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Abstract: The aim of this article is to perform the estimation procedures on 
rayleigh parameter in step-stress partially accelerated life tests (PaLT) under 
both Type-I and Type-II censored samples in which all the test units are first 
run simultaneously under normal conditions for a pre-specified time, and the 
surviving units are then run under accelerated conditions until a predetermined 
censoring reached. It is assumed that the lifetime of the test units follows 
rayleigh distribution. The maximum likelihood estimates are obtained for the 
proposed model parameters and acceleration factor for each of Type-I and Type-
II censored data. In addition, the asymptotic variances and covariance matrix 
of the estimators are presented, and confidence intervals of the estimators are 
also given. 

Keywords: Step-stress partially accelerated life tests, rayleigh distribution, 
Maximum likelihood estimation, Confidence interval, Type-I and Type-II 
censoring.

1. Introduction

The concept of accelerated life testing (aLT) was first introduced by [12] 
and Bessler [6]. The main purpose of using aLT is to collect the sufficient 
failure time data of life testing units in shorter period of time. Because many 
manufactured units/ products have a long life and standard life testing of 
such units are time consuming, very expensive and may not be purposeful. 
Therefore, aLT is recommended to use. [17] first elaborated the concept of 
step-stress aLT, in which the stress can be applied in different ways, commonly 
used methods are constant-stress, step-stress and progressive-stress. Many 
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other authors like; [18], [8], [16], [15], [9], [10] and [11] gave some more 
applications and attempted the work in this direction.  

In the case of aLT, the acceleration factor is assumed as a known value 
or there is a known mathematical model which specifies the relationship 
between lifetime and stress conditions. But in some situations such life-stress 
relationship are not known and cannot be assumed. Therefore, in such cases, 
partially accelerated life tests (PaLTs) are better criterion to perform life test 
to estimate the acceleration factor and parameters of the life distribution. The 
concept of PaLT was firstly introduced by [14] in which a test unit is first 
run at use condition and if it does not fail for a pre-specified time ‘τ’, the 
test is switched to the higher level of stress for testing until all the unit fails 
or censoring reached. The effect of this switch is to multiply the remaining 
lifetime of the unit by an unknown factor which is called acceleration factor β. 
Thus, the total lifetime T of test unit is given by

 T
Y Y

Y Y
=

≤

+ −( ) >






−

,

,

τ

τ β τ τ1  (1.1)

where Y denotes the lifetime of unit at normal use condition.
[14] considered the estimation problem using maximum likelihood (ML) 

and Bayesian methods for estimating the parameters of the Exponential and 
Uniform distribution. [13] studied the problem of estimation for acceleration 
factor and Exponential parameters by using Bayesian approach with different 
loss functions for complete data set in step-stress PaLT. [7] also estimated the 
parameters of the Weibull distribution and acceleration factor using ML method 
in step-stress PaLT. [4] reported ML method for estimating the acceleration 
factor and scale parameter of Exponential distribution under type-1 censoring. 
[5] estimated parameters of the lognormal distribution and acceleration factor 
using ML method under type-1 censored data. recently, [20] developed ML 
method for estimating the parameters and acceleration factor of the Weibull 
distribution under multiply censored data. For more details, see [3], [2] and 
[1].

This paper deals with the step-stress PaLT for rayleigh distribution under 
Type-I and Type-II censored case. Where the performance of the parameter 
estimators are investigated on the basis of mean square error (MSE), relative 
absolute bias (raBias) and relative error (rE) based on simulation data. 
Moreover, the asymptotic variances and covariance matrix and confidence 
interval of the estimators are obtained.

In addition to this introductory section this article includes some more 
sections too. In section 2 the proposed model and assumption are described. 
Section 3 presents maximum likelihood estimation (MLEs) under Type-I and 
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Type-II censoring. In section 4 confidence intervals of the model parameter 
and acceleration factor are described. Simulation studies to illustrate the 
theoretical results are given in section 5. Finally, the conclusion of the study is 
discussed in section 6.

2. The Model Description and Assumptions

This section describes the notation and introduces the assumed model for 
product life and test procedure also.

