
73

Journal on Today’s Ideas –
Tomorrow’s Technologies,

 Vol. 3, No. 1,
June 2015
pp. 73–82

DOI: 10.15415/jotitt.2015.31005

Enhancements In Sorting Algorithms: A Review

Shama Raheja anD VInay kukReja

Chitkara university, Punjab, India

Email: shama.rani@chitkara.edu.in

Received: December 18, 2014| Revised: February 24, 2015|accepted: may 20, 2015

Published Online: june 29, 2015
The author(s) 2015. This article is published with open access at www.chitkara.edu.
in/publications

Abstract: One of the important issues in designing algorithms is to arrange
a list of items in particular order. although there is a large number of sorting
algorithms, sorting problem has concerned a great compact of research,
because efficient sorting is important to optimize the use of other algorithms.
In many applications, sorting plays an important role as to easily handling of
the data by arranging it in ascending or descending order.[2] In this paper, we
are presenting enhancements in various sorting algorithms such as bubble sort,
insertion sort, selection sort, and merge sort. a sorting algorithm consists of
comparison, swap, and the use of assignment operations. Bubble sort, selection
sort and insertion sort are algorithms, which are easy to understand but have the
worst time complexity of O (n2). The new algorithms are discussed, analyzed,
tested, and executed for reference. enhanced selection sort is based on sorting
the items by making it slightly faster and stable sorting algorithm. modified
bubble sort is an modification on both bubble sort and selection sort algorithms
with O (n log n) complexity instead of O (n2) for bubble sort and selection sort
algorithms. [3] [1].

Keywords: sorting techniques, enhanced sorting, bubble sort, selection sort,
insertion sort, merge sort, complexities.

1. IntRoductIon to SoRtIng AlgoRIthmS

an algorithm is a finite set of phases defining the solution topa rticular
problem. [1].

an algorithm can be expressed in english likelanguage, called pseudo
code, In a programming language, or in theform of a f lowchart.[2] One of the
basic problems of computer science is sorting a list of items.

Raheja, S
kukreja, V

74

The main purpose of sorting is to arrange the data into particular order.
[3] There are several advanced algorithms, which works on fewer amounts
of elements. Some algorithms are suitable for floating-point numbers and
specific range. [3] [1]

The bubble sort, insertion sort, selection sort, and are Very simple
algorithms, often included in the textbooks to intr oduce algorithms and
sorting, having runtime complexity of O (n2) making them unrealistic to
useThe selection sort has a sli ghtbetter running time than the simplest bubble
sort algorithm and worsethan the insertion sorts do. It yields the improvements
over bubble sorts are 60%.

however, the insertion sort is over twice asfast as the bub ble sort. a sorting
algorithm is said to be stable if two objects with equal keys appears in the same
order in sorted output as they performed in the same order in sorted output as
they appear in the input unsorted arrays.

Some sorting techniques are stable by nature is insertion sort, merge sort
and bubble sort. [2] [5]

2. EvERy AlgoRIthm muSt FulFIll thE FollowIng
PRIncIPlES

A. Input: There are zero or more values which are supplied from outside.
B. Output: at least one value is produced.
C. Definiteness: each step must be clear and unambiguous.

In general, sorting means re-arrangement of data items according to a
well-defined arrangement. The task of sorting algorithm is to transform the
novel unsorted sequence to sorted sequence. Different sorts are classified
in different categories: run time, memory usage, stability, comparison/non-
comparison etc. [2] [6]

When comparing various sorting algorithms, there are several things
to deliberate. The first is usually runtime. When dealing with increasingly
large collections of data, ineffective sorting algorithms can be too slow for
practical use.

a second consideration is taken is memory space. an earlier algorithm
that needs the recursive calls naturally involve creating copies of the data to be
sorted. In some surroundings where memory space is best, certain algorithms
may be impractical. In other cases, it is possible to modify the algorithms
without creating copies of data. however, this modification may also come at
the cost of some of the performance advantage. [2][1][3][5]

a third consideration is stability. Stability is defined as the results of
occurring the elements which comparatively the same. In stable sorting

enhancements In
Sorting algorithms:

a Review

75

techniques, those elements whose comparison key is the same will remain in
the same order after sorting as they were before sorting. In an unstable sorting,
no assurance is made as to the relative output order of those elements whose
sort key is the same.[2]

3. thE REcommEndEd modIFIEd SoRtIng AlgoRIthmS

In the successive discussion, sorting is assumed to be in the ascending order
for standardization. The earlier algorithms are concisely described before the
discussion of the proposed algorithms for reference.

