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Abstract These days fractals and the study of their dynamics is one of the 
emerging and interesting area for mathematicians. New fractals for various 
equations have been created using one-step iterative procedure, two-step 
iterative procedure, three-step iterative procedure and four-step iterative 
procedure in the literature. Fractals are geometric shapes that have symmetry 
of scale. In this paper, a detailed survey of fractals existing in the literature 
such as Julia sets, Mandelbrot sets, Cantor sets etc have been given.
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1. INTRODUCTION

In the past, mathematics has been concerned largely with sets and functions 
to which the methods of classical calculus be applied. Sets or functions 
that are not sufficiently smooth or regular have tended to be ignored 

as ‘pathological’ and not worthy of study. Certainly, they were regarded as 
individual curiosities and only rarely were thought of as a class to which a 
general theory might be applicable. In recent years this attitude has changed. 
It has been realized that a great deal can be said and is worth saying, about 
the mathematics of non-smooth objects. Moreover, irregular sets provide a 
much better representation of many natural phenomena than do the figures 
of classical geometry. Fractal geometry provides a general framework for the 
study of such irregular sets (Falconer (1990)).

Generally, people believe that the geometry of nature is centered on the 
simple figures like lines, circles, polygons, spheres, and quadratic surfaces 
and so on. But there are so many examples in nature which shows that the 
geometry does not depend on simple figures. Can we describe the structures of 
animals and plants? What is the shape of mountain? Like these structures there 
are many objects in nature which are complicated and irregular. Moreover, 
dynamical behavior in nature also can be complicated and irregular. What is 
the mathematics behind heart and brain waves as seen in electro-diagrams, 
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especially when a sudden fibrillation occurs that might cause failure? What is 
the mathematical model of ups and downs in financial market or even social 
behavior? How do we model turbulent weather and cascading waterfall? (Rani 
(2002)).

To analyze many of these questions, fractal and mathematical chaos are 
appropriate tools. Fractals and mathematical chaos are the frontiers of science 
and play significant roles in the study of science, medicine, business, textile 
industries and also in the other areas. There are several books which give 
basic ideas in fractals and chaos theory. Book of Gullick (1992) include an 
account of Chaos in one-dimension. The first book by Mandelbrot (1982) in 
the theory of fractals includes different fractal shapes in the nature. The books 
by Falconer (1990), Edgar (2008), Bransely (1993) and Tricot (1995) consist 
of basic results in the theory of fractal and dimension. Beardon (1991), Pietgen 
et al. (1986, 1992b) and Devaney (1992) give a nice account of the results in 
complex dynamics.

The purpose of this paper is to give a detailed study of new fractals created 
by one step iterative procedure, two-step iterative procedure, three-step iterative 
procedure and four-step iterative procedure.

2. FRACTALS

Generally, fractals apply to static geometric objects e.g. plants, networks of 
veins, and freeze frame images of a waterfall etc. The word ‘Fractal’ was 
coined by Benoit Mandelbrot (see Bunde (1992, p-2)) in his fundamental 
essay from the Latin word fractus, meaning broken, to describe objects that 
were too irregular to fit into a traditional geometric setting (cf. Peitgen et al. 
(2004)). Indeed, Mandelbrot introduced the term fractal in 1975 and defined 
a fractal as a set whose Hausdorff dimension (fractal dimension) is strictly 
greater than its topological dimension (Crownover (1995, p. 109)). The 
name was actually given because fractals exist in fractional dimensions. To 
visualize a fractal, consider a head of cauliflower or a bunch of broccoli. If 
a piece is broken off from either of these, the part still resembles the whole. 
Sometimes the resemblance may be weaker than strict geometrical similarity; 
for example similarity may be approximate or statistical.

When we refer to a set as a fractal, therefore they will typically have the 
following in mind:

(i) It has a fine structure at arbitrarily small scales.
(ii) It is too irregular to be described in traditional geometrical language, 

both locally and globally.
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(iii) Often it has some form of self-similarity, perhaps approximate or 
statistical.

