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Abstract: The purpose of this paper is to introduce and study some new 
class of definitions like µ -point closure and gµ –regular space concerning 
generalized topological space. We obtain some characterizations and several 
properties of such definitions. This paper takes some investigations on 
generalized topological spaces with gµ –closed sets and gµ–closed sets.
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1. INTRODUCTION

This paper is concerned with the adaptation of the change of topology approach 
from topological topics to aspects of the theory of generalized topological 
spaces. This shows that “the change of generalized topology” exhibits some 
characteristic analogous to change of topology in the topological category. A 
general application of the change of generalized topology approach occurs 
when the spaces are ordinary topological spaces. In this case, the generalized 
topologies are families of distinguished subsets of a topological space which 
are not topologies but are generalized topologies. Some common examples 
of generalized topologies that are associated with a given topological space. 
Consider the collection of all s.o, p.o, β -open, α -open sets in the (ordinary) 
topology(X, τ). Each collection is a generalized topology on X. In fact, the 
family of α -open set is a topology. But in general, the other three collections, 
namely, the family of s.o, p.o and β -open sets are not topologies on X.

In 1992, Blumberg defined what he meant by a real-valued function 
on Euclidean space being densely approached at a point in its domain. 
Continuous functions satisfy his condition at each point of their domains. 
Since then, and particularly in the past four decade, a large number of 
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properties closely related to the notion of continuity of a function have been 
introduced. The number of properties so large that different authors have 
used the same term for different concepts and other authors have resorted 
to exotic terms, some times because the natural term has already been pre-
empty. It turns out that many of these concepts are not new in the sense that 
if one is willing to change the topology on the domain and /or the range 
then the class of functions satisfying a particular property often coincides 
with the class of continuous functions under the new topologies from their 
point of view many of the results in the literature concerning such functions 
are essentially restatements in disguise of familiar properties of continuous 
functions. The main purpose of our paper is to make this more precise in 
generalized topology.

In this paper we continue our study in the style of [5]. Section 2 is devoted 
to preliminaries and section 3 is devoted to a brief review of the µ – compact 
and gµ – regular spaces and some new results are derived. The properties with 
which we shall be dealing in this paper are quite diverse and include among 
others, the property of being a zero set, or a Gδ -set, being a(regularly) closed 
set, being a point closure, being a connected set or a compact set, being a 
strongly regular closed set etcetera.

Intensive research on the field of generalized topological space (X, µ) 
was done in the past ten years as the theory was developed by A.Csaszar[1], 
A.P.Dhana Balan[5]. For background material, paper[5] may be perused.

2. PRELIMINARIES

Let X be a set. A subset µ  of exp X is called a generalized topology on X and 
(X, µ ) is called a generalized topological spaces [1] (abbr.GTS) if µ  has the 
following properties:

(i) ϕ µ∈ ,
(ii) Any union of elements of µ  belongs to µ .

A generalized topology µ is said to be strong [2] if X ∈ µ.  For the space 
X,µ( ) , the elements of µ are called µ-open sets and the complement of µ-open 

sets are called µ-closed sets. For A⊂X, we denote by C Aµ ( ) the intersection 
of all µ-closed sets containing A, that is the smallest µ-closed set containing 
A, and by i

µ
(A), the union of all µ-open sets contained in A, that is the largest 

µ-open set contained in A. It is easy to observe that c
µ
 and i

µ
 are idempotent 

and monotonic, where γ : exp X → exp X is said to idempotent if and only if 
A⊂B⊂X implies γ(γ(A)) = γ(A) and monotonic if and only if A⊂B⊂X implies 
γ(A) ⊂ γ(B). It is also well known that from [3,4] that if µ is a generalized 
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topology on X and A⊂X, x∈X then x∈c
µ
(A) if and only if x∈M∈µ⇒M∩A ≠ ϕ 

and c
µ
(X-A) = X-i

µ
 (A).

Definition 2.1 A subset A of (X, µ) is

(i) µ-semiopen in X if A⊂c
µ 
(i

µ
 (A)).

(ii) µ-preopen if A⊂i
µ
(c

µ 
(A)).

(iii) µ-β-open if A⊂c
µ
(i

µ
(c

µ 
(A))).

(iv) µ-α-open if A⊂i
µ
(c

µ
(i

µ
 (A))).

