
An Approximative Criterion for the Potential of
Energetic Reasoning?

Timo Berthold1, Stefan Heinz1, and Jens Schulz2

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
{berthold,heinz}@zib.de

2 Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136,
10623 Berlin, Germany

jschulz@math.tu-berlin.de

Abstract. Energetic reasoning is one of the most powerful propagation
algorithms in cumulative scheduling. In practice, however, it is commonly
not used because it has a high running time and its success highly de-
pends on the tightness of the variable bounds. In order to speed up ener-
getic reasoning, we provide a necessary condition to detect infeasibilities,
which can be tested efficiently.

We present an implementation of energetic reasoning that employs this
condition and that can be parametrically adjusted to handle the trade-off
between solving time and propagation overhead. Computational results
on instances from the PSPLib are provided. They show that using the
condition decreases the running time by more than a half, although more
search nodes need to be explored.

1 Introduction

Many real-world scheduling problems rely on cumulative restrictions.
In this paper, we consider a cumulative scheduling problem with non-
preemptable jobs and fix resource demands. Such a problem is determined
by earliest start and latest completion times to all jobs, the resource de-
mands, and a resource capacity for each resource. Besides that precedence
constraints between different jobs might be present. The goal is to find
start times for each job, a schedule, such that the cumulative demands do
not exceed the capacities and the precedence requirements are satisfied.

Computing such a schedule is known to be strongly NP-hard [3].
Several exact approaches were developed that solve the problem by

branch-and-bound, using techniques from constraint programming, inte-
ger programming, or satisfiability testing. In constraint programming, the

? Supported by the DFG Research Center Matheon Mathematics for key technologies
in Berlin.

2 Timo Berthold, Stefan Heinz, Jens Schulz

main task is to design efficient propagation algorithms that adjust vari-
able bounds or detect infeasibility of a search node, in order to keep the
search tree small. Such algorithms are usually executed more than once
per search node. The most powerful and widely used algorithms in cumu-
lative scheduling are time-tabling, edge-finding, and energetic reasoning.

This paper concentrates on the evaluation of the energetic reasoning
algorithm. Its merit lies in a drastic reduction of the number of search
nodes by detecting infeasible nodes early. It has, however, a cubic running
time in the number of jobs and is only capable to find variable bound
adjustments for rather tight variable bounds.

Related work. Baptiste et.al. [1] provide a detailed overview on the main
constraint programming techniques for cumulative scheduling. Therein,
several theoretical properties of energetic reasoning are proven. A more
general idea of interval capacity consistency tests is given by Dorndorf
et.al. [4]. In the same paper, unit-size intervals are considered as a spe-
cial case, which leads to the time-tabling algorithm [6]. Recently, Kooli
et.al. [7] used integer programming techniques in order to improve the
energetic reasoning algorithm. This approach extends the method pre-
sented by Hidri et.al. [5], where the parallel machine scheduling problem
has been considered. In both works only infeasibility of a subproblem is
checked; variable bound adjustments are not performed.

Contribution. We derive a necessary condition for energetic reasoning
to detect infeasibilities. The condition is based on a relative energy his-
togram, which can be computed efficiently. We show that this histogram
underestimates the true energy requirement of an interval by a factor of
at most 1/3. We embed this approximative result in a parametrically ad-
justable propagation algorithm which detects variable bound adjustments
and infeasibilities in the same run.

As our computational results reveal, the presented algorithm drasti-
cally reduces the total computation time for solving instances from the
PSPLib [8] in contrast to the pure energetic reasoning algorithm.

Outline. We introduce the resource-constrained project scheduling prob-
lem (RCPSP) and the general idea of energetic reasoning in Section 2. In
Section 3 we derive a necessary condition for energetic reasoning to be
successful and embed it into a competitive propagation algorithm. Exper-
imental results on instances from PSPLib [8] are presented in Section 4.