(iv) Usually the fractal dimension of fractal is greater than its topological 
dimension.

(v) In most cases of interest fractal is defined in a very simple way, perhaps 
recursively. 

A mathematical fractal is based on an equation that undergoes iteration, a 
form of feedback based on recursion. Following are the results of sets that are 
commonly referred to as fractals.

2.1 Julia Sets 

With the introduction of fractal geometry, mathematics has presented some 
interesting complex objects to computer graphics. Interest in Julia sets and 
related mathematics began in 1920’s with Gaston Julia (Pietgen et al. (2004), 
p. 122)). What makes Julia sets interesting to study is that despite being born 
out of apparently simple iterative processes they can be very intricate and often 
fractal in nature (Pietgen et al. (2004), p. 122)). Now, fractal theory is incomplete 
without the presence of Julia sets. Julia sets have been studied for quadratic 
(Crilly et al. (1991), Devaney (1992), Lei (1990), Pietgen et al. (2004)), cubic 
(Branner (1988, 1992), Devaney (1992), Doudy (1984), Epstein (1999), Frame 
(1992), Liaw (1998)) and higher degree polynomials (Geum (2009)), under 
Picard orbit, which is an example of one-step feedback process. In the last few 
decades many beautiful Julia sets and their applications in various branches of 
science such as mathematics, engineering, computer science,  medical science, 
etc have been studied using two-step feedback process (superior orbit) and 
three-step feedback process (I- superior orbit) (for instance see Chauhan et al. 
(2010a, b)).  Following is the definition of Julia sets for Qc + n( )z z c= , where n 
= 2, 3 , . . . .

Definition 1. The set of points K whose orbits are bounded under the function 
iteration of Q(z) is called the filled Julia set. Julia set of Q is the boundary of 
the filled Julia set K. The boundary of a set is the collection of points for which 
every neighborhood contains an element of the set as well as an element, which 
is not in the set (see Crownover (1995) and Devaney (1992)).

The following theorem gives the general escape criterion of Julia sets and 
its corollaries further refine the escape criterion for computational purposes 
using Picard orbit (see Beradon (1991), Crownover (1995), Devaney (1992), 
Pietgen et al. (1992a)).
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Theorem 1. Suppose |z| ≥ |c| > 2, where c is in the complex plane. Then we 
have G zc

n ( ) →∞ as n→∞

Corollary 1. Suppose |c| > 2. Then the orbit of 0 escapes to infinity under Q
c
. 

Corollary 2. Suppose |z| > max{|c|, 2}. Then G z zc
n n( ) ( )> +1 λ  and SO 

G zc
n ( ) →∞ as n → ∞, where λ is a positive number.

Corollary 3. Suppose for some K ≥ 0, we have G z cc
k ( ) max ,> { }2 . Then 

G z G zc
k

c
k+ > +1 1( ) ( ) ( )λ , SO G zc

n ( ) →∞ as n → ∞.
In 2004, Rani introduced superior iterates (a two-step feedback process) in 

the study of fractal theory, jointly with Kumar, and created superior Julia sets 
(Rani et al. (2004)). The following theorem gives the general superior escape 
criterion for Julia sets and its corollaries further presents the escape criterion 
for computational purposes using Superior orbit.

Theorem 2. (General escape criterion) For general function ,G z z cc
n( )= +  n 

= 1, 2, 3, …, where 0 1< ≤α  and c is in the complex plane. Define

 
z z G z

z z G z

c

n n c n

1

1 1

1

1

= − +

= − +− −

( ) ( ),

.....,

( ) ( )

α α

α α

 

for n = 2, 3, . . . . Thus, the general escape criterion is c n,( / ) /2 1 1α −{ }.

Corollary 4. Suppose that c n> −( / ) /2 1 1α . Then, the superior orbit SO(G
c
,0,α

n
) 

escapes to infinity.

