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Abstract: Test sequence generation through code is mainly done by using 
some sort of a flow graph viz. Control Flow Graph (CFG), Concurrent Control 
Flow Graph (CCFG), event Graph etc. approaches that use UmL also need 
flow graph as an intermediate representation for final test sequence generation. 
In the present approach, a Flow Graph for a new concept i.e. Java7 Fork/Join 
is constructed and hence, by traversing the graph, test sequences are generated 
on the basis of all path and all node coverage criteria considering interference 
dependence. Further, interference dependencies are also represented in the 
form of a directed graph to aid the analysis of Java7 fork/join programs.
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1. InTroDUcTIon

Today, in the world of multi-core processors, there are several ways to utilize 
their powers. One of them is to employ the new Java7 Fork/Join (2013). The 
package for Java7 Fork/Join is ‘java.util.concurrent’. The Java7 Fork/Join 
works on ‘Work-Stealing algorithm’ i.e. whenever some threads don’t have 
anything to do, they can steal work from other busy threads. The class ‘java.
util.concurrent.ForkJoinpool’ uses this algorithm and can execute various 
‘java.util.concurrent.ForkJoinTask’ processes at the same time (2013). To use 
the Java7 Fork/Join utility, the code to be executed in parallel must be written 
in the compute() method as shown in the Figure 1.

a basic block is a sequence of instructions executed one after the other 
having one entry and one exit point. Control Flow Graph is a directed graph in 
which the nodes represent the basic blocks and the edges between them show 
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the flow of control (1970). Java Fork/Join Flow Graph (JFJFG) is a Control 
Flow Graph for concurrent programs representing the flow of control and the 
concurrent paths of a Java7 Fork/Join program.

In a sequential program, a statement m is data dependent on statement 
n, if n defines some variable and node m uses this variable along a control-
flow path (2004). Data Dependence can also be termed as read-after-Write. 
Interference Dependence is a special type of data dependence between the 
instructions of a concurrent program. Say, a variable x of any object is written 
by a thread T

1 
at node n and it is read by some other thread, say T

2 
at a statement 

m. In such a case, node m is interference dependent on node n(2004). The 
compute() method for a Java7 Fork/Join program may be accessed by multiple 
threads at the same time. So, the read-after-Write in the compute() method 
are Interference Dependencies.

2. rElATED WorK

Test case generation can be done by using models or code. In sections 2.1 and 
2.2, work related to test case generation from code has been explained. The 
sections 2.3 and 2.4 describe the related work for generating test cases from 
UmL models. Section 2.5 explains some adequacy criterion.

2.1. Test case Generation using Event Graphs

event Graph is a Control Flow Graph showing a unit of a concurrent program. 
event Interaction Graph (eIaG) (1995) is a graph that represents the behavior 
of a concurrent program which has the events and their interactions as the 
main components. Interactions can be for synchronization, communications 
or wait. eIaGs depend on the source code. The co-paths (cooperated paths) 
on eIaG provide the test cases. T. Katayama et al. (1995) generated the co-
paths automatically. This approach is able to detect unreachable statements 
and communication errors in testing. Later T. Katayama et al. (1999) used 
the Interaction Sequence Testing Criteria (ISTC) for generating the co-
paths. These test cases are able to find out unreachable statements, also 

Figure 1: principle of Java7 Fork/Join(2013)
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some communication errors and deadlock. X. Bao et al. (2009) generated 
the test cases for concurrent programs based upon the event Graphs. Test 
cases, also known as sub-event graphs, are generated by the analysis of 
event Graph.

2.2. Test case Generation for Business Process Execution language (BPEl)

y. yuan et al. (2006) created a BpeL Flow Graph (BFG), an extension of 
Control Flow Graph. The BFG is traversed using a constraint solving method 
and test paths are combined for generating the test cases. J. yan et al. (2006) 
created an extended Control Flow Graph (eCFG) from the language BpeL. 
Then all the sequential test paths are generated. On combining the sequential 
test paths, the concurrent test paths are generated. y. Zheng et al. (2007) used 
SpIN (Simple prOmeLa (prOcess meta Language)) model checker as test 
generation engine. For Control Flow testing, state and transition coverage are 
used and for data flow testing, all-du (def-use) path coverage is used. The 
generated test cases are then executed on JUnit test execution engine.

