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Abstract. Three characteristics encountered frequently in real-world machine
scheduling are jobs released over time, precedence constraints between jobs, and
average performance optimization. The general constrained one-machine schedul-
ing problem to minimize the average weighted completion time not only captures
these features, but also is an important building block for more complex problems
involving multiple machines.
In this context, the conversion of preemptive to nonpreemptive schedules has
been established as a strong and useful tool for the design of approximation algo-
rithms. The preemptive problem is already NP-hard, but one can generate good
preemptive schedules from LP relaxations in time-indexed variables. However, a
straightforward combination of these two components does not directly lead to
improved approximations. By showing schedules in slow motion, we introduce a
new point of view on the generation of preemptive schedules from LP-solutions
which also enables us to give a better analysis.
Specifically, this leads to a randomized approximation algorithm for the general
constrained one-machine scheduling problem with expected performance guar-
antee e. This improves upon the best previously known worst-case bound of 3. In
the process, we also give randomized algorithms for related problems involving
precedences that asymptotically match the best previously known performance
guarantees.
In addition, by exploiting a different technique, we give a simple 3 � 2-approxima-
tion algorithm for unrelated parallel machine scheduling to minimize the average
weighted completion time. It relies on random machine assignments where these
random assignments are again guided by an optimum solution to an LP relax-
ation. For the special case of identical parallel machines, this algorithm is as
simple as the one of Kawaguchi and Kyan [KK86], but allows for a remarkably
simpler analysis. Interestingly, its derandomized version actually is the algorithm
of Kawaguchi and Kyan.

1 Introduction

The main results of this paper are twofold. First, we give an approximation algorithm
for the general constrained single machine scheduling problem to minimize the aver-
age weighted completion time. It has performance guarantee e whereas the best previ-
ously known worst-case bound is 3 [Sch96]. Second, we present another approximation



algorithm for the model with unrelated parallel machines (but with independent jobs
without non-trivial release dates) that has performance guarantee 3

�
2. Previously, a 2–

approximation algorithm was known [SS97]. Our first contribution is based on and mo-
tivated by earlier work of Hall, Shmoys, and Wein [HSW96], Goemans [Goe96,Goe97],
and Chekuri, Motwani, Natarajan, and Stein [CMNS97]; the second one builds on ear-
lier research by the authors [SS97]. All this work was in turn initiated by a paper of
Phillips, Stein, and Wein [PSW95].

The clamp spanning our two main results is the use of randomness which in both
cases is guided by optimum solutions to related LP relaxations of these problems.
Hence, our algorithms actually are randomized approximation algorithms. A random-
ized ρ–approximation algorithm is an algorithm that produces a feasible solution whose
expected value is within a factor of ρ of the optimum; ρ is also called the expected per-
formance guarantee of the algorithm. However, all algorithms given in this paper can
be derandomized with no difference in performance guarantee, but at the cost of in-
creased running times. For reasons of brevity, most often we omit the technical details
of derandomization.

In the first part, we consider the following model. We are given a set J of n jobs
(or tasks) and a disjunctive machine (or processor). Each job j has a positive integral
processing time p j and an integral release date r j � 0 before which it is not available.
In preemptive schedules, a job may repeatedly be interrupted and continued at a later
point in time. We generally assume that these preemptions only occur at integer points
in time. In nonpreemptive schedules, a job must be processed in an uninterrupted fash-
ion. We denote the completion time of job j in a schedule by C j . In addition, C j � α � for
0 � α � 1 denotes the earliest point in time when an α–fraction of j has been completed,
in particular, C j � 1 ��� C j; α–points were first used in the context of approximation by
[HSW96]. The starting time of j is denoted by C j � 0 �	� . We also consider precedence
constraints between jobs. If j 
 k for j � k � J, it is required that j is completed before
k can start, i. e., C j � Ck � 0 � � . We seek to minimize the average weighted completion
time in this setting: a weight w j � 0 is associated with each job j and the goal is to
minimize 1

n ∑ j 
 J w jC j, or, equivalently, ∑ j 
 J w jC j. In scheduling, it is quite convenient
to refer to the respective problems using the standard classification scheme of Graham
et al. [GLLRK79]. Both problems 1 � r j � prec � ∑w jC j and 1 � r j � pmtn � prec � ∑w jC j just
described are strongly NP-hard. In the second part of this paper, we are given m unre-
lated parallel machines instead of a single machine. Each job j has a positive integral
processing requirement pi j which depends on the machine i job j will be processed
on. Each job j must be processed for the respective amount of time on one of the m
machines, and may be assigned to any of them. Every machine can process at most one
job at a time. In standard notation, this NP-hard problem reads R ��� ∑w jC j .