(v) µ-regular open if A = i
µ
(c

µ
(A)). The complement of µ-semi open, µ-α- 

open sets are µ- semi closed, µ-α- closed.

Definition 2.2 A GTS (X, µ) is said to be

(i) µ-Hausdorff [11] if for any two distinct points x and y in X ,there exists 
disjoint µ-open sets U and V such that x∈U, y∈V.

(ii) µ-regular [11] if for each µ-closed set F and each point x∉F, there exists 
disjoint µ-open sets U and V such that x∈U, F⊆V.

3. ∝ – COMPACT AND g∝– REGULAR SPACES

Definition 3.1 A subset A of X is said to be a point closure if A is the µ-closure 
of a singleton. In particular, A is said to be a µ-point closure if it is the µ-closure 
of a µ-open singleton set. A strong generalized topological space (SGT) X is 
called a µTD - space if x∈X, then there are µ-open set U and µ-closed set F 
such that U∩F = {x}.

Example 3.1

(i) One point compactification is µ-point closure. 
(ii) Every closed interval is the µ-point closure of its µ-s.o interval.
(iii) X = {a,b,c}, µ={φ,{a},{b},{a,b}}. µ-closed = {X,{b,c},{a,c},{c}}.
Let A = {a,c}. Then A is a µ-point closure of {a}.
Result: Every µ-point closure is µ-closure. 

Theorem 3.1: Let X be a space and x∈X. Let A⊂X be µ-point closure. Then A 
= X-∪{µ-µ

x
} where µ

x 
= {U: x∈U∈µ}.

Proof: Since A is µ-point closure, we have A = cµ({x}) for some x∈X. Let y∈ cµ 
({x}) = X - iµ (X-{x}). Then y∉ iµ (X-{x}). Suppose U∈ µ

y
,then U⊄X-{x}, Hence, 

x∈U. That is U∈ µ
x
 So, µ

y 
⊂

 
µ

x
 and hence µ - µ

x
 ⊂ µ - µ

y.
 It follows that ∪ (µ - µ

x
) 

⊂ ∪(µ - µ
y
). This implies that y ∉ ∪ (µ-µ

y
) and so y ∉ ∪(µ-µ

x
). Consequently, 
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y∈ X-∪(µ - µ
x
). On the other hand, let y∈∪(µ - µ

x
). Then we have y∈cµ({x}) by 

reversely the proof above. This proves that cµ({x}) = X-∪( µ- µ
x
) = A.

Definition 3.2: Let X be a space (i) Let x∈X and U ∈ µ. Then x is called a 
representative element of U if U⊂V for each V∈µ

x
. (ii) A space X is called a 

c
o
-spaceif c

o 
= X, where c

o 
is the set of all representative element of sets of µ.

Result: Let A and B be subsets of a c
o
-space. Then (i) iµ(A∩B) = iµ (A)∩ iµ 

(B).
(ii) cµ (A∪B) = cµ (A)∪ cµ (B).
Theorem 3.2: Let X be a µTD , c

o
-space and let A and B be µ- open and µ- 

closed sets respectively.
Then iµ (A∩B) = iµ ({x}).

Proof: Let A⊂X be µ-open. Since X is µTD , there exists µ- closed set B in X 
such that A∩B = {x}. As X is a c

o
-space, iµ (A∩B) = iµ (A)∩ iµ (B) = iµ ({x}). 

Definition 3.3: Let X be a SGT space and let A⊂ X. Then (i) A is said to be a 
µT

2
 - closed set relative to X iff every open cover  of A has a finite subfamily 

′ ⊂ A   such that A ⊂ ∪{cµ (U)/U ⊂ ′  }. 
(ii) A is said to be µT

2
-closed set iff (A,µ/A) is µT

2
-closed.

Example 3.2: Let (X, µ) = (X,τ) be a SGT space with the indiscrete topology. 
Every subset of X is µ-open and µ-dense in X. So for every open cover  and 
U ∈ , cµ (U) = X and (X, µ) is µT

2
 - closed.

Definition 3.4: A space X is said to be locally µT
2
-closed if for each x∈X and 

a µ-open set U containing x, the µ-closure of U is µT
2
-closed. 