2.3. Test case Generation from Activity Diagram

C. mingsong et al.(2006) presented first technique for automatic test case 
generation by a tool aGTCG (activity Graph Test Case Generator). Test 
cases are generated at random and the execution traces are compared with 
the activity Diagram to get a reduced set of test cases. H. Kim et al. (2007) 
converted the activity Diagram into Input Output explicit activity Diagram 
(IOaD) in which the inputs and outputs are taken under consideration. This 
intermediate form IOaD is then transformed into a directed graph from 
which the test cases are derived. D. Kundu et al.(2009) converted the activity 
Diagram into another intermediate representation, activity Graph and the test 
cases are then generated on the basis of path coverage criteria. C. Sun (2008) 
converted the activity Diagram into BeT (Binary extended aND_Or Tree), 
which is traversed using Depth-First Traversal to generate the test scenarios. 
He also presented a tool ‘TCaseUmL’. B. Lei et al.(2008) also presented a tool 
named as ‘tof4j’ (Testing of concurrency for java program) in which activity 
Diagram is extended and this extended activity Diagram is traversed on the 
basis of path analysis technique. m. Khandai et al. (2011) presented a survey 
on test case generation from UmL models and stated two approaches for the 
same. First, activity Diagram is converted to activity Graph and by traversing 
that test cases are generated. Second, activity Diagram is converted to some 
intermediate form using some transformation rules and then test cases are 
generated.
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2.4. Test case Generation from Sequence Diagram

m. Shirole et al.(2012) presented an approach in which the Sequence Diagram 
is first converted to activity Diagram using some rules. an algorithm named 
as Concurrent Queue Search (CQS) is also presented to traverse the activity 
Diagram generating the test sequences. This algorithm is better than Depth 
First Search (DFS) and Breadth First Search (BFS). m. Khandai et al. (2011) 
showed a technique to convert the Sequence Diagram into Concurrent 
Composite Graph (CCG), an intermediate representation which is traversed 
to generate the test cases. The problem of test case explosion is avoided and 
issues like deadlock and synchronization are also handled.

2.5. Test Adequacy criteria

a test case T is adequate according to statement (all node) coverage criteria, 
if it covers all the reachable nodes (1985). a test case T is adequate according 
to all def-use (du) path coverage if all the du paths are covered by it. a def-use 
path, say (n

1
,n

2
…. n

k
)is the path in CFG (Control Flow Graph) on which any 

variable is defined on n
1
and then used on n

k
(1985).

3. METHoDoloGY

The methodology used to generate the test sequences for Java7 Fork/Join 
programs is shown in the Figure 2. Java7 program, for adding the elements of 
an array utilizing the Java7 Fork/Join capability, is taken as input. The example 
program taken as input is shown in the Figure 3. The value of SEQUENTIAL_
THRESHOLD variable is set to be 5000. If the number of elements to be added 
are lesser than or equal to 5000, the work is carried out sequentially otherwise 
the work is divided using fork().

Figure 2: methodology used in the approach
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The snapshot showing user interface of implemented prototype tool is 
shown in the Figure 4. The implementation is done in ‘jdk1.7.0_45’. It contains 
3 menus, out of which the 2 menus File and CFG do the main task. File menu 
lets the user choose the Java7 fork/join file to be given as input, also to save the 
generated directed graph for the given input program. The menu CFG lets the 
user to draw the flow graph of the file chosen.

The methodology of the approach presented in the paper is as follows:

Figure 3: Input file Sum.java (2014)

Figure 4: User Interface (UI) of the application
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3.1. Identifying Interference Dependence

The definitions and then uses of the variables inside the compute() method i.e. 
for simultaneously executable sections, are treated as interference dependence. 
The steps for finding the interference dependence are given in the algorithm 1.