Chekuri, Motwani, Natarajan, and Stein [CMNS97] give a strong result about con-
verting preemptive schedules to nonpreemptive schedules on a single machine. Con-
sider any preemptive schedule with completion times C j , j � 1 ��������� n. Chekuri et al.
show that if α is selected at random in � 0 � 1 � with density function eα � � e � 1 � , then the
expected completion time of job j in the schedule produced by sequencing the jobs in
nondecreasing order of α–points is at most e

e � 1C j. This is a deep and in a sense best
possible result. However, in order to get in this manner polynomial-time approximation



algorithms for nonpreemptive single machine scheduling problems, one relies on good
(exact or approximate) solutions to the respective preemptive version of the problem on
hand. The only case where this immediately led to an improved performance guarantee
was single machine scheduling with release dates (no precedence constraints) to min-
imize the average completion time (unit weights). We therefore suggest to convert so-
called fractional schedules obtained from certain LP relaxations to obtain provably good
nonpreemptive schedules for problems with precedence constraints and arbitrary (non-
negative) weights. The LP relaxation we exploit is weaker than the one of Hall, Shmoys,
and Wein [HSW96] which they used to derive the first constant-factor approximation
algorithm for 1 � r j � prec � ∑w jC j. In fact, in contrast to their LP, our LP already is a re-
laxation of the corresponding preemptive problem 1 � r j � pmtn � prec � ∑w jC j . Hence, we
are also able to give an approximation algorithm for the latter problem. In addition, we
can interpret an LP solution as a preemptive schedule, but with preemptions at fractional
points in time; schedules of this kind are called fractional. Our way of deriving and an-
alyzing good fractional schedules from LP solutions generalizes the techniques of Hall,
Shmoys, and Wein [HSW96] to this weaker LP relaxation. A somewhat intricate com-
bination of these techniques with the conversion procedure of Chekuri et al. leads then
to approximation algorithms for nonpreemptive single machine scheduling which im-
prove or asymptotically match the best previously known algorithms. Specifically, for
single machine scheduling with precedence constraints and release dates so as to mini-
mize the average weighted completion time, we obtain in this way an e–approximation
algorithm. The approximation algorithm of Hall, Shmoys, and Wein [HSW96] has per-
formance guarantee 5 � 83. Inspired by the work of Hall et al., Schulz [Sch96] gave a
3–approximation algorithm based on a different LP.

Our second technique exploits optimum solutions to LP relaxations of parallel ma-
chine problems in a different way. The key idea, which has been introduced in [SS97],
is to interpret the value of certain LP variables as the probability with which jobs are
assigned to machines. For the quite general model of unrelated parallel machines to
minimize the average weighted completion time, we show by giving an improved LP
relaxation that this leads to a 3

�
2–approximation algorithm. The first constant-factor

approximation algorithm for this model was also obtained by Hall, Shmoys, and Wein
[HSW96] and has performance guarantee 16

�
3. This was subsequently improved to 2

[SS97]. One appealing aspect of this technique is that in the special case of identical par-
allel machines the derandomized version of our algorithm coincides with the algorithm
of Kawaguchi and Kyan [KK86]; we therefore get a simple proof that list-scheduling in
order of nonincreasing ratios of weight to processing time is a 3

�
2–approximation.

The paper is organized as follows. In Sect. 2, we present the first technique in a quite
general framework. It is best understood by showing schedules in slow motion. Then,
in Sect. 3, we apply this to the general constrained one-machine scheduling problem.
Finally, in Sect. 4, we randomly assign jobs to parallel machines.

2 Showing Schedules in Slow Motion

In addition to the setting described above, we consider instances with soft precedence
constraints which will be denoted by 
 �

. For j � k � J, j 
 �

k requires that C j � α � � Ck � α �



for 0 � α � 1. That is, at each point in time the completed fraction of job k must not be
larger than the completed fraction of its predecessor j.

Of course, if we consider a single machine, it only makes sense to talk about soft
precedence constraints if we allow preemption. However, even for the preemptive case
the step from strong to soft precedence constraints is not a true relaxation for a single
machine. This can be seen by considering the following algorithm:

Algorithm SOFT–TO–STRONG

Input: fractional schedule S that obeys release dates and soft precedence constraints.
Output: preemptive schedule that obeys release dates and strong precedence constraints.

sort: Sort the jobs in order of nondecreasing completion times in the
given schedule S.

schedule: Construct a new schedule by scheduling at any point in time the
first available job in this list.

Notice that Algorithm SOFT–TO–STRONG usually produces a preemptive schedule.
Whenever a job is released, the job being processed (if any) will be preempted if the
released job has smaller completion time in S. An example for Algorithm SOFT–TO–
STRONG is given in the last two rows of Fig. 2.

Lemma 1. Given a fractional schedule to an instance of 1 � r j � pmtn � prec
� � ∑w jC j, Al-

gorithm SOFT–TO–STRONG constructs in time O � n logn � a preemptive schedule obey-
ing the corresponding strong precedence constraints and release dates with no increase
in completion times.

Proof. We suspect the lemma to belong to the folklore of this field; since we could not
explicitly find it in the literature, however, we provide a proof for the sake of complete-
ness. The reasoning is quite similar to the one given in [HSSW96, Proof of Lemma 2.8]
for a rather different result. W. l. o. g., we assume r j � rk whenever j 
 k for j � k � J.
We denote the completion time of a job j in the given schedule S by C

�

j and in the
constructed schedule by C j.

