vectors u j and uk, we need to know the
angle between u j and uk for two jobs j � k �

J. This angle
is implicitly given by the cosine rule for spherical triangles,
see [8].

If we use the function f1 � θ � : � π
2 � 1 � cos � θ � � proposed

by Feige and Goemans we get

Pr � j �� i � � 1 � cos � αi j �
2

� 1 � viv j

2
� ai j

f
�
α0 j �

v � 1

uk

vk

f
�
α � 1 � k �

α � 1 � k
α0 j

u j

v j

ϕ jk

v0

Figure 1. Modification according to the func-
tion f .

for each job j. In other words, the probability that a job is
assigned to a machine is equal to the corresponding coeffi-
cient in (13). On the other hand, the function f1 does not
yield a possibility to bound the probabilities Pr � j � k �� i � for
j � k � J in terms of the corresponding coefficients in (13)
and (15).

Therefore we use a different function f2 defined by
f2 � θ � � f1 � ξ � θ � � where ξ � θ � � min � π � max � 0 � π

2 � 1 � 3662 
� θ � π

2 � 
�� . This yields a rounding scheme with expected
performance guarantee 1 � 3388. We have shown numer-
ically that the conditions in Lemma 4.2 are fulfilled for
ρ1

� 1 � 1847 and ρ2
� 1 � 3388 in this case. As proposed

by Feige and Goemans this was done by discretizing the
set of all possible angles between three vectors and test-
ing for each triple the validity of the bounds for the given
parameters ρ1 and ρ2 which are nearly tight. We should
mention that both constraints (14) and (15) are crucial for
our analysis. In the absence of one of these constraints one
can construct constellations of vectors such that no constant
worst case bounds ρ1 and ρ2 exist for our analysis. We omit
details for reasons of brevity.

Theorem 4.3. Computing an almost optimal solution to
� SDP � , modifying it according to f2, and using Algorithm
RANDOM HYPERPLANE to construct a feasible schedule
yields a randomized approximation algorithm with expected
performance guarantee 1 � 3388.

It was shown in [28] that Algorithm RANDOM HYPER-
PLANE can be derandomized. We get a deterministic ver-
sion of our approximation algorithm if we make use of



the derandomized version of Algorithm RANDOM HYPER-
PLANE.

We strongly believe that there exists a function similar
to f2 which yields an expected performance guarantee of
4
3 . On the other hand we can show that this value is best
possible for our kind of analysis. Consider the constel-
lation α0 j

� α0k
� π

2 and α jk
� 0. The symmetry of f

yields f � π
2 � � π

2 such that u j
� uk

� v j
� vk. Therefore

Pr � j � k �� 0 � � 1
2 and the right hand side of the correspond-

ing inequality in Lemma 4.2 is equal to 3
8 ρ2. We have also

tried to bound the probabilities by a different convex com-
bination of the corresponding coefficients in (13) and (15)
rather than using their average as in Lemma 4.2; but this did
not lead to any improvement.

We can also apply Algorithm RANDOMIZED ROUND-
ING to turn a feasible solution a � a � v � to � SDP � into a
provably good schedule. Although the worst case ratio of
this algorithm is worse than the performance ratio of the
rounding scheme based on Algorithm RANDOM HYPER-
PLANE, a combination of the two rounding techniques leads
to a further improvement in the performance guarantee.

Theorem 4.4. For an almost optimal solution to � SDP � ,
either Algorithm RANDOMIZED ROUNDING or Algorithm
RANDOM HYPERPLANE (together with f2) produces a
schedule whose expected value is bounded by 1 � 2752  Z � .
Sketch of Proof. Notice that by Corollary 3.7 and
Lemma 4.2 the two rounding techniques do not be-
have bad for the same class of instances and solutions to
� SDP � , see Figure 2.

1 � 3388

1 � 5

1

1 � 2752

performance ratio

1 � 2233

0 0 � 5504 1

RANDOM HYPERPLANE

RANDOMIZED ROUNDING

cT a
�
v �

ZSDP
�
v �

Figure 2. Comparison of Randomized Round-
ing and Random Hyperplane.

Observations of this type have already been used in other
contexts to get improved approximation results. Theo-
rem 4.4 also implies that � SDP � is a 1 � 2752–relaxation for
R2

���
∑w jC j .