Notations used

n   : total number of test an items in a step-stress PaLT
T  : lifetime of an item at use conditions
Y  : total lifetime of an item in a step-stress PaLT
y

i
  : observed value of the total lifetime Y

i
 of item i, i=1, 2,

    ……n
Yc  : censoring time of a PaLT in the case of Type-I censoring
n

c
  : number of censored items in the case of Type-I censoring

r  : number of failures at which the test is terminated in case of
    Type-II censoring
y

(r)
  : the time of the rth failure at which the test is terminated in

    case of Type-II censoring
β  : acceleration factor (β>1)
θ  : scale parameter (θ>0)
τ  : stress changing time in step PaLT, that is, τ < Yc in case of
    Type-I censoring and τ < y

(r)
 in case of Type-II censoring

n
u
, n

a
 : number of items failed at normal and accelerated condition

    respectively

y y y y Yn n n n cu u u a1 1( ) ( ) +( ) +( )≤ ≤ ≤ ≤ ≤ ≤ ≤..... .....τ  and
y y y yn n ru u1 1( ) ( ) +( ) ( )≤ ≤ ≤ ≤ ≤ ≤..... .....τ  are the ordered failure times in case 

of Type-I and Type-II censoring, respectively.
The rayleigh distribution has played an important role in the modeling 

the lifetime of random process and having many applications, including 
reliability, life testing and survival analysis. The probability density function 
(p.d.f.) is given below as

 f t
t t

t; exp , ,θ
θ θ

θ( )= −










> >
2

2

22
0 0  (2.1)

and the cumulative density function is 
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 F t
t

t, exp , ,θ
θ

θ( )= − −










> >1
2

0 0
2

2
 (2.2)

The reliability function is

 R t
t

t( )= −










> >exp , ,
2

22
0 0

θ
θ  (2.3)

Assumptions

(a) The total lifetime Y of an item is defined as

 T
Y Y

Y Y
=

≤

+ −( ) >






−

,

,

τ

τ β τ τ1  (2.4)

(b) The lifetime of an item tested at both use and at accelerated condition 
follows rayleigh   distribution.

(c) The lifetimes of test items are independent and identically distributed 
random variables.

(d) Under Type-I censoring, the test terminates when the censoring time ‘Yc’ 
is reached.

(e) Under Type-II censoring, the test terminates when the predetermined 
number of failures ‘r’ is reached.

3. Maximum Likelihood Estimation 

In this section the MLEs of the acceleration factor and scale parameter in step-
stress PaLT are obtained under Type-I and Type-II censoring.

The lifetime of test unit is assumed to fellow the rayleigh distribution 
with p.d.f. given in equation (1). Therefore, the p.d.f. of the total lifetime Y of 
an item in step-stress PaLT is given by

 f y
f y y

f y y
( )=

( ) < ≤

( ) >








1

2

0,

,

if 

if 

τ

τ
 (3.1)

Where

f y
y y

1 2

2

22
0( )= −










>

θ θ
θexp , , is equivalent form to equation (2.1), and

f y
y y

2 2

2

22
( )=

+ −( )



 −

+ −( )
















β
τ β τ

θ

τ β τ

θ
exp ,, ,θ β> >0 1

3.1 The case of type-I censoring

The observed values of the total lifetime Y are given by
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 y y y y Yn n n n cu u u a1 1( ) ( ) +( ) +( )≤ ≤ ≤ ≤ ≤ ≤ ≤..... .....τ

Since the total lifetimes Y
1
……,Y

n
 of n items are i.i.d. random variables, then 

the likelihood function for them can be written as

 L y f y f y R Yi
i

n

i
i

n

c
i

nu a c

; ,β θ( )= ( ) ( ) ( )
= = =
∏ ∏ ∏1

1
2

1 1

 (3.2)

where, n n n nu a c= + +  
Therefore, after substituting the values of f

1
(y), f

2
(y) and r(Y

c
), the 

likelihood function of the sample is given by
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21 2θi
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 (3.3)

On maximizing the natural logarithm of the equation (3.3), the maximum 
likelihood estimates of β and θ can be obtained. after taking the log of above 
equation (3.3), it can be written as

 

log , ; log expL y
y yi i

i
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β θ
θ θ
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The first order partial derivatives of Eq. (3.5) with respect to β and θ are given 
by

 

∂ ( )
∂

= +
−( )

+ −( )





− −( ) + −
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log ,L n y
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y y

a i
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2
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 =Yc

 (3.7)

where, n n nu a0 = +
We observe that likelihood equations (3.6) and (3.7) are difficult to solve 

as these are functions of population parameters which are themselves functions 
of the solutions of these equations. Due to this difficulty, it is not possible to 
find exact solutions. We shall therefore, find MLE solutions ˆ, ˆβ θ( )  through 
iterative procedure.