Corollary 5. Suppose for some k ≥ 0, we have z ck
k> { }−max ,( / ) /2 1 1α . Then 

|z
k+1

| > (1+λ) |z
k
|; so |z

n
| → ∞ as n → ∞.

Figure 1: Superior Julia Sets for Quadratic Map.
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This corollary gives a general algorithm for computing filled superior Julia 
sets for the function of the form G z z cc

n( )= +  , n= 1, 2, 3, … .
Fig 1 and Fig 2, represents the superior Julia sets for quadratic and cubic 

maps using two step iterative procedures.
Recently, Chauhan et. al. (2010a, b) generated new Julia sets via Ishikawa 

iterates (an example of three-step feedback process).  The following theorem 
gives the general I-superior escape criterion for Julia sets and its corollaries 
further presents the escape criterion for computational purposes using 
I-Superior orbit.

Theorem 3. For general function G z z cc
n( )= +  , n= 1, 2, 3, … , where 0 < α 

≤ 1, 0 < β ≤ 1 and c is in the complex plane. Define

 

z z G z

z z G z

c

n n c n

1

1 1

1

1

= − +

= − +− −

( ) ( ),

.....,

( ) ( )

α α

α α
 

Thus, the general escape criterion is c n n,( / ) ,( / )/ /2 21 1 1 1α β− −{ } .

Corollary 6. Suppose that |c| > (2/α)1/n-1 and |c| > (2/β)1/n-1 exists. Then, the 
I-Superior orbit ISO (G

c
,0, α

n
, β

n
) escapes to infinity.

Corollary 7. Suppose for some k ≥ 0, we have |z
k
| > max {|c|, (2/α)1/k-1,(2/β)1/

k-1}. Then |z
k+1

| > γ|z
k
|, so |z

n
| → ∞ as n → ∞ .This corollary

 
gives a general 

algorithm for computing I- superior Julia sets for the function of the form G
c
(z) 

= zn + c, n = 1, 2, 3, … .
Fig 3 and Fig 4, represents I- Superior Julia sets for the quadratic and cubic 

maps.

Figure 2: Superior Julia Sets for Cubic Map.
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2.2. Mandelbrot Sets 

In 1975, Benoit Mandelbrot extended the work of Gaston Julia and introduced 
the Mandelbrot set; a set of all connected Julia sets. Mandelbrot sets have been 
studied for quadratic (Crilly et al. (1991), Devaney (1992), Lei (1990), Pietgen 
et al. (2004)), cubic (Branner (1988, 1992), Devaney (1992), Doudy (1984), 
Epstein (1999), Frame (1992), Liaw (1998)) and higher degree polynomials 
(Geum (2009)), under Picard orbit, which is an example of one-step feedback 
process. Every Julia set for a function is either connected or disconnected. The 
Mandelbrot set works as a locator for the two types of Julia sets. Each point 
in the Mandelbrot set shown in Figure 5 represents a c-value for which the 
Julia set is connected and each point in its complement represents a c-value for 
which the Julia set is disconnected (cf. Crownover (1995), Devaney (1992), 

Figure 3: I-Superior Quadratic Julia Sets.

Figure 4: I-Superior Cubic Julia Sets.
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Gutfraind (1990), Pietgen et al. (1992a, b)). Following is the definition of 
Mandelbrot set for Qc(z) = zn+c, where n = 2, 3, . . . .

Definition 3. (Mandelbrot Set). The Mandelbrot set M consists of all 
parameters c for which the filled Julia set of Q

c
 is connected, that is.

 M c C K Qc= ∈{ : ( ) }.is connected  

In fact, M contains an enormous amount of information about the structure 
of Julia sets. The Superior Mandelbrot set SM for the Quadratic Q

c
(z) = z2 + 

c is defined as the collection of all c∈C for which the orbit of the point 0 is 
bounded, that is

 SM c C Q nc
n= ∈ ={ :{ ( )}; , , ,....0 0 1 2 isbounded}.  

we choose the initial point 0, as 0 is the only critical point of Q
c
 (Pietgen et al. 