1) BuBBLe SORT: In the earlier bubble sort, in a single reiteration a
data item is shifted to the end until a larger item is found. In this case, no
swap operation takes place and this indicates that the element located just
before the larger item is the largest until that location and it is assured that,
no data item beyond this can reach the end in the next pass. Therefore, the
next pass can start from the location where no swap operation occurs. Where
enhanced bubble sort completely affects the complexity of the classical
bubble sort algorithm. [4]

The enhanced bubble sort guaranteed range between the former maximum
and the just found current maximum no value is greater than the former
maximum. [6] Therefore, it is also wastage of time to look for a value greater
than the former maximum in this range. Then, in the next iteration, it is safe
for to look for the maximum from the location of the current maximum and
can put the former maximum element at the location just before the current
maximum value by interchanging appropriately to minimize the spaces in
the search. [1] [7]

Algorithm: EBSA (a[], len)

here a is the unsorted input list and len is defined as length of an array.
after accomplishment of an algorithm the array must be sorted.

1. Set top = -1
2. Repeat steps 3 to 5 for i = 0 to n-2
3. If (top<0)
 Push zero on stack
 end if
4. Pop stack and put in val
5. Repeat step 6 for j = val to n-i-2
6. If (a[j]>a[j+l])
 Interchange a[j] and a[j+l]

Raheja, S
kukreja, V

76

 else
 Push j on the stack
 end if [14][7]

One important thing to note here that in this process multiple local
maximums can be discovered in a single pass and all of them must be
remembered to use in later passes of the algorithm. a stack can be used
to accomplish this. When a new maximum value is found, there should
be an interchange between the earlier maximum value and the value that
located just before the current maximum value and this new location of the
old maximum value should be pushed on the stack. When the list is to be
completed, the top item in the stack is measured the location of the former
maximum value. Then the latest maximum value is swapped with the last
item and the location of the current maximum value is considered as the
starting point in the next iteration to look for the maximum. The next pass
starts by assigning the value at the location stored at top in the stack to the
current maximum. [, 4] [6]

anaLySIS: That is why the best-case complexity is O(n) instead 0(n2) of
the classical bubble sort algorithm. The worst-case and average case complexity
remains O (n2), the same as before modification. again, here, the stack can grow
as large as the array to be sorted. Therefore, the space complexity is O (n).

a) TIME COMPLEXITY: Let the input list consists of n items.as in sorting
algorithms, number of comparisons is used as a measure of computations
required for sorting. It is experimented in the above algorithm that the outer
loop is always executed but the inner loop (statement 5) is problem instance
dependent. Therefore, the complexity of this algorithm is not deterministic and
three special situations need to be allocated for complexity analysis.

BEST CASE: In every pass (statement 5) will be executed just once and later
the comparison in (statement 6) will be proficient also once and hence, T(n) =
n-1 = O(n). The best-case complexity of the classical selection sort is 0(n2).

WORST CASE: In the iteration no k, when k-1 items are already sorted and
n-k+1 items are still unsorted, n-k comparisons are required to find the largest
element. Thus in this case T(n) = (n-1) + (n-2) +(n-3) + ……. + 3 + 2+1=
n(n-l)/2 = (n2-n)/2 = 0(n2).

AVERAGE CASE: an item is greater than half of the items in the list and
smaller than the other half in the list. Therefore, in iteration k, when k-1 items
are already sorted and n-k+1 items are unsorted, (n-k)/2 comparisons are
required to find the current maximum. This leads to T(n) = ((n-1) + (n-2) +
(n-3) +…….+ 3+2 + l)/2 = n(n-l)/4 = (n2-n)/4 = 0(n2).

enhancements In
Sorting algorithms:

a Review

77

B) SPACE COMPLEXITY: It is understandable that the enhanced selection
sort algorithm uses a stack.in worst case; the stack can be as large as the size
of the data array to sort. The space complexity of the proposed algorithm
is O (n). however, the earlier selection sort algorithm does not use such
stack. The enhanced algorithm's memory requirement is incompletely double
of that of the earlier algorithm. however, classical computers always bias for
increased performance with the cost of some extra memory in case of time-
space trade off scenarios. [6]

(2). SELECTION SORT: The steps performed in earlier selection sort were
huge and unnecessary comparisons and large run time. [2] We propose a new
selection sorting technique for double-ended selection sort. all the code of
elementary sorting techniques are in the books, simply found on the web,
but the use of “double sorting” is not available and offer speed improvement
over the normal selection sort. With double-ended selection sort, the average
number of comparison is indistinctly reduced. here, idea of using two chosen
elements concurrently, applies to “selection sort”, through possibility of
enhance speed up 25% to 35%. Therefore, easily within the reach of beginners
who understand the basic concept of this new sorting. [9] [8]

4. doublE SElEctIon SoRt

The double selection sort starts from two elements and searches the entire
list until it finds the maximum value and minimum value. The sort places the
lowest value in the first place and maximum value in the last place, selects
the second and second last element and searches for the second smallest and
largest element. This process continues until the complete list is sorted.