The asymptotic variances and covariance of the estimates are given by 
the elements of the inverse of the Fisher information matrix. Since, the exact 
mathematical expression for the expectation is too difficult to find. So, it can 
be approximated by numerically inverting the asymptotic Fisher information 
matrix, which is obtained from the negative of second and mixed partial 
derivatives of the natural logarithm of the likelihood function evaluated at the 
estimates of the parameters. So, asymptotic Fisher information matrix can be 
written as

 F

L L

L L
=
−
∂
∂

−
∂
∂ ∂

∂
∂ ∂

∂
∂






















2

2

2

2 2

2

log log

log log

β β θ

β θ θ  = =( )β β θ θˆ , ˆ

 (3.8)

The elements of the above matrix F can be expressed by the following 
equations
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3.2 The case of type-II censoring

The observed values of the total lifetime Y are given by

y y y yn n ru u1 1( ) ( ) +( ) ( )≤ ≤ ≤ ≤ ≤ ≤..... .....τ

Since the total lifetimes Y
1
……,Y

n
 of n items are i.i.d. random variables, then 

the likelihood function for them can be written as

 L y f y f y R yi
i

n

i
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r
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where, r n nu a= +

Therefore, after substituting the values of f
1
(y), f

2
(y) and r(y

(r)
), the likelihood 

function of the sample is given by
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On maximizing the natural logarithm of the above equation (3.13), the 
maximum likelihood estimates of β and θ can be obtained. after taking the log 
of above equation (3.13), it can be written as
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The first order partial derivatives of Eq. (3.20) with respect to β and θ are given 
by
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where, n n nu a0 = +

Obviously, it is very difficult to obtain a closed form solution for two non-
linear equations (3.21) and (3.22). We shall therefore, find MLE solutions  

ˆ, ˆβ θ( )  through iterative procedure.
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Proceeding the similar way as in case of Type-I censoring, the elements 
of the observed Fisher information matrix are described by the following 
equations
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4. Confidence Intervals for the Case of Type-I and Type-II Censoring

[19] indicate that the most common method to construct confidence bounds for 
the parameter is to use the large sample normal distribution of the maximum 
likelihood estimators.

To construct a confidence interval for a population parameter α; assume 
that L L y ynα α= ( )1......  and U U y ynα α= ( )1.......  are the functions of the sample 

data y y yn1 2, ,......,  such that

 P L y Uα α α ε= ≤ ≤( )=  (4.1)

Where, L Uα αand  are indicating the lower and upper confidence limits which 
enclose α with probability ε. The interval L Uα α,[ ]  is called a two sided 100 ε % 
confidence interval for α. 

It is known that the MLEs, for large sample size under appropriate 
regularity conditions, are consistent and normally distributed. Therefore, the 
two-sided approximate 100 ε% confidence limits for a population parameter 
can be constructed as follows:
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−
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ˆ
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α α
σ α

ε  (4.2)

where, z is the [100(1-ε)/2]th percentile of the standard normal. Therefore, 
the two-sided approximate ε100% confidence limits for β and θ are given 
respectively as follows:

 
L z Var U z Var
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 (4.3)

5. Simulation Studies

The simulation studies have been performed using r software for illustrating 
the theoretical results of estimation problem. The performance of the resulting 
estimators of the acceleration factor and scale parameters has been considered 
in terms of their MSE, raBias and rE. Furthermore, the asymptotic variances 
and covariance matrix and confidence intervals of the acceleration factor and 
scale parameter are obtained. The simulation procedures were performed in 
following steps as

Step 1: 1000 random samples of sizes 50(50) 400 and 500 were generated from 
rayleigh distribution. The generation of the rayleigh distribution is very simple, 

if U has a uniform (0, 1) random number, and then Y U= − −( )





2 12 1 2
θ log

/
 

follows a rayleigh distribution. The true parameter values are chooses as 
(β=1.25, θ=2) and (β=1.75, θ=1.5) in case of Type-I censoring and (β=1.25, 
θ=2) and (β=1.75, θ=1.8) for Type-II censoring.

