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Abstract: Some inequalities for the mean and standard deviation of 
continuous probability distributions are presented here in this paper and their 
geometrical significance has also been discussed. It has been shown that the 
inequalities obtained in this paper are better than the inequalities discussed by 
J. Muilwijk[6]. 
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1. INTRODUCTION 

If µ1
/  be the mean and σ2 the variance for continuous probability distribution 

function. then variance of a random variable which varies over the interval 
 [a, b] is bounded by the following inequality [1, 2, 3&4]:
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a bound on variance of a continuous random variable which varies over 
the interval [a, b] is discussed in references [3,4&6]. In this paper we try to 
obtain the reduction in this bound for the case when minimum and maximum 
values of the probability density function are prescribed. the geometrical 
significance of these bounds is discussed in relation with the circle diagram 
given in [5&7].
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2. MAIN RESULTS

Theorem 2.1

Let µ1
/ be the mean and σ be the standard deviation of a continuous random 

variable x whose probability density function φ(x) is defined in the interval 
[a, b]. If m be the infimum of the function φ(x) in the interval [a, b] then we 
must have, 
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φ( ) .x dx  (2.2)

the definite integral of probability distribution function φ(x) over the limits a 
to b is unity therefore from (2.2) we have 
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Since x lies in the interval [a, b] therefore

 ( )( )x a x b− − ≤ 0  

Since m be the infimum of the function φ(x) in the interval [a, b] then Inequality 
(2.1) follows from (2.3) and (2.4).
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Theorem 2.2

Let µ1
/  be the mean and σ be the standard deviation of a continuous random 

variable x whose probability density function φ(x) is defined in the interval 
[a, b]. If M be the supremum of the function φ(x) in the interval [a, b] then we 
must have,
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the definite integral of probability distribution function φ(x) over the limits a 
to b is unity therefore from (2.6) we have 
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Since x lies in the interval [a, b] therefore

 ( )( )x a x b− − ≤ 0  

Since M is the supremum of the function φ(x) in the interval [a, b] then 
Inequality (2.5) follows from (2.7) and (2.8).

3. GEOMETRICAL SIGNIFICANCE OF INEQUALITIES (2.1) AND 
(2.5)

i) Inequality (2.1) can be written as 
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From inequality (1.2) we see that the point (µ1
/ ,σ) in µ1

/ σ- plane lies in the 
upper half of the circle with diameter ‘b-a’. From inequality (2.1) we find that 
the point (µ1

/ ,σ) in µ1
/ σ- plane lies in a region bounded by circles with radii 

k
1
 and k

2
 (k

1
 < k

2
). this is shown in figure (3.1). From figure (3.1) we see that 

inequality (2.1) affects an improvement in inequality (1.2), see[6] in terms of 
further reducing the region in which the point (µ1

/ ,σ) must of necessity lie.

Figure: 3.1: If m be the infimum of the probability density function φ(x) in the 
interval [a, b] then from inequality (3.1) it follows that the point (µ1

/ ,σ) in µ1
/ ,σ 

-plane lies in a region bounded by circles with diameter EF and CD.
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ii) Inequality (2.5) can be written as
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From inequality (1.2) we find that the point (µ1

/ ,σ) inµ1
/  σ- plane lies in a region 

bounded by circles with radii l
1
 and l

2
 (l

1
 < l

2
 ). this is shown in figure (3.2). 

From figure we see that inequality (2.5) affects an improvement in inequality 

Figure: 3.2: If M be the supremum of the probability density function φ(x) in 
the interval [a, b] then from inequality (2.5) it follows that the point (µ1

/ ,σ) in  
µ1

/ ,σ -plane lies in a region bounded by circles with diameter EF and CD.
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(1.2), see[6], for (b-a) M ≤ 3, in terms of further reducing the region in which 
the point (µ1

/ ,σ) must of necessity lie.

4. CONCLUSION/RESULT ANALYSIS

a bound on variance of a continuous random variable which varies over the 
interval [a, b] is discussed in references [1, 3, 4&6]. here we have obtained the 
reduction in this bound for the case when minimum and maximum values of 
the probability density function are prescribed.
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