Theorem 3.3: Let X be a SGT space. Then (i) if A⊂ X is µT
2
-closed set relative 

to X, then A is µ-closed in X if X is µ-Hausdorff. (ii) if A ⊂X is µ- open set, A 
is µT

2
-closed set relative to X iff A is µT

2
-closed set.

Proof: (i) Let x∈X-A. Since X is a µ-Hausdorff space, there exists for each 
y∈A, µ-open neighbourhoods U

y
 and V

y
 of x and y respectively such that U

y 
∩ 

V
y
 = φ. Then {V

y 
/y∈A} is a µ–open cover, hence a µ-open cover of A. Since A 

is µT
2
–closed, there exist a finite subset B⊂A such that A ⊂ ∪ {cµ (V

y
)/ y∈B}. 

Let U = {U
y 
/y∈B}. Then U is a µ-open neighbourhood of x such that A ∩ U = 

φ. Then cµ 
(A) = A and hence A is µ-closed.

(ii) Assume A to be a µT
2
-closed set. Then (A,µ/A ) is µT

2
 –closed. Let {U

y 
/

y∈A} be a µ-open cover of A with U
y
∈ µ-open set of X for every y∈A. Let V

y 

= A ∩ U
y
 . Since A is µ-open, V

y
∈ µ-open set of A. So {V

y 
/y∈A} is a µ-open 

cover of A in A. Since(A,µ/A) is µT
2
-closed, there exists a finite subset B⊂A 

such that A⊂∪ {(V
y
)/ y∈B⊂ A } (or) A ⊂∪{µ - cl

A
 (V

y
) /y∈B⊂ A}. Now 

µ µ µ− ( ) = ( )∩ ⊂cl V c V A c VA y y y( ).  So A c U y B Ay⊂ ∪ ( ) ∈ ⊂{ }µ / .  
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Thus A is µT
2
-closed set relative to X. Since A is µ–open, every µ–open subsets 

of A is µ-open in X, and hence the converse part of (ii) is obvious. 

Definition 3.5: [10] A GTS (X, µ) is µ-compact if every µ-open cover of X has 
a finite subcover. A subset A of X is said to be µ-compact relative to (X, µ) if 
every cover of A by µ-open sets of X has a finite subcover.

Definition 3.6: A collection  of subsets of a SGT space X is said to be a 
µ-covering of X if the union of the elements of  equal to X. It is called a 
µ-open covering of X if its elements are µ-open subsets of X.
Definition 3.7: A space X is said to be µ-compact if every µ- open covering  
of X contains a finite sub collection that also covers X.

Example 3.3: The subspace X
n

n Z= { }∪ ∈










+0
1

/  of �  is µ-compact. 

Given a µ-open covering  of X, there is an element U of  containing 0. The 

set U contains all but finitely many of the points 
1

n
; choose, for each point of 

X not in U, an element of  containing it. The collection consisting of these 
elements of , along with the element U, is a finite subcollection of  that 
covers X. Let Y be a subspace of X. A collection of subsets of X is said to be a 
covering of Y if the union of it elements contains Y.

Theorem 3.4: Let Y be a subspace of X. Then Y is µ-compact iff every covering 
of Y by µ-open sets in X contains a finite sub collection covering Y.

Proof: Suppose Y is µ-compact. Let A A
J

= { } ∈α α
. be a covering of Y by 

µ-open sets in X. Since Y is a subspace of X A Y J, /α α∩ ∈{ }  is µ-open in Y. 

Then the collection A Y Jα α∩ ∈{ }/  is a covering of Y by µ-open sets in Y. 

Hence A A A Ynα α α1 2, , , ∩{ }  covers Y. Then A A A nα α α1 2, , ,{ }  is a sub 

collection of  that covers Y. Conversely, suppose that the given condition holds. 
Let ′ = ′{ }A Aα  be a covering of Y by µ-open sets in X. By hypothesis, some 
finite sub collection A A A

nα α α1 2
, , ,{ }  covers Y. Then ′ ′ ′{ }A A A

nα α α1 2
, , ,  

is a subcollection of ′  that covers Y, and so Y is µ-compact. 