Step 2: Choosing the stress changing time τ at normal condition to be τ=2 and 
censoring time Y

c
=5 in case of Type-I censoring and the total number of failure 

in the test of a PaLT to be r=0.75n in case of Type-II censoring.

Step 3: For each sample and for the two sets of parameters, the acceleration 
factor and the scale parameters of distribution were estimated in PaLT under 
Type-I and Type-II censored sample by using optim() function in r software.

Step 4: The raBias, MSE, and rE of the estimators for acceleration factor 
and scale parameter for all sample sizes and for two sets of parameters were 
tabulated.

Step 5: The asymptotic variance and covariance matrix of the estimators for 
different sample sizes were obtained.
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Step 6: The confidence limit with confidence level = 0.95 γ and = 0.99 γ of the 
acceleration factor and scale parameters were constructed.

Simulation results are summarized in Tables 1-6. Tables 1-3 represents the 
findings for the case Type-I censoring, in which Table 1 gives the MSE, 
raBias and rE of the estimators, the asymptotic variances and covariance 
matrix of the estimators are given in Table 2 and the approximated confidence 
limits at 95% and 99% confidence level are presented in Table 3.

Similarly, Tables 4-6 represents the results for the case of Type-
II censoring, where MSE, raBias and rE are presented in Table 4, the 
asymptotic variances and covariance matrix of the estimators are given in 
Table 5 and the approximated confidence limits at 95% and 99% confidence 
level are presented in Table 6.

Table 1: The MSE, raBias and rE of the parameters (β, θ, τ) given Y
c
=5 for 

different samples sizes under Type-I censoring

Sample 
size

Parameters
(β, θ, τ)

True value of parameters
(1.25, 2, 2)

True value of parameters
(1.75, 1.5, 2)

MSE RABias RE MSE RABias RE

50 β
θ

0.08979
0.05858

0.05187
0.01920

0.23973
0.12101

0.21987
0.02155

0.06043
0.00806

0.26795
0.09786

100 β
θ

0.03933
0.02749

0.01876
0.00551

0.15866
0.08290

0.09142
0.01019

0.02618
0.00183

0.17278
0.06730

150 β
θ

0.02725
0.01799

0.01828
0.00539

0.13206
0.06707

0.05467
0.00671

0.02248
0.00483

0.13361
0.05461

200 β
θ

0.01955
0.01319

0.01220
0.00274

0.11187
0.05743

0.03974
0.00469

0.01512
0.00365

0.11391
0.04567

250 β
θ

0.01535
0.01062

0.01308
0.00555

0.09911
0.05153

0.02947
0.00379

0.00992
0.00435

0.09810
0.04105

300 β
θ

0.01195
0.00856

0.00803
0.00502

0.08746
0.04626

0.02545
0.00304

0.00607
0.00003

0.09116
0.03677

350 β
θ

0.01012
0.00708

0.00395
0.00122

0.08049
0.04206

0.02369
0.00281

0.00635
0.00080

0.08795
0.03531

400 β
θ

0.01011
0.00665

0.00601
0.00209

0.08043
0.04078

0.02169
0.00250

0.00488
0.00118

0.08415
0.03336

450 β
θ

0.00865
0.00550

0.00431
0.00069

0.07441
0.03709

0.01674
0.00223

0.00245
0.00087

0.07392
0.03151

500 β
θ

0.00714
0.00538

0.00453
0.00092

0.06762
0.03666

0.01525
0.00188

0.00521
0.00067

0.07057
0.02890
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Table 2: asymptotic variances and covariance of the estimates under Type-I 
censoring

Sample size 
(1.25, 2, 2) (1.75, 1.5, 2)