By construction, no job is processed before its release date in the new schedule.
Moreover, a job is only preempted if another job is released at that time. Therefore, since
all the release dates are integral, Algorithm SOFT–TO–STRONG creates preemptions
only at integral points in time.

Furthermore, for j 
 k the feasibility of the given schedule yields C
�

j � C
�

k. Thus,
because of r j � rk and our ordering of jobs, k is not processed before j is completed
and the strong precedence constraints are obeyed.

It remains to show that C j � C
�

j for each job j � J. Let t � 0 be the earliest point in
time such that there is no idle time in � t � C j � and only jobs k with C

�

k � C
�

j are processed
on the machine in the period from t to C j in the new schedule. We denote the set of
these jobs by K. By construction rk � t for all k � K and thus C

�

j � t
� ∑k 
 K pk. On the

other hand, the definition of K implies C j � t
� ∑k 
 K pk and therefore C j � C

�

j.
Finally, the running time of Algorithm SOFT–TO–STRONG is dominated by the

sorting step and is therefore O � n logn � . ��

If all the release dates are 0 the schedule constructed in Algorithm SOFT–TO–
STRONG is nonpreemptive. Thus, we get the following corollary.



Corollary 2. Given a fractional schedule to an instance of 1 � pmtn � prec
� � ∑w jC j, Al-

gorithm SOFT–TO–STRONG computes in time O � n logn � a nonpreemptive schedule
obeying the precedence constraints with no increase in completion times.

It follows that the NP-hard problem 1 � prec � ∑w jC j [Law78] can be reduced to the
problem 1 � pmtn � prec

� � ∑w jC j which is therefore NP-hard, too. In order to develop
approximation algorithms for all these problems we now introduce an LP relaxation
of 1 � r j � pmtn � prec

� � ∑w jC j whose optimum value serves as a surrogate for the true
optimum in our estimations. The LP relaxation is an immediate extension of a time-
indexed LP proposed by Dyer and Wolsey [DW90] for the problem without precedence
constraints. Here, time is discretized into the periods � t � t �

1 � , t � 0 � 1 ������� � T where T
is the planning horizon, say T : � max j 
 J r j

�
∑ j 
 J p j � 1. We have a variable y jt for

every job j and every time period � t � t �
1 � representing the fraction of this period that

is dedicated to the processing of job j.

minimize ∑
j 
 J

w jC j

� LP � subject to
T

∑
t � r j

y jt � p j for all j � J (1)

∑
j 
 J

y jt � 1 for t � 0 ������� � T (2)

1
p j

t

∑� � r j

y j
� � 1

pk

t

∑� � rk

yk
� for all j 
 �

k and t � 0 ��������� T (3)

C j � p j

2
� 1

p j

T

∑
t � 0

y jt
�
t

� 1
2 � for all j � J (4)

y jt � 0 for all j � J and t � 0 ������� � r j � 1 (5)

y jt � 0 for all j � J and t � r j ��������� T (6)

Equations (1) say that all the fractions of a job, which are processed in accordance with
the release dates, must sum up to the whole job. Since the machine can process only
one job at a time, the machine capacity constraints (2) must be satisfied. Constraints (3)
say that at any point t

�
1 in time the completed fraction of job k must not be larger than

the completed fraction of its predecessor j.
Consider an arbitrary feasible schedule, where job j is being continuously processed

between C j � p j and C j on the machine. Then the expression for C j in (4) corresponds
to the real completion time, if we assign the values to the LP variables y jt as defined
above, i. e., y jt � 1 if j is being processed in the time interval � t � t �

1 � . If j is not being
continuously processed but preempted once or several times, the expression for C j in
(4) is a lower bound for the real completion time. Hence, � LP � is a relaxation of the
scheduling problem under consideration.

On the other hand, we can interpret every feasible solution y to � LP � in a natural
way as a fractional schedule which, by (3), softly respects the precedence constraints:
take a linear extension of the precedence constraints and process in each time interval
� t � t �

1 � the occurring jobs j for time y jt each, in this order; see Fig. 1 for an example.



