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Blasius equation is very well known and it aries in many boundary layer problems of fluid dynamics. 
In this present article, the Blasius boundary layer is extended by transforming the stress strain term 
from Newtonian to non-Newtonian. The extension of Blasius boundary layer is discussed using some 
non-newtonian fluid models like, Power-law model, Sisko model and Prandtl model. The Generalised 
governing partial differential equations for Blasius boundary layer for all above three models are 
transformed into the non-linear ordinary differewntial equations using the one parameter deductive 
group theory technique. The obtained similarity solutions are then solved numerically. The graphical 
presentation is also explained for the same. It concludes that velocity increases more rapidly when fluid 
index is moving from shear thickninhg to shear thininhg fluid.
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Nomenclature:
u ,v - Velocity components in X, Y directions respectively
U - Main stream velocities in X direction
n- flow behaviour indices
ψ - stream function
G -group notation
a -group parameter
a0  -identity element of a group
M(a) - real constant
η - similarity variable
f - similarity functions
α βi i,  - real constants/parameters
A, B, C – fluid parameters

1. Introduction
If the Reynolds number is large, the inertial forces will be 
predominant and in such a case the effect of viscosity can 
be considered to be confined in a thin layer known as a 
velocity boundary layer; adjacent to a solid boundary. Any 
disturbance created in the laminar flow in the boundary 
layer is ultimately dumped. This is known as the Laminar 

Boundary layer. The boundary layer concept was first 
introduced by Ludwig Prandtl, a German aerodynamicist 
in 1904. 

In the case of fluid motions for which the measured 
pressure distribution nearly agrees with the perfect fluid 
theory, such as the flow past the streamlined body or 
the airfoil, the influence of viscosity at high Reynolds 
numbers is confined to a very thin layer in the immediate 
neighborhood of the solid wall. If the condition of no-slip 
were not to be satisfied in the case of a real fluid, there would 
be no appreciable difference between the field of the flow of 
the real fluid as compared with that of a perfect fluid. The 
fact that at the wall the fluid adheres to it means, however, 
that frictional forces retard the motion of the fluid in a thin 
layer near the wall. In that thin layer, the velocity of the 
fluid increases from zero as the wall (no-slip) to its full value 
which corresponds to external frictionless flow. The layer 
under consideration is called the boundary layer.

In 1904, Ludwig Prandtl (1904) has analysed that, for 
the equation of the boundary layer flow, almost half of the 
terms of Navier-Stokes equations are negligible. This reduced 
Navier-Stokes equations are called Prandtl boundary layer 
equations. Lateron, Blasius (1908) proposed a similarity 
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solution for the case in which the free stream velocity is 
constant, which corresponds to the boundary layer over a 
flat plate that is oriented parallel to the free flow. Which 
is known as Blasius boundary layer and similarity solution 
(third order non-linear ODE) is called Blasius equation. 

Solution of Blasius equation is discussed earlier by 
many researchers (Wang 2004), Hashim (2006), Robin 
(2013). Liu et al. (2011) has solved the Blasius equation 
using the Variational Iteration method. They had derived 
the approximate analytical solution and also compared the 
results with that available in the literature. The Numerical 
solutions of the Blasius Equation with Crocco-Wang 
transformation was obtained by Asaithambi (2016). The 
direct second order finite difference solution is given by 
him. Ganji et al. (2009) had discussed the solution of Blasius 
equation applying the Homotopy Perturbation method. 
The obtained results are then compared with that available 
in literature. Chaotic behavior in the flow along a wedge 
modeled by the Blasius equation along with the numerical 
solutions was discussed by Basu et al. (2011). Another class 
of boundary layer problem for a stretching sheet relevant to 
the Blasius equation was studied by Sakiadis (1961). 

All the above research was done for the Newtonian 
case. Probably the first time, the generalized Blasius 
equations was discussed by Benlahsen et al. (2008). They 
considered the non-linear relationship for the strees and 
rate of deformation, the non-Newtonian case, in the Blasius 
boundary layer. The well-known Poewer – Law fluid model 
is used for the strees and rate of deformation term. The 
generalized Blasius equations was derived for the same. 