Algorithm 1: Identifying Interference Dependence

/* interference is the output adjacency matrix having interference dependencies*/

Input: Java7 Fork/Join program

output: Interference Dependence matrix

1. Initialize each cell of the matrix interference[][] to ‘false’.

2. provide numbering to all statements of the program.

3. Traverse compute() method statement by statement. 

  //because compute() method has Fork/Join section which 

  //makes parallel executions inside the program.

4. If a variable v is defined at statement L
1
 and used at statement L

2
, Then 

interference[L
2
][L

1
] = true. //statement L

2
 is dependent on statement L

1.

3.2. Visualizing Interference Dependence

after identifying interference dependence among the various statements, they are 
shown in the form of a directed graph for better understanding of the concepts. 
The algorithm for drawing the directed graph for showing the interference 
dependence among the statements of the program is given in the algorithm 2.

Algorithm 2: Visualizing interference dependence
/* Visited is the list of nodes already drawn, interference is the adjacency matrix 
for interference dependence */

Input: adjacency matrix for interference dependence.

output: Directed graph

1. Visited = Φ.

2. Traverse the interference dependence matrix i.e. interference[][] for each 
cell.

3. repeat the step 4 until all the nodes are visited.

4. If interference[i][j] = true, Then

 a. If i Or j Or both nodes ∉Visited, Then

  Draw the corresponding node(s).
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  add i Or j Or both to Visited.

 b. Draw directed line form node i to node j, showing node i is dependent 
on node j.

The interference dependencies for the example Java7 fork/join program are 
shown in Figure 5. Statement number 28 and 29 are dependent on themselves. 
Statement number 35 and 36 are dependent on statement number 34 and 
similarly other statements are dependent.

Figure 5: Directed graph showing interference dependencies

3.3. Generating Java Fork/Join Flow Graph (JFJFG)

For the program taken as input, the JFJFG is drawn for the compute() method. 
Call to the fork() method is shown as the call to the parallel tasks which invokes 
the compute() method for that variable. and call to the compute() after the 
fork(), invokes the other parallel activity. Whereas call to the join() function 
returns the value of the thread on which fork() was called. The execution is just 
like sequential methods up to the call of fork() method and after the call to join() 
method. The steps for drawing the JFJFG are presented in the algorithm 3. The 
output of algorithm 3 is shown in Figure 6 presented in the results section.

Algorithm 3: Drawing JFJFG (Java7 Fork/Join Flow Graph)
/* array ‘fork_join’ is the array to store the location of call to fork() and join() 
*/

Input: Java7 Fork/Join program

output: Java7 Fork/Join Flow Graph (JFJFG)

1. Initialize array fork_join = Φ.

2. Search for compute() method. In this fork() and join() calls are considered.
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3. repeat step 4 for each fork/join call.

4. Note statement number of fork(). Say it is at statement L
1
 and corresponding 

join() is at statement L
2
, for object v.

 fork_join
v
[0] = L

1
 and fork_join

v
[1] = L

2
.

5. repeat step 6 for each fork_join variable entry in fork_join array.

6. Generate flow graph using fork_join array by using the following steps:

 Show all the statements in sequential order up to fork_join
v
[0] statement.

 Show the statements between fork_join
v
[0] and fork_join

v
[1] statements in 

parallel in flow graph. //because these statements can execute in parallel.

 Show the flow from fork_join
v
[0] to the statement in which compute() 

method is called by directed line.

 Show all the remaining statements in compute() method in sequential 
manner after fork_join

v
[1] statement.

3.4 Generating Test Sequences

after the Java Fork/Join Flow Graph (JFJFG) has been generated, it is 
traversed on the basis of all node and all path coverage criteria considering the 

Figure 6: Java Fork/Join Flow Graph (JFJFG)
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interference dependence in order to find out the Test Sequences. The algorithm 
for generating the test sequences is shown in the algorithm 4.