In the following, we always identify a feasible solution to � LP � with a corresponding
fractional schedule and vice versa. We mutually use the interpretation that seems more
suitable for our purposes.
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LP solution fractional schedule

t tt+1 t+2 t+1 t+2

Fig. 1. Interpretation of an LP solution as a fractional schedule and vice versa

Thus, from the LP we get a fractional schedule that satisfies the soft precedence
constraints and a lower bound on its total weighted completion time. Of course, this
also is a lower bound for preemptive schedules obeying the precedence constraints,
and, in turn, of nonpreemptive schedules respecting the precedence constraints. In other
words, the LP is a relaxation of 1 � r j � pmtn � prec

� � ∑w jC j , 1 � r j � pmtn � prec � ∑w jC j,
and 1 � r j � prec � ∑w jC j. The following example shows that it is not better than a 2–
relaxation for fractional scheduling (and therefore for the other cases as well) even if
all the release dates are 0 and all processing times are 1: let J �(' 1 ��������� n ) , w j � 0 for
1 � j � n � 1, wn � 1 and j 
 �

n for 1 � j � n � 1. We get a feasible LP solution if we
schedule in every time interval � t � t �

1 � for 0 � t � n � 1 a 1
n –fraction of each job. This

yields the LP completion time � n �
1 � � 2 for job n, whereas its optimum completion

time is obviously n.
The following lemma highlights the relation between the LP completion time and

the completion time in the corresponding fractional schedule for a feasible solution to
� LP � . The observation in part a) is due to Goemans [Goe97]; an analogous result to
part b) was already given in [HSW96, Lemma 2.1] for a somewhat different LP.

Lemma 3. Consider a feasible solution to � LP � and let CLP
j be the LP completion time

of j defined in (4). Denote the real completion time in the corresponding fractional
schedule by C j. Then the following holds:
a) * 1

0 C j � α � dα � CLP
j ;

b) C j � α ��� 1
1 � αCLP

j for any constant α � � 0 � 1 � and the given bound is tight.

Proof. In order to prove part a) we denote by α t the fraction of job j that is in the frac-
tional schedule completed at time t, for t � 0 ��������� T �

1. Thus � α t � T � 1
t � 0 is a monotoni-

cally nondecreasing sequence with α0 � 0, αT � 1 � 1 and C j � α � � t
�

1 for α � α t � 1.
We can therefore write+ 1

0
C j � α � dα �

T

∑
t � 0

+ α t , 1
α t

C j � α � dα �
T

∑
t � 0

� αt � 1 � αt � � t �
1 �

� 1
p j

T

∑
t � 0

y jt � t �
1 � � 1

2
� 1

p j

T

∑
t � 0

y jt � t � 1
2 ��� CLP

j �

The last equality follows from (1). As a consequence of part a) we get for 0 � α � 1

� 1 � α � C j � α ���
+ 1

α
C j � x � dx �

+ 1

0
C j � x � dx � CLP

j �



In order to prove the tightness of this bound, we consider a job j with p j � 1, r j � 0
and an LP solution satisfying y j0 � α � ε and y jT � 1 � α � ε, where ε � 0. This yields
CLP

j � 1
�

T � 1 � α � ε � and C j � α � � T . Thus, for ε arbitrarily small and T arbitrarily
large, the given bound gets tight. ��

As a consequence of Lemma 3 part b) we know that the value of the fractional
schedule given by an optimum LP solution can be arbitrarily bad compared to the LP
value. Given an arbitrary LP solution and some β � 1, the following algorithm computes
a new schedule such that all the completion times of jobs are within a constant factor of
their LP completion times.

Algorithm SLOW–MOTION

Input: fractional schedule S obeying release dates and soft precedence constraints, and
a parameter β � 1.
Output: fractional schedule that obeys release dates and soft precedence constraints.

slow motion Consider the given schedule S as a movie and display it β
times slower than in real time. Mathematically spoken, we
map every point t in time onto β � t. This defines in a natural
way a new schedule S

�

where job j is being processed for
β � p j time units.

cut Let t j be the earliest point in time when job j has been pro-
cessed for p j time units in S

�

. Convert S
�

to a feasible schedule
S

� �

by leaving the machine idle whenever it processed job j af-
ter t j.

The output of Algorithm SLOW–MOTION still allows fractional preemption and
only obeys the soft precedence constraints. But we can overcome these drawbacks if
we use Algorithm SOFT–TO–STRONG as a postprocessing step. Figure 2 shows the
action of Algorithm SLOW–MOTION and the postprocessing with Algorithm SOFT–
TO–STRONG for an example: we are given three jobs J � ' 1 � 2 � 3 ) with p1 � p2 � p3 �
2, r1 � 0, r2 � r3 � 1 and 2 
 �

3. The parameter β is set to 3
2 in this example.
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Fig. 2. The two steps in Algorithm SLOW–MOTION together with postprocessing by Algorithm
SOFT–TO–STRONG.

Lemma 4. Algorithm SLOW–MOTION with input β � 1 computes a feasible fractional
schedule. The completion time of job j equals β � C j � 1

β � where C j is the completion time
of job j in the given schedule.