In the Present paper, the extension of Blasius boundary 
layer is discussed using some non-newtonian fluid models 
like, Power-law model, Sisko model and Prandtl model. 
All the fluid models are explained systematically by Patel 
et al. (2020). The Generalised governing partial differential 
equations for Blasius boundary layer for all above three 
models are transformed into the non-linear ordinary 
differential equations using the one parameter deductive 
group theory technique. The obtained similarity solutions 
are then solved numerically. The graphical presentation is 
also explained for the same. The new approach discussed in 

the present work to Blasius boundary layer will be useful to 
develop boundary layer equations for other fluid problems 
also. It can be applied to some other real world problems.

2. Governing Equations
The steady-state two dimensional generalised Blasius 
boundary layer flow over a semi-infinite plate is considered. 
The incompressible flow of non-Newtonian fluid with 
constant density and viscosity is assumed. 

2.1. Blasius Boundary Layer with Power-Law 
Fluid Model
The boundary layer differential equations for the flow 
along a thin flat plate was first discussed by Prandtl (1904). 
Lateron Blasius (1908) has considered free flow by taking 
constant free stream velocity in the Prandtl boundary layer 
equations. That boundary layer was discussed by Blasius 
therefore it is called Blasius boundary layer, In which the fluid 
was considered Newtonian. By taking the non-linear stress-
strain relationship, in the Blasius boundary layer equation, it 
is extanded/generalized to Blasius boundary layer equations 
for non-Newtonian fluid flows. The flow geometry is shown 
in the Figure 1. The governing Partial differential equations 
equations 1-4, (following Blasius (1908)) for steady-state two 
dimensional generalised Blasius boundary layer flow of Power-
law fluid over a semi-infinite plate are; (Schlichting (2000))
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The boundary conditions are 

 u v at y= = =0 0,  (3)

 u U x at y= →∞( ) .  (4)

Figure 1: Blasius flow of a boundary layer on a flat plate.
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Introducing the stream function ψ( , )x y , where 

u
y

v
x

=
∂
∂

= −
∂
∂

ψ ψ& , the continuity equation (1) 

is satisfied therefore it need not to solve. And using the 
same stream function in the momentum equation given 
by equation (2) and the boundary conditions given by 
equations (3) and (4), we obtaine the below equations (5), 
(6) and (7) respectively.

 ∂
∂
∂
∂ ∂

−
∂
∂
∂
∂
=

∂
∂










∂
∂

−
ψ ψ ψ ψ ψ ψ
y x y x y

n
y y

n2 2

2

2

2

1 3

3 ,  (5)

The boundary conditions are 
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Now, to reduce the above equations (5-7) with two 
independent variables in the equations with one independent 
variable, we apply the one-parameter deductive group theory 
technique (Moran et al. 1967, 1968, 1968, 1968). 

Introducing the group G, (Patel, Patel and Timol 2017) 
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Equation (5) is said to be transformed invariantly for some 
function M(a), whenever ,

∂
∂
∂
∂ ∂

−
∂
∂
∂
∂
−

∂
∂










∂

−






 













ψ ψ ψ ψ ψ
y x y x y

n
y

n2 2

2

2

2

1 3




ψ

ψ ψ ψ ψ ψ

∂

=
∂
∂
∂
∂ ∂

−
∂
∂
∂
∂
−

∂
∂











−

y

M a
y x y x y

n
y

n

3

1

2 2

2

2

2

1

( ) ∂∂
∂

















3

3

ψ
y
.

 

(9)

Therefore, from the above equation (9), the following 
relations (10) are obtained,
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 Also from the invariance of the auxiliary conditions 
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Now, the characteristic equation from the equation (14) is:
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Solving first two relation of equation (18) for η , we have



ISSN No.: 2278-9561 (Print) ISSN No.: 2278-957X (Online) Registration No. : CHAENG/2013/49583

Manisha Patel et al., Math. J. Interdiscip. Sci.Vol. 9, No.2 (2021) p.38
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Solving first and third relation of equation (18) for f1( ),η
we have

 ψ α β η
β
α

= + −( ) ( ) .1 1

2
3 3

12
x f  (20)

Solving first and last relation of equation (18) for U, we have

 U= Constant = 1 (21)

Using the equations (19), (20) and (21) and its derivatives 
in equations (5)-(7), the below similarity equation (22) 
alongwith the boundary condition (23) are obtained.

 n f f
n

f fn( ) ,′′ ′′′+
+

′′ =−1 1
1

0  (22)

 f f f( ) , ( ) , ( ) .0 0 0 0 1 1= ′ = ′ =  (23)

The graph of the velocity versus eta is shown by Figure 2.