An Approximative Criterion for the Potential of Energetic Reasoning 3

2 Problem description and Energetic Reasoning

In resource-constrained project scheduling (RCPSP) we are given a set J
of non-preemptable jobs and a set R of renewable resources. Each re-
source k ∈ R has bounded capacity Ck ∈ N. Every job j ∈ J has
a processing time pj ∈ N and resource demands rjk ∈ N for each re-
source k ∈ R. The start time Sj of job j is constrained by its prede-
cessors that are given by a precedence graph D = (V,A) with V = J .
An arc (i, j) ∈ A represents a precedence relationship, i.e., job i must be
finished before job j starts. The goal is to schedule all jobs with respect
to resource and precedence constraints, such that the makespan, i.e., the
latest completion time of all jobs, is minimized.

The RCPSP can be modeled as a constraint integer program as follows:

min max
j∈J

Sj + pj

subject to Si + pi ≤ Sj for all (i, j) ∈ A (1)
cumulative(S,p, r.k, Ck) ∀ k ∈ R (2)

The constraints (1) represent the precedence conditions. The cumula-
tive constraints (2) enforce that at each point in time t, the cumulated
demand of the set of jobs running at that point, does not exceed the given
capacities, i.e., ∑

j∈J :t∈[Sj ,Sj+pj [

rjk ≤ Ck for all k ∈ R.

Energetic reasoning is a technique to detect infeasibility or to ad-
just variable bounds for one cumulative constraint k ∈ R, based on
the amount of work that must be executed in a specified time in-
terval. The term energetic reasoning has been defined for partially or
fully elastic scheduling problems [1]. This procedure is also known as
Left-Shift/Right-Shift technique in case of cumulative scheduling with
non-interruptible jobs. Given an upper bound on the latest completion
time of all jobs, we obtain earliest start times estj , earliest completion
times ectj , latest start times lstj , and latest completion times lctj for
each job j ∈ J . The required energy E(a, b) of all jobs in interval [a, b[is
given by E(a, b) :=

∑
j∈J ej(a, b), with

ej(a, b) := max{0,min{b− a, pj , ectj −a, b− lstj}} · rj .

Hence, ej(a, b) is the non-negative minimum of (i) the volume in the
interval [a, b[, (ii) the energy of job j, (iii) the left shifted energy, and (iv)

4 Timo Berthold, Stefan Heinz, Jens Schulz

job 1

job 2

job 3

job 4

t
0 1 2 3 4

Fig. 1. Problem setup of Example 1.

the right shifted energy. With respect to ej(a, b), a problem is infeasible
if more energy is required than available, so for a < b and a resource
capacity C we can deduce:

Corollary 1 ([1]). If E(a, b) > (b−a) ·C, then the problem is infeasible.

Example 1. Consider a cumulative resource of capacity 2 and four jobs
each with a resource demand of 1, an earliest start time of 0 and a latest
completion time of 4. Three of these jobs have a processing time of 2.
The fourth job instead has a processing time of 3. Figure 1 illustrates this
setup. For the interval [1, 3[, the available energy is (3− 1) · 2 = 4 . The
first three jobs contribute 1 units each where as the fourth jobs adds 2 to
the required energy. This sums up to E(1, 3) = 5. This shows that that
these jobs cannot be scheduled.

In order to detect infeasibility, O(n2) time-intervals need to be con-
sidered [1]. Those intervals are determined in the following way:

O1 :=
⋃
j

(
{estj} ∪ {estj +pj} ∪ {lctj −pj}

)
,

O2 :=
⋃
j

(
{lctj} ∪ {estj +pj} ∪ {lctj −pj}

)
and

O(t) :=
⋃
j

{estj + lctj −t}.

The relevant intervals to be checked for energetic tests are given by (a, b) ∈
O1 × O2 and for fixed a ∈ O1 : (a, b) ∈ O1 × O(a) and for fixed b ∈ O2 :
(a, b) ∈ O(b)×O2. These are O(n2) many.

Besides detecting infeasibilities, variable bounds can be adjusted by
energetic reasoning. Due to symmetry reasons, we just consider the ad-

An Approximative Criterion for the Potential of Energetic Reasoning 5

justments of lower bounds. Let

eleftj (a, b) := rj ·max{0,min{pj , b− a,min{b, ectj} −max{a, estj}}}

be the required energy in the interval [a, b[of job j if it is left-shifted, i.e.,
it starts as early as possible. If [a, b[intersects with [estj , ectj [and the
required energy E(a, b)− ej(a, b) + eleftj (a, b) exceeds the available energy
in [a, b[, then j cannot start at its earliest start time and the lower bound
can be updated according to Theorem 1.