Proof. Let Cβ
j denote the completion time of job j in the schedule constructed by Algo-

rithm SLOW–MOTION. By constructionCβ
j � α � � β � C j � α � β � for 0 � α � 1. In particular

Cβ
j � 0 � � � β � C j � 0 � � � β � r j � r j and Cβ

j � β � C j � 1
β � . Moreover, since S respects the

soft precedence constraints we get

Cβ
j � α � � β � C j � α � β �	� β � Ck � α � β � � Cβ

k � α �
for j 
 �

k and 0 � α � 1. Thus the constructed schedule is feasible. ��

We would like to mention that Lemma 4 is related to Theorem 2.1 in [HSW96].
As an easy corollary of Lemma 1, Lemma 3 b), and Lemma 4, Algorithm SLOW–
MOTION followed by Algorithm SOFT–TO–STRONG has a performance guarantee of
β2 � � β � 1 � for the problem 1 � r j � pmtn � prec

� � ∑w jC j. An optimal choice seems to be
β � 2 yielding the performance guarantee 4. But one can in fact do better by choosing
β randomly:

Theorem 5. If one invokes Algorithm SLOW–MOTION with input β such that 1
�
β is

randomly drawn from � 0 � 1 � with density function f � x � � 2x, then the expected comple-
tion time of a job j in the resulting schedule is bounded from above by twice its LP
completion time CLP

j .

Proof. By Lemma 3 a) and Lemma 4 the expected completion time of j is+ 1

0
f � x � 1

x
C j � x � dx � 2

+ 1

0
C j � x � dx � 2 � CLP

j � ��

Since the value of an optimum LP-solution is a lower bound on the value of any
feasible schedule, this randomized algorithm has performance guarantee 2 if we start
with an optimum LP-solution. Using Lemma 1 and Corollary 2 we have thus found
randomized 2–approximation algorithms for the following problems:

1 � r j � pmtn � prec
� � ∑w jC j � 1 � r j � pmtn � prec � ∑w jC j � and 1 � prec � ∑w jC j

Moreover, we have shown that � LP � is a 2–relaxation for these problems and that this is
best possible for � LP � . For both problems 1 � r j � pmtn � prec � ∑w jC j and 1 � prec � ∑w jC j

2–approximation algorithms based on different LP relaxations and without any usage
of randomness were known before; see [HSSW96] for both algorithms. In addition,
Goemans [Goe96] applied the very same technique as in Theorem 5 to improve the 4–
approximation algorithm of Hall, Shmoys, and Wein [HSW96] for 1 � prec � ∑w jC j to a
2–approximation algorithm.

Notice that we cannot immediately solve � LP � in polynomial time since there are ex-
ponentially many variables y jt . Thus, up to now, we have only given pseudo-polynomial
approximation algorithms. However, we can overcome this drawback by introducing
new variables which are not associated with exponentially many time intervals of length
1, but rather with a polynomial number of intervals of geometrically increasing size.
This idea was introduced earlier by Hall, Shmoys, and Wein [HSW96] and since then
used in several settings, e. g., in [SS97].



However, in order to get polynomial-time approximation algorithms in this way, we
have to pay for with a slightly worse performance guarantee. For any constant ε � 0 we
get polynomial-time approximation algorithms with performance guarantee 2

� ε for
the scheduling problems listed above.

3 An e–Approximation Algorithm for the General Constrained
One–Machine Scheduling Problem

As mentioned earlier, the randomized conversion technique of [CMNS97] transforms
any preemptive schedule into a nonpreemptive one such that the expected completion
time of job j in the nonpreemptive schedule is at most a factor of e

e � 1 of its com-
pletion time in the preemptive schedule. In addition, it is easy to see that, if the pre-
emptive schedule obeys given precedence constraints the same holds for the produced
nonpreemptive schedule. Hence, if we first use SLOW–MOTION followed by SOFT–
TO–STRONG to get a 2–approximation for 1 � r j � pmtn � prec � ∑w jC j and then invoke
the conversion algorithm of Chekuri et al., we get a 2e

e � 1 –approximation algorithm for
1 � r j � prec � ∑w jC j. Unfortunately, this does not immediately lead to a better perfor-
mance guarantee than the 3–approximation algorithm known before [Sch96]. However,
when we combine both algorithms in a somewhat more intricate way we get a con-
siderably improved performance guarantee. The key idea is that instead of using the
algorithms independently we make the choice of the random variable in the algorithm
of Chekuri et al. dependent on the choice of β in Algorithm SLOW–MOTION.

Consider the following algorithm that makes use of density functions f and gβ
which are subsequently defined.

Algorithm: e–APPROXIMATION

Input: Instance of 1 � r j � prec � ∑w jC j .
Output: Feasible schedule.
1) Compute an optimum solution to � LP � . Call the corresponding fractional schedule S.
2) Draw 1

β randomly from � 0 � 1 � with density function f .

3) Let S
�

be the fractional schedule produced by SLOW–MOTION with input � S � β � .
4) Draw α randomly from � 0 � 1 � with density function gβ.
5) Construct a nonpreemptive schedule by scheduling the jobs as early as possible in

nondecreasing order of C
�

j � α � .
Here, C

�

j is the completion time of job j in the schedule S
�

. Recall that SLOW–MOTION

guarantees that C
�

j � α ��� C
�

k � α � for j 
 k and any α � � 0 � 1 � . Consequently the schedule
produced by Algorithm e–APPROXIMATION is indeed feasible.