Theorem 3.5: Every µ-closed subset of a µ-compact space is µ-compact.
Proof: Let F be a µ-closed subset of a µ-compact space K and let {Vα} be 
a covering of F by sets µ-open in X. Let Fc = W. Then W is µ–open (single 
µ-open set) form an µ-open covering of K by adjoining {Vα} with Fc. Then 
W V∪( )∪

α α  covers K. This µ-open cover of K contains a finite (sub cover) sub 

collection V
iα{ }  such that K W V V V

n
⊂ ∪ ∪ ∪ ∪α α α1 2

 .  Suppose this sub 
collection contains the set W, then discard W. If this sub collection does not 
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contain the set W, then leave the sub collection alone. The resulting collection 
is a finite sub collection of F. Then F V V

n
⊂ ∪ ∪α α1

 .

Theorem 3.6: Suppose X is a µ-Hausdorff space, K⊂X, K is µ–compact, and p ∈ 
Fc. Then there are µ–open sets U and W such that p ∈ U, K⊂ W and U∩ W = φ
Proof: Given X is a µ-Hausdorff space, K⊂X is µ-compact and q ∈ K. Since X 
is µ-Hausdorff and K⊂X, we have, there exist disjoint µ-open sets U

q
 and V

q
 

such that p ∈ U
q 
and q ∈ V

q
.

Since K is µ-compact, the collection V qq / ∈{ }K  is a covering of K. 

Then there are points q q qn1 2, , , , ∈ K  there exist finite sub collection 

V V Vq q qn1 2
∪ ∪ ∪  such that K ⊂ ∪ ∪ ∪V V Vq q qn1 2

 .  Then the µ–open 

set W = ∪ ∪ ∪V V Vq q qn1 2
 . contains K and it is disjoint from the µ–open 

set U = ∪ ∪ ∪U U Uq q qn1 2
  formed by taking the intersection of the 

corresponding µ–open sets of p. Therefore U is a µ–open set of p, K⊂W and 
U ∩ W = φ 

Corollary 3.7: (a) µ–compact subset of a µ–Hausdorff spaces are µ-closed. (b) If 
F is µ-closed and K is µ-compact in a µ-Hausdorff space, then, F∩K is µ-compact. 
Proof: (b) follows from (a) and Theorem 3.5

Theorem 3.8: The image of a µ-compact space under a µ-continuous map is 
µ–compact.
Proof: Let X be µ-compact. and let f : X→Y be µ– continuous. Let  be a 
covering of the set f(x) by µ-open sets in Y. The collection {f -1(A)/A∈  
} is a collection of sets covering X. These sets are µ-open in X because f is 
µ-continuous. Hence finitely many of them f-1(A

1
),... , f-1(A

n
),(say) cover X. 

Then the sets A
1
, ... , A

n
 cover f(x). This implies that f(x) is µ–compact.

Theorem 3.9: Let f : X→Y be a bijective µ-continuous function. If X is 
µ-compact and Y is µ – Hausdorff then f is a homeomorphism. 
Proof: The µ-continuity of the map f -1 follows if the images of µ-closed sets of 
X under f are µ - closed in Y. Suppose that A is µ-closed in X. Then by Theorem 
3.5, A is µ-compact. Thus, by Theorem 3.8, f(A) is compact. Since µ-compact 
subset of a µ-Hausdorff space is µ-closed, we have f(A) is µ- closed in Y.
Remark: If X and Y are GTS and f : X→Y, we call f an µ-open (µ-closed) set A 
in X, f(A) is µ-open iff f is µ-closed iff f -1 is continuous. Thus a 1-1 onto map 
f is a homeomorphism iff it is µ-continuous and µ-open iff it is µ-continuous 
and µ-closed.

If (X, µ) is a GTS, then we say that a subset A ∈ δ ⊂ ρ (X) is a δ-set[4] if 
for every x∈A, there exists a µ-closed set  such that x ∈ i

µ
()⊂A. Then (X,δ) 

is a GTS, [[4] proposition 2.1] suchthat δ ⊂ µ[4] Theorem1] Elements of δ 
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are called δ-open sets of (X,µ),For A ⊂ X. iδ (A)and cδ (A) are respectively the 
interior and closure of A in (X, δ). The family of all α-open (resp. semi open, 
pre open, b-open, β-open) sets of the generalized topological spaces (X, δ) 
denoted by (resp. ξ η ε ψ, , , ). 