Theorem 1 ([1]). Let [a, b[, a < b and j ∈ J with [estj , ectj [∩[a, b[6= ∅.
If E(a, b)− ej(a, b) + eleftj (a, b) > (b− a) · C holds, then the earliest start
time of job j can be updated to

estj = a+
⌈

1
rj

(E(a, b)− ej(a, b)− (b− a) · (C − rj))
⌉
.

In case of feasibility tests, we are able to restrict the set of intervals that
need to be considered. Whether such restrictions can also be made for
variable bound adjustments is an open problem. The currently fastest
energetic reasoning propagation algorithm runs in O(n3).

3 Restricted Energetic Reasoning

Energetic reasoning only finds variable bound adjustments when the
bounds of the start time variables are tight, since it compares the available
energy to the requested energy for some intervals. If the bounds are loose
and small intervals are considered, a job may contribute almost no energy
to that interval or in case of large intervals not enough energy is required
in order to derive any adjustments. This is a clear drawback as we are
faced with a very time-consuming algorithm. In order to come up with
a practical competitive propagation algorithm, we identify intervals that
seem promising to detect infeasibilities and variable bound adjustments.

3.1 Estimation of relevant intervals

Let us consider one resource with capacity C, and cumulative demands rj
for each job j. The total energy requirement of job j is given by ej = pj ·rj .
We measure the relative energy consumption ẽj := ej

lctj − estj
.

We define the relative energy histogram Ẽ : N → R and the relative
energy Ẽ(a, b) of an interval [a, b[by:

Ẽ(t) :=
∑

j:estj≤t<lctj

ej
lctj −estj

and Ẽ(a, b) :=
b−1∑
t=a

Ẽ(t).

6 Timo Berthold, Stefan Heinz, Jens Schulz

This histogram approximates the required energy E(a, b) computed by
energetic reasoning for each point in time, as we prove in Theorem 2.

Theorem 2. Given an arbitrary non-empty interval [a, b[. Then

α · E(a, b) ≤ Ẽ(a, b)

with α > 1/3.

Proof. We show the approximation factor α for each job separately. By
linearity of summation, the theorem follows.

First, we restrict the study to the case where estj ≤ a < b ≤ lctj . Let

ẽj(a, b) =
pj · rj

lctj −estj
· (min{lctj , b} −max{estj , a}).

If the energy is underestimated in [a, b[, then it follows that estj < a
or lctj > b, since otherwise ẽj(a, b) = ej(a, b). Assume estj ≤ a < lctj < b.
By definition, ej(a, b) = ej(a, lctj) and ẽj(a, b) = ẽj(a, lctj). Applying a
symmetrical argument to a < estj < b ≤ lctj , we can restrict the setting
to estj ≤ a < b ≤ lctj , such that ẽj(a, b) = pjrr(b − a)/(lctj − estj).
Note that in this case the energy gets underestimated, i.e., 0 < ẽj(a, b) <
ej(a, b).

Case 1. Consider the case ej(a, b) = pj · rj . That means the job is fully
contained in [a, b[. This is a contradiction to ẽj(a, b) < ej(a, b).

Case 2. Assume the following two properties:

(i) 1 ≤ min{ectj −a, b− lstj} < min{b− a, pj}
(ii) ej(a, b) = min{ectj −a, b− lstj} · rj .

Thus, α′ := ẽj(a, b)/ej(a, b) yields:

α′ =
pj(b− a)

(lctj − estj) ·min{ectj −a, b− lstj}
>

max{pj , b− a}
lctj − estj

.

Minimizing α′ with respect to 1 ≤ min{ectj −a, b− lstj} yields b−a = k
and pj := k+ 1 for some k ∈ N, such that α′ = max{k+ 1, k}/(3k) > 1/3.