2.2. Blasius Boundary Layer with Sisko Fluid 
Model

The governing Partial differential equations for steady-state 
two dimensional generalised Blasius boundary layer flow of 

Sisko fluid over a semi-infinite plate are ;
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The boundary conditions are 

 u v at y
u U x at y
= = =
= →∞

0 0,
( ) .

 (26)

Figure 2: Velosity variation vs eta for Blasius Power-Law boundary layer.

Now, introducing the stream function and then applying the 
same technique, as discussed in the above case of Power-Law 
model, the following similarity equation (27) alongwith the 
boundary condition (28) are obtained.
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Figure 3: Velosity variation vs eta for Blasius Sisko boundary layer for a=b=0.5.
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Figure 4: Velosity variation vs eta for Blasius Sisko boundary layer for n=0.3, a=0.5.

Figure 5: Velosity variation vs eta for Blasius Sisko boundary layer n=0.3, b=0.5.

2.3. Blasius Boundary Layer with Prandtl Fluid 
Model
The governing Partial differential equations for steady-state 
two dimensional generalised Blasius boundary layer flow of 
Power-law fluid over a semi-infinite plate are;
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The boundary conditions are 

 u v at y= = =0 0,  (31)

 u U x at y= →∞( ) .  (32)

Now, introducing the stream function and then applying the 
same technique, as discussed in the above case of Power-Law 
model, the following similarity equation (33) alongwith the 
boundary condition (34) are obtained.
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Figure 6: Velosity variation vs eta for Blasius Prandtl boundary layer a=0.5.
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Figure 7: Velosity variation vs eta for Blasius Prandtl boundary layer b=0.5.

3. Results and Discussions
The obtained similarity equations with auxiliary conditions 
in each case are solved using bvp4c- MATLAB ODE 
solver. The variation in velocity presented graphically. The 
analysis of the effect of the change in fluid parameters 
and in fluid index for the velocity variation is very 
important for this type of problems. Figure 2 presents the 
graphs for the velocity profile for different values in fluid 
index n when the Power-law fluid model is considered. 
Velocity increases more rapidly when fluid index is 
moving from shear thickninhg to shear thininhg fluid. 
Shear thinning is the non-Newtonian  behavior of fluids 
whose viscosity decreases under shear strain whie, a shear 
thickening material is one in which viscosity increases with 
the rate of shear strain. 

Figure 3 represents the graph for the velocity profile 
for different values in fluid index n for fix values of fluid 
parameters a and b when the Sisko fluid model is considered. 
Here the velocity increases with the decrese in the values of 
n. Figures 4 is the graph for the velocity profile for different 
values of fluid parameters b with fix values of n and a. Here 
the velocity increases with the decrese in the values of sisko 
fluid parameter b. Figure 5 gives the graphs for the velocity 
profile for different values of sisko fluid parameter a and for 
the fix values of fluid index n and fluid parameter b. 

Figure 6 represents the graphs for the velocity profile 
for different values in Prandtl fluid parameter b for fix value 
of Prandtl fluid parameter a. Here the velocity increases with 
the decrese in the values of prandtl fluid parameter b. Figure 
7 represents the graphs for the velocity profile for different 
values in Prandtl fluid parameter a for fix value of Prandtl 
fluid parameter b. Here the velocity increases rapidly with 
the decrese in the values of prandtl fluid parameter a.

Conclusion
Following the approach of Blasius boundary equation flow 
for Newtonian fluid flow, the generalized Blasius boundary 

layer equations for non-Newtonian fluid flow are derived. 
Three different non-Newtonian fluid models are considered 
for this extension of Blasius boundary layer as three different 
cases. The governing Partial differential equations of all the 
cases are transformed into generalized Blasius equations 
(similarity equations) using the one parameter Diductive 
group technique. The obtained generalized Blasius equations 
are third order non linear ordinary differential equations. 
The present study will help the researchers to analyse Blasius 
boundary layer for other non-Newtonis fluid models. 
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