β̂ θ̂ β̂ θ̂

50
0.03370 0.00673 0.01163 0.00074

---- 0.00358 ---- 0.00280

100 0.01666 0.00340 0.00574 0.00036

---- 0.00181 ---- 0.00132

150 0.01111 0.00227 0.00386 0.00025

---- 0.00121 ---- 0.00088

200 0.00831 0.00170 0.00289 0.00018

---- 0.00091 ---- 0.00066

250 0.00671 0.00137 0.00231 0.00015

---- 0.00072 ---- 0.00052

300 0.00562 0.00115 0.00191 0.00012

---- 0.00060 ---- 0.00043

350 0.00477 0.00098 0.00164 0.00010

---- 0.00052 ---- 0.00037

400
0.00418 0.00086 0.00143 0.00009

---- 0.00045 ---- 0.00032

450
0.00368 0.00076 0.00128 0.00008

---- 0.00040 ---- 0.00029

500
0.00333 0.00069 0.00115 0.00007

---- 0.00036 ---- 0.00026

Table 3: Confidence bounds of the estimates at 0.95 and 0.99 confidence level 
under Type-I censoring
Sample 

size Parameter 
(1.25, 2, 2) (1.75, 1.5, 2)

SD L U SD L U

50
β 0.18358 0.95502

0.84121
1.67464
1.78846 0.10784 1.64438

1.57752
2.06713
2.13399

θ 0.05983 1.92113
1.88403

2.15568
2.19277 0.05292 1.40837

1.37556
1.61580
1.64861

100
β 0.12907 1.02046

0.94044
1.52643
1.60646 0.07576 1.64731

1.60034
1.94430
1.99128

θ 0.04254 1.92763
1.90126

2.09441
2.12078 0.03633 1.43153

1.40900
1.57395
1.59648
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150
β 0.10540

1.06626
1.00091

1.47945
1.54480

0.06213
1.66757
1.62905

1.91111
1.94963

θ 0.03479
1.94260
1.92104

2.07896
2.10053

0.02966
1.44910
1.43071

1.56539
1.58378

200
β 0.09116

1.08658
1.03006

1.44392
1.50044

0.05376
1.67109
1.63776

1.88183
1.91516

θ 0.03017
1.94635
1.92765

2.06460
2.08331

0.02569
1.45512
1.43919

1.55582
1.57175

250
β 0.08191

1.10579
1.05501

1.42690
1.47769

0.04806 
1.67316
1.64337

1.86157
1.89137

θ 0.02683
1.95852
1.94188

2.06370
2.08034

0.02280
1.46182
1.44769

1.55121
1.56535

300
β 0.07497

1.11310
1.06662

1.40697
1.45345

0.04370
1.67496
1.64786

1.84628
1.87337

θ 0.02449
1.96203
1.94684

2.05805
  2.07324

0.02074
1.45940
1.44655

1.54069
1.55355

350
β 0.06907

1.11957
1.07675

1.39031
1.43313

0.04050
1.68174
1.65663

1.84049
1.86559

θ 0.02280
1.95774
1.94360

2.04713
2.06127

0.01924
1.46350
1.45157

1.53890
1.55083

400
β 0.06465

1.13079
1.09071

1.38423
1.42432

0.03782
1.68443
1.66098

1.83266
1.85611

θ 0.02121
1.96260
1.94945

2.04576
2.05891

0.01789 
1.46318
1.45208

1.53330
1.54439

450
β 0.06066

1.13649
1.09888

1.37429
1.41190

0.03578
1.68417
1.66199

1.82442
1.84660

θ 0.02000
1.95941
1.94701

2.03781
2.05021

0.01703
1.46793
1.45738

1.53469
1.54525

500
β 0.05771

1.14256
1.10679

1.36877
1.40455

0.03391
1.69264
1.67161

1.82557
1.84660

θ 0.01897
1.96465
1.95288

2.03903
2.05079

0.01612
1.46838
1.45838

1.53159
1.54158

The first entire of each parameter is for 95% significance level and second for 99%.

Table 4: The MSE, raBias and rE of the parameters (β, θ τ) given r=0.75*n 
for different samples sizes under Type-II censoring.