Case 3. Finally, consider the case b− a < min{pj , ectj −a, b− lstj}. Thus,
ej(a, b) = (b− a)rj . That means, the job is completely executed in [a, b[,
i.e., [a, b[⊆ [lstj , ectj [. This yields the condition ectj ≥ lstj +(b− a), which
is equivalent to 2pj − (b− a) ≥ lctj − estj . Thus,

ẽj(a, b) =
pj · rj

lctj − estj
(b− a) ≥ pj

2pj − (b− a)
rj · (b− a) =

1
2− b−a

pj︸ ︷︷ ︸
=:α′′

ej(a, b).

We obtain α := min{α′, α′′} > 1/3. ut

An Approximative Criterion for the Potential of Energetic Reasoning 7

The proof shows that an underestimation of E(a, b) happens if the
core of a job, i.e., [lstj , ectj [, overlaps that interval or if a job is associ-
ated with a large interval [estj , lctj [and intersects just slightly with [a, b[.
The following corollary states the necessary condition that we use in our
propagation algorithm.

Corollary 2. Energetic reasoning cannot detect any infeasibility, if ei-
ther of the following conditions hold

(i) for all [a, b[, a < b, Ẽ(a, b) ≤ 1
3(b− a)C

(ii) for all t: Ẽ(t) ≤ 1
3 C.

The histogram Ẽ can be computed in O(n log n) by first sorting the ear-
liest start times and latest completion times of all jobs and then creating
the histogram chronologically from earliest event to latest event. Since
there are O(n) event points (the start and completion times of the jobs)
only O(n) changes in the histogram need to be stored.

3.2 Restricted Energetic Reasoning Propagation Algorithm

We now present a restricted version of energetic reasoning which is based
on the results of the previous section. Due to Theorem 2, only inter-
vals [a, b[containing points in time t with Ẽ(t) > 1/3C need to be checked.
Note that the cardinality of this set may still be cubic in the number of
jobs. We introduce an approach, in which we only execute the energetic
reasoning algorithm on interval [t1, t2[if

∀ t ∈ [t1, t2[: Ẽ(t) > α · C

holds. For given Ẽ, this condition can be checked in O(n). If it holds, we
check each pair (a, b) ∈ O1 × O2 with [a, b[⊆ [t1, t2[in order to detect
infeasibility or to find variable bound adjustments.

The procedure is captured in Algorithm 1. Here only the propagation
of lower bounds is shown, upper bound adjustments work analogously.

As mentioned before, the relative energy histogram Ẽ(t) can be com-
puted in O(n log n) and needs O(n) space. The sets O1 and O2 also
need O(n) space and are sorted in O(n log n). Loops 5 and 10 together
consider at most all O(n2) intervals O1 × O2. Loop 13 will consider at
most O(n) jobs. Since E(a, b) is precomputed in line 11 and all other
calculations can be done in constant time, we are able to bound the total
running time.

Corollary 3. Algorithm 1 can be implemented in O(n3).

8 Timo Berthold, Stefan Heinz, Jens Schulz

Algorithm 1: Restricted Energetic Reasoning propagation algo-
rithm for lower bounds.
Input: Resource capacity C, set J of jobs, and a scaling factor α.
Output: Earliest start times est′

j for each job j or an infeasibility is detected.

Create relative energy histogram Ẽ.1

Compute and sort sets O1 and O2.2

if Ẽ(t) ≤ α · C for all t then3

stop.4

forall event points t in increasing order do5

if Ẽ(t) ≤ α · C then6

continue.7

t1 := t.8

Let t2 be the first event point after t with Ẽ(τ) ≤ α · C.9

forall (a, b) ∈ O1 ×O2 : [a, b[⊆ [t1, t2[do10

if E(a, b) > (b− a) · C then11

stop: infeasible.12

forall jobs j with [a, b[∩[estj , ectj [6= ∅ do13

if E(a, b)− ej(a, b) + eleftj (a, b) > (b− a) · C then14

rest := E(a, b)− ej(a, b)− (b− a) · (C − rj).15

est′
j := a+ drest /rje.16

if est′
j > lstj then17

stop: infeasible.18

t := t2.19

Asymptotically, it has the same running time as pure energetic reason-
ing, but the constants are much smaller. Compared to the pure energetic
reasoning algorithm we only consider large intervals if the relative energy
consumption is huge over a long period. The savings in running time and
further influences on the solving process will be discussed in the following
Section.