Lemma 6. Let β � 1 be a constant and gβ � x � � 1
�
β

e1 � β � 1
� ex

�
β, for x � � 0 � 1 � . Then, for

each job j � J, its expected completion time Eβ � C j � in the schedule constructed by

e–APPROXIMATION is at most 1
β �

e1 � β

e1 � β � 1
� C

�

j.

Proof. (Sketch.) Our analysis almost follows the analysis of [CMNS97] for their con-
version technique with the small, but crucial exception that we utilize the structure



of the fractional schedule S
�

produced by Algorithm SLOW–MOTION. In fact, as in
[CMNS97] and for the purpose of a more accessible analysis, we do not analyze the
schedule produced by e–APPROXIMATION but rather a more structured one which is,
however, not better than the output of e–APPROXIMATION. This schedule is obtained
by replacing Step 5 with the following procedure:

5’) Take the fractional schedule S
�

produced by Algorithm SLOW–MOTION. Consider
the jobs j � J in nonincreasing order of C

�

j � α � and iteratively change the current
preemptive schedule by applying the following steps:

i) remove the α � p j units of job j that are processed before C
�

j � α � from the ma-
chine and leave it idle within the corresponding time intervals; we say that this
idle time is caused by job j;

ii) postpone the whole processing that is done later than C
�

j � α � by p j;
iii) remove the remaining � 1 � α � –fraction of job j from the machine and shrink

the corresponding time intervals;
iv) process job j in the released time interval � C �

j � α � � C
�

j � α � �
p j � .

Consider an arbitrary but fixed α � � 0 � 1 � and a job j. We denote with Cα
j its comple-

tion time in this new schedule. Let Kα be the set of jobs that complete an α–fraction in
S

�

before C
�

j � α � , i. e., Kα � ' k � J : C
�

k � α � � C
�

j � α � ) . Moreover, for a job k
�� K let ηk � α �

be the fraction of k that is completed in S
�

by time C
�

j � α � . Then, because of Step 5’, it is
not too difficult to see that

Cα
j � Tj

� � 1 � α � ∑
k 
 Kα

pk
� ∑

k �
 Kα

ηk � α � � pk

where Tj is the total idle time in the schedule S
�

before j completes. The factors α
and ηk � α � purely result from the idle time caused by the respective jobs. This is the
moment we can improve the analysis by exploiting the structure of S

�

. First, observe
that the necessity of idle time in the schedule is only caused by release dates. Second,
because of the slow motion, no job j starts before time β � r j in S

�

. Consequently, we
may further modify the output of Step 5’ by reshrinking the idle time caused by job j
by a factor of β, for all j � J, without violating the feasibility. Therefore we get

Cα
j � Tj

� � 1 � α
β
� ∑

k 
 Kα

pk
� ∑

k �
 Kα

ηk � α �
β

� pk �

Hence,

Eβ � C j �	�
+ 1

0

�
Tj

� � 1 � α
β
� ∑

k 
 Kα

pk
� ∑

k �
 Kα

ηk � α �
β

� pk � gβ � α � dα (7)

and a similar argument as the one given by Chekuri et al. [CMNS97] gives the desired
bound. ��

Lemma 6 together with Lemma 4 yields the following upper bound on the ex-
pected completion time of any job j in the schedule produced by Algorithm e–
APPROXIMATION:



E � C j �	�
+ 1

0
f � x � � ex

ex � 1
� CS

j � x � d x �

where CS
j is the completion time of job j in schedule S and 1

β is replaced by x. An
optimal choice of the density function f is f � x � � e � � 1 � e � x � . Hence,

E � C j ��� e
+ 1

0
CS

j � x � d x � e � CLP
j

by Lemma 3 a). This eventually gives the following result.

Theorem 7. Algorithm e–APPROXIMATION is an e–approximation algorithm for sin-
gle machine scheduling subject to release dates and precedence constraints so as to
minimize the average weighted completion time.

To summarize where the improvement on 2e
e � 1 originates from, observe that the

bound (7) is the better the larger β is chosen since the idle time caused by jobs is
shrunken by the factor β. On the other hand, Lemma 4 and Lemma 3 b) show that the
bound on the completion time of any specific job increases as β � 2 increases. It is the
balancing of these two effects that leads to the better approximation.

As a consequence of Lemma 4 we know that C
�

j � α � � β � CS
j � α

�
β � . Hence, Algo-

rithm e–APPROXIMATION nonpreemptively schedules the jobs as early as possible in
nondecreasing order of CS

j � γ � where γ � α
�
β is randomly drawn from � 0 � 1 � with a

certain density function implicitly defined by f and gβ.
Finally, observe that � LP � therefore is an e–relaxation of 1 � r j � prec � ∑w jC j. Due

to the huge number of variables in this LP relaxation, e–APPROXIMATION also is only
a pseudo-polynomial algorithm. Again, however, we may replace this LP with a sim-
ilar one in interval-indexed variables and this results in a polynomial-time � e � ε � –
approximation algorithm for the general constrained one-machine scheduling problem
1 � r j � prec � ∑w jC j.