Sample 
size

Parameters 
(β, θ, τ)

True value of parameters
(1.25, 2, 2)

True value of parameters
(1.75, 1.8, 2)

MSE RABias RE MSE RABias RE

50 β
θ

0.15100
0.05555

0.08165
0.00569

0.31087
0.11785

0.31520
0.03753

0.08519
0.00476

0.32082
0.10762
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Table 5: asymptotic variances and covariance of the estimates under Type-II 
censoring

Sample size 
(1.25, 2, 2) (1.75, 1.5, 2)

β̂ θ̂ β̂ θ̂

50
0.02963 0.00534 0.02163 0.00649

---- 0.00679 ---- 0.01999
100 0.01534 0.00279 0.01169 0.00315

---- 0.00275 ---- 0.01039
150 0.01048 0.00163 0.00747 0.00211

---- 0.00230 ---- 0.00618
200 0.00769 0.00129 0.00591 0.00156

---- 0.00151 ---- 0.00534
250 0.00612 0.00104 0.00455 0.00126

---- 0.00121 ---- 0.00387
300 0.00527 0.00082 0.00399 0.00104

---- 0.00107 ---- 0.00378
350 0.00443 0.00072 0.00335 0.00089

---- 0.00090 ---- 0.00304

400
0.00384 0.00066 0.00285 0.00078

---- 0.00073 ---- 0.00236

450
0.00345 0.00056 0.00260 0.00069

---- 0.00070 ---- 0.00229

500
0.00308 0.00051 0.00235 0.00062

---- 0.00060 ---- 0.00203

100 β
θ

0.06200
0.02691

0.04246
0.00958

0.19920
0.08202

0.15396
0.01852

0.04641
0.00670

0.22422
0.07561

150 β
θ

0.04021
0.01780

0.02643
0.00038

0.16043
0.06671

0.09097
0.01272

0.02468
0.00049

0.17235
0.06265

200 β
θ

0.02787
0.01326

0.01524
0.00158

0.13356
0.05757

0.07136
0.00913

0.02474
0.00408

0.15265
0.05308

250 β
θ

0.02556
0.00975

0.01606
0.00012

0.12791
0.04937

0.05319
0.00723

0.01772
0.00007

0.13179
0.04723

300 β
θ

0.02043
0.00893

0.01689
0.00525

0.11435
0.04725

0.04065
0.00609

0.01377
0.00147

0.11521
0.04336

350 β
θ

0.01616
0.00744

0.01114
0.00009

0.10169
0.04312

0.03580
0.00501

0.01156
0.00029

0.10812
0.03932

400 β
θ

0.01347
0.00613

0.00709
0.00144

0.09285
0.03913

0.03105
0.00409

0.01554
0.00180

0.10069
0.03554

450 β
θ

0.01171
0.00537

0.00692
0.00013

0.08658
0.03663

0.02780
0.00421

0.01162
0.00200

0.09528
0.03607

500 β
θ

0.01095
0.00498

0.00691
0.00017

0.08371
0.03528

0.02258
0.00348

0.00905
0.00369

0.08586
0.03275
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Table 6: Confidence bounds of the estimates at 0.95 and 0.99 confidence level 
under Type-II censoring