4 Computational results

We performed our computational results on the RCPSP test sets j30
and j60 from the PSPLib [8]. Each test set contains 480 instances with 30
or 60 jobs per instance. We use the default settings of our implementation
of the cumulative constraint as presented in [2] with scip version 1.2.1.5
and integrated cplex release version 12.10 as underlying LP solver. The
only scheduling specific propagation algorithm used is energetic reason-
ing and its parametric variants using the necessary condition from Corol-

An Approximative Criterion for the Potential of Energetic Reasoning 9

lary (2). A time limit of one hour was enforced for each instance. All
computations were obtained on Dual QuadCore Xeon X5550 2.67 GHz
computers (in 64 bit mode), running Linux, and 24 GB of main memory.

Parameter settings. According to Theorem 2, it suffices to check
for α > 1/3, whereas α close to 1/3 would end up in checking most of
the intervals as energetic reasoning does. Due to the outcome we show
results for α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}. Starting with an initial
setting ‘0.0’, i.e., the pure energetic reasoning, we evaluate the different
parameter settings of α, yielding settings from ‘0.5’ to ‘1.2’.

Evaluation of all instances. Table 1 shows aggregated computational re-
sults for all instances from the test sets j30 and j60 that are solved by at
least one algorithm. The pure energetic reasoning algorithm, which cor-
responds to a factor α = 0.0 serves as reference solver, ‘0.0’. For j30, 473
instances can be solved by at least one solver, pure energetic reasoning has
eight timeouts on these, see column ‘limit’. Choosing α = 0.8 or 0.9 solves
all 473 instances, whereas a smaller or larger value decreases the number
of solved instances. Column ‘better’ tells how many instances are solved
more than 10% faster than by the reference solver. Respectively, ‘worse’
expresses how often a solver is more than 10% slower than the reference
setting ‘0.0’. Here, α = 0.9 performs best. Since some instances timed
out, we show how often better (‘bobj’) or worse (‘wobj’) primal bounds
are found. Using a weak propagation (α = 1.2) yields worst results since
30 instances are not solved, 110 are more than 10% slower and for 13
instances a worse primal bound is found.

For test set j60, best results are gained for α = 0.9. Though, there is
one more timeout than by the reference solver, in twice as many cases the
restricted version is at least 10% faster than pure energetic reasoning.

Evaluation of all optimal solved instances. Since many instances are un-
solved or trivial, Table 2 presents the results only on those instances that
(i) could be solved to optimality by all solvers, (ii) at least one solver
needed more that one search node, and (iii) at least one solver needed
more that one second of computation time. That means, we exclude all
easy instances and those which none of the solver was able to solve. In
case of the test sets j30 and j60 we are left with 112 and 32 instances,
respectively.

Columns ‘better’ and ‘worse’ reveal that values α = 0.9 and 1.0 are
dominating. Column ‘shnodes’ and ‘shtime’ state the shifted geomet-

10 Timo Berthold, Stefan Heinz, Jens Schulz

Table 1. Overview for 473 instances from j30 and 397 instances from j60. Only those
instances are considered that are solved by at least one solver.

j30 j60

α solved limit better worse bobj wobj solved limit better worse bobj wobj
0.0 465 8 – – – – 393 4 – – – –
0.5 467 6 69 77 3 1 387 10 43 45 1 6
0.6 471 2 81 64 3 0 388 9 45 43 1 5
0.7 472 1 89 53 3 0 388 9 49 37 1 4
0.8 473 0 94 51 3 0 391 6 55 34 1 3
0.9 473 0 105 40 3 0 392 5 59 30 1 4
1.0 472 1 102 40 3 1 392 5 57 31 1 3
1.1 465 8 72 84 3 4 375 22 45 39 1 19
1.2 443 30 52 110 3 13 358 39 38 56 1 35

Table 2. Overview on those instances (i) which are solved with all settings, (ii) where
at least one solver needed more than one search node, and (iii) at least one solver
needed more than one second. This results in 112 instances for the j30 test set and 32
for the j60 test set.