Algorithm 4: Generate Test Sequences

/* V
p
 is the present node being explored and V

end
is the end node of compute() 

method, visited is the array that stores the status of the nodes whether they are 
visited or not*/

Input: a Java7 Fork/Join Flow Graph (JFJFG) G (V, e)

output: Test Sequences

1. Start from the beginning of compute() method.

2. repeat until V
p
!= V

end
.

3. If V
p
 is a call to fork() method, use algorithm Breadth First Search (BFS):

 a. mark all the nodes as unvisited.

	 	 ∀V
i
∈V, set visited[V

i
] = false.

 b. enqueue the present node V
p
.

 c. Dequeue from the front of queue. mark it as V
p
. Set visited[V

p
]= true.

 d. enqueue all the nodes adjacent to V
p
.

 e. repeat the steps 3.b to 3.d until the queue is empty.

 f. exit when the node join() is found.

4. If V
p
is any other statement, use algorithm Depth First Search (DFS):

 a. mark all the nodes as unvisited.

	 	 ∀V
i
∈V, set visited[V

i
] = false.

 b. push the present node V
p
on the stack.

 c. pop from the top of stack. mark it as V
p
. Set visited[V

p
] = true.

 d. push all the nodes adjacent to V
p
on the stack.

 e. repeat the steps 4.b to 4.d until the queue is empty.

 f. exit.

5. end of repeat.

4. rESUlTS

The outcome of algorithm 3 is a flow graph which we call as Java7 Fork/Join 
Flow Graph (JFJFG). There is a call to fork() method in statement number 
37 of the program. and call to join() method is at statement number 40 of the 
program. Figure 6 shows the JFJFG.



Verma, V.
arora, V.

10

Table 1 shows the description of the nodes that are present in JFJFG. The 
method compute() starts at statement number 23 and ends at statement number 
42. Inside the compute() method, ‘if’ block is from statement number 26 to 
31. The ‘else’ block is from statement 32 to 42. The call to fork() and join() 
methods are at statement number 37 and 40.

Table 1: Description of Nodes in JFJFG

node no. Description

23 Start of compute() method

26 Start of if() block

31 end of if() block

32 Start of else block

37 Call to fork()

40 Call to join

42 end of else block and compute() method

The algorithm 4 given in the paper, generates the test sequences for a Java7 
Fork/Join Flow Graph given as input. Whenever there is a call to fork() method, 
there are concurrent paths present in the structure of the program. Therefore, to 
traverse those paths, algorithm BFS is applied so as to cover those concurrent 
paths at the same time. Otherwise, the algorithm DFS is used for traversing 
the graph and hence finding the test sequences. The test sequences generated 
by the algorithm are as follows in the form of node numbers i.e. statement 
numbers:

23, 24 → 25... 31 → 42
23, 24 → 25 → 32... 36 → 37→ 38 → 39 → 40 → 41 → 42
23, 24 → 25 → 32... 36 → 38 → 39 → 37 → 40 → 41 → 42

Where x... y means nodes traversed from node x to node y in serial order.

Test Sequence 1: 
 Start of compute() method.
 The threshold value is > difference of high and low, so ‘if’ part gets 

executed.
 end of compute method.

Test Sequence 2:
 Start of compute() method.
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 The threshold value is < difference of high and low, causing the ‘else’ 
block to execute.

 If the algorithm finishes the work of fork() first, the order of execution 
would be like this test sequence. Or the algorithm BFS takes the left child 
into first consideration.

Test Sequence 3:
 Start of compute() method.
 The threshold value is < difference of high and low, causing the ‘else’ 

block to execute.
 If the algorithm finishes the work of compute() first, the order of execution 

would be like this test sequence. Or the algorithm BFS takes the right child 
into first consideration.

5. conclUSIon

Test Sequences for Java7 Fork/Join program have been generated on the 
basis of all node and all path coverage criteria considering the interference 
dependence, in which all the nodes, including the call to fork() and join() have 
been covered. The problem of test case explosion is avoided in this approach. 
In future, this work is to be extended for more coverage criteria. also, design 
phase can be introduced in future for test sequence generation.
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