4 List Scheduling with Random Assignments to Parallel Machines

We consider the scheduling problem R ��� ∑w jC j. That is, we are given m machines and
the processing time of each job j � J may depend on the machine i it is processed on;
it is therefore denoted by pi j. Each job must be processed on one of the machines, and
may be assigned to any of them. In contrast to [SS97], we use a tighter LP relaxation
in order to get a lower bound for the problem which we then use to give an improved
approximation algorithm. Independently, this improvement has also been derived by
Fabián A. Chudak (communicated to us by David B. Shmoys, March 1997) after read-
ing a preliminary version of [SS97] which contained a 2–approximation algorithm for
R � ri j � ∑w jC j .

Let T � ∑ j 
 J maxi pi j � 1 and introduce for every job j � J, every machine i �
1 ��������� m, and every point t � 0 ������� � T in time a variable yi jt which represents the pro-
cessing time of job j on machine i within the time interval � t � t �

1 � . Equivalently, one



can say that a yi jt
�

pi j–fraction of job j is being processed on machine i within the time
interval � t � t �

1 � . The LP is as follows:

minimize ∑
j 
 J

w jC j

� LPR � subject to
m

∑
i � 1

T

∑
t � 0

yi jt

pi j
� 1 for all j � J (8)

∑
j 
 J

yi jt � 1 for i � 1 ������� � m and t � 0 ��������� T (9)

C j �
m

∑
i � 1

T

∑
t � 0

� yi jt

pi j

�
t

� 1
2 � � 1

2 yi jt � for all j � J (10)

C j �
m

∑
i � 1

T

∑
t � 0

yi jt for all j � J (11)

yi jt � 0 for i � 1 ������� � m, j � J, t � 0 ��������� T (12)

Equations (8) say that all the fractions of a job must sum up to the processing re-
quirement of the whole job. Since each machine can process only one job at a time,
the machine capacity constraints (9) must be satisfied. Consider an arbitrary feasible
schedule, where job j is being continuously processed between C j � ph j and C j on ma-
chine h. Then the right hand side of (10) corresponds to the real completion time, if
we assign the values to the LP variables yi jt as defined above, i. e., yi jt � 1 if i � h
and t ���C j � ph j � C j � 1 � , and yi jt � 0 otherwise. Moreover, the right hand side of (11)
equals the processing time ph j of j on machine h in this case and is therefore a lower
bound on the completion time. Hence, � LPR � is a relaxation of the scheduling problem
under consideration.

We can divide the problem to construct a feasible schedule for a given instance into
two steps: in the first step we assign each job to a machine it should be processed on;
in the second step we decide in which order the jobs are processed on each of the m
machines. In fact, we only have to worry about the first step since the second step can
be solved optimally by Smith’s rule [Smi56]: sequence for each machine i the jobs that
were assigned to it in order of nonincreasing w j

�
pi j. So it remains to decide which job

should be processed on which machine. This is the point where we can make use of
an optimum solution to � LPR � . We may interpret the LP solution as follows: for job j
a fraction of it given by fi j � 1

pi j
∑T

t � 0 yi jt should be processed on machine i. By (8)
these fractions some up to 1 over all machines. Since we are not allowed to divide j
into fractions but have to process it continuously on one machine, we interpret the f i j

as probabilities instead. This yields the following algorithm:

Algorithm RANDOM–ASSIGNMENT

Input: Instance of R � � ∑w jC j .
Output: Feasible schedule.
1) Compute an optimum solution to � LPR � .
2) For each job j � J, assign job j to machine i with probability f i j.
3) Schedule on each machine i the jobs that were assigned to it in order of nonincreas-

ing w j
�

pi j.



Theorem 8. Algorithm RANDOM–ASSIGNMENT has performance guarantee 3
2 .

In order to prove Theorem 8 we in fact do not consider Algorithm RANDOM–
ASSIGNMENT but a modified version which is slightly more complicated, not better
than the original algorithm, but easier to analyze. We replace Steps 2 and 3 by

2’) Assign job j to a machine-time pair � i � t � with probability yi jt
�

pi j and set t j : � t.
3’) Schedule on each machine i the jobs that were assigned to it in order of nondecreas-

ing t j.

The random assignment of job j to one of the machines in Step 2’ is exactly the same
as in the original algorithm. In addition, we create a random order through the random
variables t j, ties are also broken randomly. Of course, this random order cannot be better
than the optimum order given by Smith’s rule. Thus the modified algorithm cannot be
better than the original one and Theorem 8 is a corollary of the following lemma.

Lemma 9. The expected completion time of job j in the schedule constructed by the
modified algorithm is bounded from above by 3

2 times the optimum LP completion time
CLP

j , for all j � J.