j30 j60

α better worse shnodes shtime better worse shnodes shtime
0.0 – – 314 12.7 – – 171 8.5
0.5 49 54 1664 16.1 8 17 1098 16.4
0.6 54 45 1676 10.8 10 15 1005 11.0
0.7 59 33 1679 7.6 11 13 1102 9.0
0.8 60 35 1883 6.3 14 11 1237 6.8
0.9 66 28 2174 5.1 17 9 1240 4.9
1.0 66 24 2895 5.3 16 9 1274 3.4
1.1 47 56 10336 14.4 15 9 2271 6.6
1.2 34 74 52194 54.4 10 20 18050 30.9

ric mean3 of all nodes and of the running time, respectively. Table 2
shows that the pure energetic reasoning needs by far the fewest number
of nodes. For each instance of the parametric algorithm the number of
nodes increases by at least a factor of 5. The more we relax the value of α
from 0.5 to 1.2, the more nodes are needed. Besides that, a weak prop-
agation (α = 1.2) behaves worst in all columns. The best running times
are gained with values 0.9 and 1.0 for α. In these cases the restricted
energetic reasoning was more than twice as fast as the pure energetic
reasoning algorithm. This is illustrated in Figure 2, which shows how the
shifted geometric running times vary with different values of α.

3 The shifted geometric mean of values t1, . . . , tn is defined as
`Q

(ti +s)
´1/n−s with

shift s. We use a shift s = 10 for time and s = 100 for nodes in order to decrease
the strong influence of the very easy instances in the mean values.

An Approximative Criterion for the Potential of Energetic Reasoning 11

settings

shifted time [sec]

0.0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

5

15

25

35

45

55

(a) Running times of test set j30.

settings

shifted time [sec]

0.0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

5

15

25

35

45

55

(b) Running times of test set j60.

Fig. 2. Comparison of running times from Table 2.

5 Conclusions

We presented a necessary condition for energetic reasoning to detect in-
feasibilities or to derive variable bound adjustments. This result was in-
corporated into a parametrical adjustable version of energetic reasoning.
By checking this condition, we only apply this powerful but expensive
algorithm, when the estimated energy is above a certain threshold α.

Computational results revealed that choosing α close to 1.0 can speed
up the search by a factor of two though the number of nodes drastically
increases.

References

1. P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based scheduling: applying
constraint programming to scheduling problems, International Series in Operations
Research & Management Science, 39, Kluwer Academic Publishers, Boston, MA,
2001.

2. T. Berthold, S. Heinz, M. E. Lübbecke, R. H. Möhring, and J. Schulz, A
constraint integer programming approach for resource-constrained project scheduling,
in Integration of AI and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems, A. Lodi, M. Milano, and P. Toth, eds., vol. 6140 of
Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2010, pp. 313–
317.

3. J. Blazewicz, J. K. Lenstra, and A. H. G. R. Kan, Scheduling subject to
resource constraints: classification and complexity, Discrete Applied Mathematics,
5 (1983), pp. 11 – 24.

4. U. Dorndorf, T. Phan-Huy, and E. Pesch, A survey of interval capacity con-
sistency tests for time- and resource-constrained scheduling, J. Weglarz, Kluwer
Academic, Boston, MA, 1999, ch. 10, pp. 213–238.

5. L. Hidri, A. Gharbi, and M. Haouari, Energetic reasoning revisited: application
to parallel machine scheduling, Journal of Scheduling, 11 (2008), pp. 239–252.

12 Timo Berthold, Stefan Heinz, Jens Schulz

6. R. Klein and A. Scholl, Computing lower bounds by destructive improvement:
An application to resource-constrained project scheduling, Eur. J. Oper. Res., 112
(1999), pp. 322–346.

7. A. Kooli, M. Haouari, L. Hidri, and E. Néron, Ip-based energetic reasoning
for the resource constrained project scheduling problem, Electronic Notes in Discrete
Mathematics, 36 (2010), pp. 359 – 366. ISCO 2010 - International Symposium on
Combinatorial Optimization.

8. PSPLib, Project Scheduling Problem LIBrary. http://129.187.106.231/psplib/.
Last accessed 2010/Feb/01.