(2004), p. 249).
Similarly, the Mandelbrot set ISM for Qc(z) = zn + c, where n = 2, 3, . . . 

with respect to Ishikawa iterates is called  I-superior Mandelbrot set.
Escape criterions play a crucial role in the analysis and generation 

of Mandelbrot, superior Mandelbrot set (Rani et al. (2004)) and I-superior 
Mandelbrot set (Chauhan et al. (2010)). The escape criterions studied above in 
the section of Julia set are applicable in the generation of superior Mandelbrot 
sets and I-superior Mandelbrot sets. Following are the general escape criterions 
of Mandelbrot set with some attractive figures::

General escape criterion of Mandelbrot set for Qc(•	 z) = zn + c, is |z
k
| > 

max{|c|, 2}. Fig 5, shows the Mandelbrot sets generated by Picard Orbit.

Figure 5: Mandelbrot set.



Chugh, R.
Ashish 

202

General escape criterion of superior Mandelbrot set for Qc(•	 z) = zn + c, is 
|z

k
| > max {|c|, (2/α)1/k-1}. Fig 6 and Fig 7, shows the Mandelbrot sets for 

quadratic and cubic maps generated by two step iterative procedure.

Figure 6: Superior Quadratic Mandelbrot sets.

Figure 7: Superior Cubic Mandelbrot sets.

General escape criterion of I-superior Mandelbrot set for Qc(•	 z) = zn + c, is 
|z

k
| > max{|c|, (2/α)1/k-1,(2/β)1/k-1}. Fig 8 and Fig 9, shows the Mandelbrot sets 

for quadratic and cubic maps generated by three step iterative procedure.
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Figure 8: I-Superior Quadratic Mandelbrot sets.

Figure 9: I-Superior Cubic Mandelbrot sets.

In order to generate the Mandelbrot set graphically, the computer screen 
becomes the complex plane. Each point on the plane is tested into the equation 
z = z2 + c. If the iterated z stayed within a given boundary forever, i.e. converges, 
the point is inside the set and we have plotted the point in magenta. If the 
iteration diverges, the point was plotted in a color with respect to how quickly 
it escaped. For a detailed analysis of the Mandelbrot set, one may refer to Crilly 
(1991), Mann (1953), Mandelbrot et al. (1982, 1991, 1996, 1998), Peitgen et al. 
(1986, 1988, 1992a, 1992b, 2004) and Reeve (1991).. 

The implementation difference between the Julia set and the Mandelbrot 
set is the way in which the function is iterated. The Mandelbrot set iterates 
z = z2 + c with z always starting at 0 and varying the c value. The Julia set 
iterates z = z2 + c for a fixed c value and varying z values. In other words, the 
Mandelbrot set is in the parameter space, or the c-plane, while the Julia set 
is in the dynamical space, or the z-plane. For a detailed study, one may refer 
Crownover (1995), and Milnor (1990). 
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Figure 10: George Cantor Set

2.3. Cantor Set

The Cantor set is a classical example of Fractal theory. By a general Cantor 
set, we mean a set of points lying on a single line segment that has a number 
of remarkable and deep properties (Cantor (1883)). It was discovered in 1875 
by Smith (1875) and first introduced by German mathematician George Cantor 
(1845 - 1918) that became known as Cantor ternary set (Cantor (1883)). The 
Cantor set finds a celebrated place in mathematical analysis and its applications. 
For some basic study on Cantor set one may refer to Beardon (1991), Devaney 
(1992), Falconer (1990) and Peitgen et al. (2004). The Cantor set has many 
interesting properties and consequences in the field of set theory, topology, and 
fractal theory (Bulaev (2000), Fleron (1994), Gutfrained (1990), Horiguchi 
(1984a, b), Tsuji (1953)). Also, for more applications of Cantor set in discrete 
dynamical system and mathematical analysis, one may refer to (Ferienos 
(1999), Lee (1998), Rahman). 