In other words, a takes an elementary sorting algorithm designed to
minimize the number of conversations that are performed. It is working by
creation of n-l passes over the reduction-unsorted portion of the array, each
time selecting the lowest and highest value. Those values are moved into their
final sorted position with one exchanges pieces. [14]

Algorithm :ESSA(a[], Len)

here a is the unsorted input list and length is the length of array. after the
ending of the algorithm array will become sorted. Variable max keeps the
location of the current maximum.
1. Repeat steps 2 to 9 until Len = l
2. If stack is empty
 Push 0 in the stack
 end if

Raheja, S
kukreja, V

78

3. Pop stack and put in max
4. Set count=max+l
5. Repeat steps 6 and 7 until count<Len
6. If (a[count]>a[max]
a. Push count-1 on stack
b. Interchange data at location count-1 and max
c. Set max=count
end if
7. Set count=count+l
8. Interchange data at location len-1 and max
9. Set len=len-1 [14][8]

ANALYSIS: The same analysis for the enhanced bubble sort algorithm is
applicable for the enhanced bubble sort algorithm. That is the best-case
complexity is O(n) instead O(n2). The average case and the worst-case
complexity remains O(n2), the same as the classical version. again, here,
the stack can grow as large as the array to be sorted. Therefore, the space
complexity is (n).

(3). INSERTION SORT: To insert a single item in the earlier insertion sort,
many write operations were necessary to perform. a linear array has two sides
and both of them can be considered to insert an element in it. It is natural that
there will be unequal number of required shifts to insert an item along the left
or the right side.[2] Therefore, it would be cost effective in terms of memory
writes to insert an item along the side which demands less number of shifts. as
data can be shifted from left or right, there must be enough space in the left to
hold the moved data. This needs equal number of cells of the original array in
both the left and the right sides. a momentary array with a double length of the
original array can come to aid in this situation. The initial item of the unique
array should be copied in the middle of the temporary array. Succeeding items
would be added either to the left or to the right or to be inserted along the left
side or the right side of the temporary array according to the need.[l]

Algorithm: EISA (a [], Len)

here a is the unsorted input list and length is the length of array and b is a
temporary array of size 2*length. after completion of the algorithm array
will become sorted.

1. Set left = Len
2. Set right = Len 3.
3. Setb [left] = a[0]

enhancements In
Sorting algorithms:

a Review

79

4. Repeat steps 5 to 9 for i = 1 to len-1
5. If (a[i]>=b[right]) 5a. Set right = right+1
 Set b[right]=a[i]
 Go to step 4
 end if
6. 1f(a[i]<=b[left])
6a. Set left = left-1
 Set b[left] = a[i];
 Go to step 4
 end if
7. Set loc = right
8. Repeat while (a[i]<b[loc])
 Set loc = loc-1; 9.
9. If(right-loc<loc-left)
 Set j=right+1
 Repeat steps 9 while (j>loc+l) 9bx. Set b[j]=b[j-l]
 Set j=j-1
 Set right=right+l
 Set b[loc+l]=a[i]
else
 Set j=left-1
 Repeat step 9bx and 9by while (j<loc) 9bx. Set
b[j]=b[j+l]
 Set j=j+1
 Set left = left-1
 Set b[loc] = a[i]
 end if
10. Repeat steps 10a and 10b for i = 0 to n-l
 Set a[i]=b[left]
 Set left = left+1

ANALYSIS: The enhancement of the proposed algorithm is by reducing shift
operation, which does not necessarily reduce any comparisons. hence, the
time complexity of the enhanced insertion sort is exactly same as the classical
version, which are O(n), O(n2), and O(n2) for the worst, average and best
respectively. here, a temporary array of double length of the list to be sorted is
used. So the space complexity is 2n or O (n). [7,8]

(4) MERGE SORT: In a merge sort algorithm, the best case occurs when the
two sub arrays are already in ascending order. In this case, each element of the
left sub array is compared to the first element of the right sub array.[8] as all

Raheja, S
kukreja, V

80

the elements of the left sub array are smaller than the smallest element (first
element) of the right sub-array, they are derivative to the main array section
by section at each iterative step. now, the right sub array is appended to the
main array without any additional comparisons. In this case, the number of
comparisons is half the size of the main array. [2] [4] [5]

In the proposed modification to the existing merge sort algorithm, the
fact that the two sub arrays to be merged are previously sorted is being too
used. Thus, the best case can be recognized if the last element of left sub-
array is less than first element of right sub array. If this case rises at any
recursive calls, the two arrays will be appended to the main array without any
additional comparisons.[12][13]

algorithm emSa(P, a, b, c)