Up to now, the combination of semidefinite relaxations
like the one we are discussing here and the rounding
technique of Algorithm RANDOM HYPERPLANE has only
proved useful for approximations in the context of maxi-
mization problems [15, 8, 9, 46]. In contrast to our consid-
erations, in the analysis of these results one needs a good
lower bound on the probabilities for the assignments in Al-
gorithm RANDOM HYPERPLANE. However, it seems to be
much harder to attain good upper bounds. Our main contri-
bution to this problem is the additional quadratic cut (15).
We hope that this approach will also prove useful for other
problems in combinatorial optimization.

5 MaxCut algorithms for scheduling identi-
cal parallel machines

We associate with each instance of P
� �

∑w jC j a com-
plete undirected graph GJ on the set of vertices J together
with weights on the set of edges EJ given by c � jk � � w j pk

for j � k �
J, k 	 j. Each partition of the set of vertices J of

GJ into m subsets J1 � �	� � � Jm can be interpreted as a machine
assignment and corresponds to a feasible schedule. More-
over, the value of a schedule can be interpreted as the weight
of the set Esch formed by those edges in EJ with both end-
points in the same subset plus the constant term ∑ j w j p j.
The remaining edges in Ecut : � EJ

�
Esch are contained in

the induced m–cut. In particular we get

c � EJ � � ∑
j

w jC j � ∑
j

w j p j � c � Ecut � (17)

where C j denotes the completion time of job j in the sched-
ule corresponding to the partition of J. Since ∑ j w j p j and
c � EJ � are constant, minimizing the average weighted com-
pletion time ∑ j w jC j of the schedule is equivalent to maxi-
mizing the value c � Ecut � of the induced m–cut. This reduc-
tion of Pm

� �
∑w jC j to MAXmCUT is approximation pre-

serving:

Theorem 5.1. For any ρ � 1, a ρ–approximation algorithm
for MAXmCUT translates into an approximation algorithm
for Pm

� �
∑w jC j with performance guarantee ρ � m  � 1 �

ρ � .
Proof. We use the lower bound Z �CQP on the value of an
optimal schedule to get an upper bound on the weight Z �cut
of a maximum m–cut. Lemma 3.2 yields

Z � � Z �CQP
� 1

m
 c � EJ � �

� 1
2
� 1

2m � ∑
j

w j p j (18)

such that

Z �cut � m � 1
m

 c � EJ � �
� 1

2
� 1

2m � ∑
j

w j p j (19)



by (17) and (18). Any m–cut in GJ whose weight is at
least ρ  Z �cut therefore yields a schedule whose value can
be bounded as follows:

∑
j

w jC j � Z � � � 1 � ρ �  Z �cut by (17)� Z � � � 1 � ρ �  � m � 1 �  Z � by (19), (18)
� � ρ � m  � 1 � ρ � �  Z � �

Unfortunately, this result does not lead to an improved
performance guarantee for P

� �
∑w jC j. The best currently

known approximation algorithms for MAXmCUT have per-
formance ratio 1 � 1

m � o � 1
m � which leads to performance

guarantee 2 � 1
m for P

� �
∑ j w jC j by Theorem 5.1. It is inter-

esting to mention and easy to see that assigning each vertex
randomly to one of the m subsets is an approximation al-
gorithm with performance guarantee 1 � 1

m for MAXmCUT.
Moreover, this algorithm coincides with Algorithm RAN-
DOMIZED ROUNDING based on the optimal solution to
� CQP � given in Lemma 3.2 and therefore achieves perfor-
mance ratio 3

2 � 1
2m for P

� �
∑ j w jC j rather than 2 � 1

m . It
is shown in [21] that MAXmCUT cannot be approximated
within ρ � 1 � 1

34m , unless P=NP.
If we consider the problem for the case m � 2 we

get performance guarantee 1 � 122 if we use the 0 � 878–
approximation algorithm for MAXCUT by Goemans and
Williamson. This result beats both the 5

4 –approximation
in Theorem 3.3 and the 1 � 2752–approximation in Theo-
rem 4.4. Notice that for the case of two identical parallel
machines � SDP � is a strengthened version of the semidef-
inite programming relaxation for the corresponding MAX-
CUT problem considered in [15]. This leads to the follow-
ing result.

Corollary 5.2. Computing an almost optimal solution to
� SDP � and applying Algorithm RANDOM HYPERPLANE

to get a feasible schedule is a 1 � 122–approximation for
P2

���
∑w jC j.

This result has been further improved by Goemans [12]
to performance guarantee 1 � 073 through a more sophisti-
cated rounding technique.

Acknowledgments: I am grateful to Michel Goemans and
Andreas Schulz for helpful comments on an earlier version
of this paper.
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