Recently, Rani (2011), introduced the Superior Cantor sets and presented 
them graphically by Devil’s staircases. They generated new Cantor sets by 
two methods. In one method, initiator is divided into three equal parts and 
either left segment or right segment of initiator is dropped. In another method, 
unequal division of initiator has been done. The interesting point here is that 
some of the Cantor sets given by Rani et al. (2010) are common to Cantor sets 
given by Shaver (2010).

Figure 11: Sierpinski gasket
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Definition 2. (Cantor set) The Cantor C is defined as C In n=∩ =
∞

1 , where I
n+1

 is 
constructed by trisecting I

n
 and removing the middle third, I

0
 being the closed 

interval 0 ≤ x ≤ 1 (Branner and Hubbard (1988)). Fig 10, shows the Cantor 
middle one third set due to George Cantor (1992).

Besides the sectors mentioned above, chaos and fractals are the new 
frontiers of science and have come to play significant roles in the study of 
applicable areas of sciences, medicine, business, textile industries, music 
and several other areas of human activity (see, for instance, Barnsley (1988), 
Beardon (1991), Horn (1991), Rani et al. (2010)).

2.4. Sierpinski Triangle(Gasket) 

Sierpinski’s Triangle (or gasket), was introduced by the great Polish 
mathematician Waclaw Sierpinski (1882-1969) in 1916.  He was one of the 
most influential mathematicians of his time in Poland and had a worldwide 
reputation. He described some of its interesting properties in 1916 (Pietgen et 
al. (2004)).

The basic geometric construction of the Sierpinski triangle goes as follows. 
We begin with a triangle in the plane and then apply a repetitive scheme of 
operations to it. Pick the midpoints of its three sides. Together with the old 
vertices of the original triangle, these midpoints define four congruent triangles 
of which we drop the center one. This completes the basic construction step. 

Figure 12: Koch Curve
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In other words, after the first step we have three congruent triangles whose 
sides have exactly half the size of the original triangle and which touches at 
three points which are common vertices of two contiguous triangles. Now, we 
follow the same procedure with the three remaining triangles and repeat the 
basic step as often as desired (Devaney (1992), Pietgen et al. (2004)).

2.5. Koch Snowflake and Koch curve :

Helge von Koch was a Swedish mathematician who, in 1904, introduced what 
is now known as the Koch Curve. The basic geometric construction of the 
Sierpinski triangle goes as follows. Begin with a straight line. This initial object 
is also called initiator. Partition it into three equal parts. Then replace the middle 
third by an equilateral triangle and take away its base. This completes the basic 
construction step. A reduction of this figure, made of four parts will reused 
in the following steps. Thus, we now repeat, taking each of the resulting line 
segments, partitioning them into three equal parts, and so on. Self similarity is 
built into the construction process, i. e. each part of the 5 parts in the kth step is 
again a scaled down version by a factor of 3 of the entire curve in the previous 
(k-1)th step (Devaney (1992), Pietgen et al. (2004)). Figure 12, shows the Koch 
Curve created by Helge von Koch in 1904.

3. CONCLUSION

The Julia sets, Mandelbrot sets, Cantor sets, Sierpinski’s Triangle (or gasket) 
and Koch Curve all are examples of fractal sets. In this paper, a survey of 
fractals for various equations created by using one-step iterative procedure, 
two-step iterative procedure, three-step iterative procedure and four step 
iterative procedure have been given. The following survey has been drawn:

1. A detail survey of Julia sets and Mandelbrot sets with some beautiful 
pictures have been given in subsection 2.1 and 2.2 respectively.

2. Further in subsection 2.3, results on Cantor sets have been presented 
which is a classical example of fractal in literature. 

3. In subsection 2.4 and 2.5, the Sierpinski’s Triangle (or gasket) and Koch 
Curve have been presented.
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