1 nl←b-a+1
2 n2←c-b
3 create arrays L[1...n1+1] and R[l...n2+l]
4 for i←l to nl
5 do L[i]← P[a+i-l]
6 for j ← 1 to n2
7 do R[j] ← P[b+j]
8 L[nl+l]← ∞
9 R[n2+l] ← ∞
l0 i ← l
11 j← l
12 if (L[nl]<R[l])
13 for b ← a to b
14 P[b] ← L[i]
15 P[b+i] ← R[i]
16 i←i+l
17 else if(L[l]>R[n2])
18 for b ← a to b
19 P[b] ← R[i]
20 P[b+i] ← L[i]
21 i ← i+l
22 else
23 for k ← b to c
24 ifL[i]<R[j]
25 P[k] ← L[i]
26 i ← i+1
27 elseP[k]←[13]

enhancements In
Sorting algorithms:

a Review

81

ANALYSIS: although the overall time complexity remained the same (O
(n log n)), the number of comparisons between the array elements in some
particular Cases have been reduced. The experimental examines showed
that when we sort a list of numbers in random order, the improved algorithm
workings almost as efficiently as the present algorithm. however, in the best
case, the number of comparisons has been reduced drastically (by nearly
86%). merge sort, the one we are modifying the copies the contents of the
input array into the temporary array, and then copies the temporary array
back into the input array. So it recursively sorts the input array, placing
the two sorted halves into the temporary array. Then it merges, placing the
sorted sequence into the input array as it goes. The improvement is that this
double copying is wasteful can be done without. his suggestion is that: We
can make it so that each call to merge only copies in one way, but the calls
to merge alternate the direction. [12]

5. concluSIonS

a sorting algorithm is said to be stable if two objects with equal keys appear
in the same order in sorted output as they appear in the input unsorted array.
Some sorting algorithms are stable by nature like Insertion sort, merge
Sort, Bubble Sort, etc. In this paper a review on modifications of existing
algorithms, efforts are made to point out some deficiencies in earlier
work related to sorting algorithms. By going through all the experimental
results and their analysis, it is concluded that the proposed algorithm is
efficient. In all existing algorithms, first complete list is entered, then the
list is processed for sorting, but in case of proposed approach, the list is
sorted simultaneously. The proposed sorting technique saves the time for
traversing the list after entering all the elements, as it sorts all elements
before entering any new.

REFEREncES

[1] Cormen T., Leiserson C, Rivest R., and Stein C, Introduction to algorithms, mcGraw hill,
2001.

[2] D. knuth, “The art of Computer programming Sorting and Searching”, 2nd edition, addison-
Wesley, vol. 3, (1998).

[3] Deitel h. and Deitel P., C++ how to Program, Prentice hall, 2001.

[4] e. horowitz, S. Sahni and S. Rajasekaran, Computer algorithms, Galgotia Publications

[5] harish Rohil , manisha, International journal of Computer Trends and Technology (IjCTT)
volume 14 number 1 – aug 2014 ISSn:2231–2803 “Run Time Bubble Sort – an enhancement
of Bubble Sort”. http://www.cs.fit.edu/~pkc/classes/writing/hwl3/song.pdf

Raheja, S
kukreja, V

82

[6] jehad alnihoud and Rami mansi, “an enhancement in major Sorting algorithms,” The
International arab journal of Information Technology, Vol. 7, no. 1, january 2010.

[7] m. a. Bender, m. Farach-Colton and m. a. mosteiro, “Insertion Sort is O(n log n)”, Proceedings
of the Third International Conference on Fun With algorithms (Fun), (2004), pp. 16–23

[8] mansotra and kr. Sourabh, “Implementing Bubble Sort using a new approach,” in proceedings
of 5th national Conference; InDIaCom-2011.

[9] md. khairullah “ enhancing Worst Sorting algorithms” International journal of advanced
Science and Technology Vol. 56, july, 2014

[10] S. Chand, T. Chaudhary and R. Parveen, “upgraded Selection Sort”, International journal
on Computer Science and engineering (IjCSe), ISSn: 0975-3397, vol. 3, no. 4, (2011),
 pp.1633–1637.

[11] S. jadoon, S. F. Solehria, S. Rehman and h. jan, “Design and analysis of Optimized Selection
Sort algorithm”, International journal of electric & Computer Sciences (IjeCS-IjenS), vol.
11, no. 01, pp. 16–22.

[12] Shubham Saini, Bhavesh kasliwal. “mODIFIeD meRGe SORT aLGORIThm”. International
journal For Technological Research In engineering Vol. 1, Issue. 1, Sep–2013

[13] Song Qin. merge Sort algorithm. Florida Institute of Technology.

[14] T. S. Sodhi, S. kaur and S. kaur, “enhanced Insertion Sort algorithm”, International journal
of Computer applications, vol. 64, no. 21, (2013), pp. 35–39.