Proof. We first consider the conditional expectation of j’s completion time under the
assumption that j was assigned to the machine-time pair � i � t � . We denote this condi-
tional expectation by Eit � C j � and get

Eit � C j � � pi j
� ∑

k �� j

pik � Pr(k on i before j) � pi j
� ∑

k �� j

pik �

� t � 1

∑� � 0

yik
�

pik

� 1
2 �

yikt

pik
�

� pi j
� t � 1

∑� � 0
∑
k �� j

yik
� � 1

2 ∑
k �� j

yikt � pi j
�

t
� 1

2 �

The last inequality follows from the machine capacity constraints (9). Summing over
all possible assignments of j to intervals and machines we finally bound the expectation
of j’s completion time as follows:

E � C j � �
m

∑
i � 1

T

∑
t � 0

yi jt

pi j
� Eit � C j �	�

m

∑
i � 1

T

∑
t � 0

� yi jt

pi j
� t � 1

2 � �
yi jt �

�
m

∑
i � 1

T

∑
t � 0

� yi jt

pi j
� t � 1

2 � � 1
2 yi jt � � 1

2

m

∑
i � 1

T

∑
t � 0

yi jt � 3
2 � C

LP
j �

The last inequality follows from (10) and (11). ��

Again, we cannot directly solve � LPR � in polynomial time since there are exponen-
tially many variables yi jt . Thus the running time of Algorithm RANDOM–ASSIGNMENT

is only pseudo-polynomial. However, once more we can overcome this difficulty by
replacing the time-indexed variables with interval-indexed variables. Hence, we get a
polynomial-time approximation algorithm with performance guarantee 3

2
� ε for any

constant ε � 0.



As a special case of the scheduling problem discussed above we now consider iden-
tical parallel machines: the processing time of job j does not depend on the machine
it is processed on and it is therefore denoted by p j. A generalization of Smith’s rule to
identical parallel machines is the following list scheduling algorithm: sort the jobs in or-
der of nonincreasing w j

�
p j; whenever a machine becomes available, the list is scanned

for the first not yet executed job, which is then assigned to the machine. Kawaguchi
and Kyan [KK86] have shown that this simple algorithm has performance guarantee
�

�
2

�
1 � � 2 and that this is best possible for the algorithm. Since their analysis is some-

what complicated we present here a randomized algorithm which is as simple as the
one of Kawaguchi and Kyan but much easier to analyze. Moreover, its derandomiza-
tion by the method of conditional probabilities is precisely the algorithm of Kawaguchi
and Kyan.

Algorithm RANDOM–KK
Input: Instance of P � � ∑w jC j .
Output: Feasible schedule.
1) Assign each job randomly (with probability 1

m ) to one of the machines.
2) Schedule on each machine i the jobs that were assigned to i in order of nonincreasing

w j
�

p j.

Theorem 10.
a) Algorithm RANDOM–KK has performance guarantee 3

2 . Moreover, there exist in-
stances for which this bound is asymptotically tight.

b) Derandomization by the method of conditional probabilities precisely gives the al-
gorithm of Kawaguchi and Kyan.

Proof. Because of Theorem 8 and the construction of Algorithm RANDOM–
ASSIGNMENT it suffices to show that there exists an optimum solution to � LPR � such
that each of the m machines processes an 1

m fraction of every job. This can be easily
seen in the following way: take an optimum solution y to � LPR � and construct a new
solution y

�

by setting y
�

i jt � 1
m ∑m

h � 1 yh jt for each i, j and t. This is obviously a feasible
solution to � LPR � with the same objective value and therefore optimal. If we choose this
solution in Step 1 of Algorithm RANDOM–ASSIGNMENT, it obviously does the same
as Algorithm RANDOM–KK.

In order to show that the performance guarantee 3
2 is best possible, we consider

instances with m identical parallel machines and m jobs of unit length and weight. We
get an optimal schedule with value m by assigning one job to each machine. On the other
hand we can show that the expected completion time of a job in the schedule constructed
by Algorithm RANDOM–KK is 3

2 � 1
2m which converges to 3

2 for increasing m. Since
the fraction w j

�
p j equals 1 for all jobs, we can w. l. o. g. schedule on each machine the

jobs that were assigned to it in a random order. Consider a fixed job j and the machine
i it has been assigned to. The probability that a job k

�� j was assigned to the same
machine is 1

m . In this case k is processed before j on the machine with probability 1
2 .

We therefore get E � C j � � 1
�

∑k �� j
1

2m � 3
2 � 1

2m .
The derandomization of Algorithm RANDOM–KK by the method of conditional

probabilities yields: iteratively consider the jobs in order of nonincreasing w j
�

p j and
assign job j to the machine with the smallest load so far. This is just another formulation



of Kawaguchi and Kyan’s algorithm. The smallest load is bounded from above by the
average load 1

m ∑k
�

j pk where we sum over all jobs k that we considered before j.
Thus the completion time of j is bounded by p j

� 1
m ∑k

�
j pk which exactly equals the

expected completion time of j in Algorithm RANDOM–KK. ��

As a consequence of the tightness result in Theorem 10 a) we know that the bound
in Theorem 8 is also tight.
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