Sample 
size Parameter 

(1.25, 2, 2) (1.75, 1.5, 2)
SD L U SD L U

50
β 0.17213 1.01468

0.90796
1.68945
1.79617 0.14707 1.61082

1.51963
2.18734
2.27852

θ 0.08240 1.82711
1.77603

2.15013
2.20122 0.14139 1.51431

1.42665
2.06854
2.15620

100
β 0.12385 1.06031

0.98352
1.54582
1.62261 0.10812 1.61931

1.55227
2.04314
2.11017

θ 0.05244 1.91637
1.88386

2.12194
2.15445 0.10193 1.61228

1.54908
2.01185
2.07505

150
β 0.10237 1.08239

1.01892
1.48369
1.54716 0.08643 1.62379

1.57020
1.96259
2.01618

θ 0.04796 1.90675
1.87702

2.09475
2.12448 0.07861 1.64680

1.59806
1.95497
2.00371

200
β 0.08769 1.09717

1.04280
1.44093
1.49530 0.07688 1.64261

1.59495
1.94397
1.99163

θ 0.03886 1.92700
1.90291

2.07933
2.10342 0.07308 1.66411

1.61880
1.95057
1.99587

250
β 0.07823 1.11675

1.06824
1.42341
1.47191 0.06745 1.64880

1.60698
1.91322
1.95504

θ 0.03479 1.93206
1.91049

2.06841
2.08998 0.06221 1.67820

1.63963
1.92206
1.96063

300
β 0.07259 1.12882

1.08381
1.41339
1.45840 0.06317 1.65029

1.61113
1.89791
1.93707

θ 0.03271 1.94638
1.92610

2.07461
2.09489 0.06148 1.68214

1.64402
1.92314
1.96126

350
β 0.06656 1.13347

1.09220
1.39438
1.43565 0.05788 1.65679

1.62091
1.88368
1.91956

θ 0.03000 1.94137
1.92277

2.05897
2.07757 0.05514 1.69245

1.65826
1.90858
1.94277

400
β 0.06197 1.13741

1.09899
1.38032
1.41874 0.05339 1.67256

1.63946
1.88183
1.91493

θ 0.02702 1.94992
1.93316

2.05583
2.07258 0.04858 1.70802

1.67790
1.89845
1.92857

450
β 0.05874 1.14353

1.10711
1.37378
1.41019 0.05099 1.67039

1.63877
1.87027
1.90188

θ 0.02646 1.94840
1.93200

2.05212
2.06852 0.04785 1.70980

1.68013
1.89739
1.92706

500
β 0.05550 1.14987

1.11546
1.36742
1.40183 0.04848 1.67082

1.64076
1.86085
1.89090

θ 0.02449 1.95234
 0.93715

2.04836
2.06355 0.04506 1.71833

1.69040
1.89495
1.92289

The first entire of each parameter is for 95% significance level and second for 99%.
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5.1 Findings

From these tables, we can be made the following observations on the 
performance of SS-PaLT parameter estimation of the rayleigh distribution:

1. For the second set of parameters (β=1.75, θ=1.5), the maximum likelihood 
estimators have good statistical properties than the first set of parameters 
(β =1.25, θ =2) for all sample size for Type-I censoring (Table 1); and for 
Type-II censoring the first set of parameters (β =1.25, θ =2), the maximum 
likelihood estimators have good statistical properties than the second set of 
parameters (β = 1.75, θ=1.8) for all sample size (Table 4).

2. as the sample sizes increases the MSE and raBias of the estimated 
parameters decreases. This indicates that the maximum likelihood estimates 
provide asymptotically normally distributed and consistent estimators for 
the parameters and acceleration factor in both cases of censoring.

3. The asymptotic variances of the estimators are decreases as sample size is 
increasing (Table 2 and Table 5).

4. The interval of the estimators decreases when the sample size is increasing. 
also, it can be seen that the interval of the estimators at 95% confidence 
level is smaller than the interval of estimators at 99% confidence level 
(Table 3 and Table 6).

6. Conclusion

In this article, we considered the testing step-stress PaLT for the rayleigh 
distribution under Type-I and Type-II censored data. In step-stress PaLT, 
the items are run at both normal and accelerated conditions. Under Type-I 
censoring, the test unit is first run at normal use condition, and if it does not 
fail for a specified time τ, then it is run at accelerated condition until censoring 
time Y

c
 is reached. While, in the case of Type-II censoring, the test unit is first 

run at normal use condition, and if it does not fail for a specified time τ, then it 
is run at accelerated condition until number of failures r is reached.  

We present the performance of the ML method to estimate the rayleigh 
parameter and acceleration factor in step-stress PaLT for Type-I and Type-II 
censoring case. The simulation results show that the ML method performs well 
in most cases in terms of the MSE, raBias and rE. hence, we could conclude 
that the second set of parameters have good statistical properties than the first 
set of the parameters for all sample sizes for Type-I and vise versa for Type-
II censoring. It is also observed from numerical that MLE are consistent and 
asymptotically normally distributed. Thus, ML method is a good approach to 
estimate the parameters of the rayleigh distribution and the accelerated factor 
in step-stress PaLT under censored data. 
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The further research could be used other methods such as the expectation 
maximization (EM) algorithm to estimating the parameters of rayleigh 
distribution and the accelerated factor in step-stress PaLT under Type-I and 
Type-II and multiply censored data or progressive censoring.
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