Definition 3.8: [8] Let (X, µ) be a generalized space. A subset A of X is said to 
be g

µ
-closed if c A Mµ ( ) ⊂  whenever A ⊂ M and M ∈ µ. Various properties 

of g
µ
–closed sets are discussed and characterizations are given in[2] and these 

properties are valid for the generalized topologies induced by µ and δ. Given 
a topological space (X,τ) and a generalized topology µ on X, a subset A of X is 
said to be gµ -closed if c

µ
(A)⊂M whenever A⊂M and M∈τ . If M = I, then g 

-closed sets coincide with the g –closed sets of Levine[7] [ie, A⊂X is g –closed 
if cl(A) ⊂U whenever A⊂U and U is open in X].

The difference between the two definitions g
µ
–closed set and gµ–closed 

set is that the definition of gµ–closed sets uses elements of the topology τ 
on X where X∈τ where as the definition of g

µ
–closed sets uses elements of 

the generalized topology µ where X may or may not be in µ. Therefore, the 
definition of g

µ
–closed sets is more general, since the definition uses a large 

class of generalized topologies which also contains the class of all topological 
spaces. Moreover, similar results established for gµ–closed sets are already 
established for g

µ
–closed sets in [5]. The following definition is the definition 

for generalized closed sets in generalized spaces. 

Definition 3.9: A subset A of M
µ
 = ∪{B/B ∈ µ} of a generalized spaces (X,µ) 

is said to be gµ
*  - closed if c

µ
(A)∩M

µ
 whenever A⊂M and M ∈ µ.

Note that, if the space is strong, then this definition coincides with the 
definition of g

µ
–closed sets. The above definition is the common definition of 

generalized closed sets in generalized spaces for both strong and non strong 
spaces.
Note that M A Aµ µ= ∪ ∈{ }/  and X ∉ µ.

Examples: Let (X,µ) be a GT. Suppose M A A Xµ µ= ∪ ∈{ } ≠/  and 
τ ρ µ= ( )∪{ }M X .  Then every µ-closed subset of X contains X-M

µ
. 

Therefore, every subset A of M
µ
 is neither a g

µ
–closed set nor a gµ–closed set. 

Also gµ
* –closed sets depend on the generalized topology µ. Every non-empty 

subset B of X such that B∩(X-M
µ
) ≠ φ or B ⊂(X-M

µ
) is not contained in any 

µ -open set which implies that such sets are trivially g
µ
–closed set. Clearly, 

such sets are gµ –closed set , since X is the only open set containing such sets.

Definition[3]: Let (X,τ) be a topological spaces and µ be a generalized topology 
on X. (X,τ) is said to be a µg–regular spaces if for each closed set F and a point 
x ∉ F, there exist disjoint µ-open sets U and V such that x ∈ U, F⊂V.
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Example 3.4: Let X = {a,b,c} and let µ = {φ {a},{b},{a,b}} be the family of 
all generalized open sets, which is not strong. Consider the set {a} and {b}. 
Then c

µ
({a}) = {a,c} and c

µ
({b}) = {b,c}. It is easy to show that µ is not µg 

-regular.
Example 3.5: Let X = I

n
 = {1,2,...,n}.}, Define K : ρ(I

n
) → ρ(I

n
) by

K A
A for some i

( ) =
−{ } ⊆ ∈





Aif I i I

otherwise
n

φ,
,

then µ = {φ, X} ∪ {A ⊂ I
n
-{i}, i =1,2,...,n}, the co singleton generalized 

topology defined on a finite set. The only µ– closed sets are φ, X and singleton 
subsets of I

n
. In this space, the family of all g

µ
–closed sets and the family of 

all µ- closed sets coincide. For the topology τ = {φ}∪ {G ⊂ X/{1,2} ⊂ G} on 
X, the µ-closed sets are precisely the gµ–closed sets. This space (X,τ) with the 
family of all generalized open sets µ which is strong, is also not µg – regular. 

Example 3.6: Consider the space (X,τ) and generalized topology µ of the 
Example 2.3 of [9]. In this space, {a,c} is gµ– closed but it is not gµ

*  – closed 
and also not g

µ
 – closed. If (X, µ) is any generalized spaces which is not strong, 

then in [6, proposition 1.2], it is established that X ∈σand so it follows that 
always X∈b.And X ∈ β. The following example shows that in general, X ∉ µ, 
then X ∉ λ for λ µ δ α π γ η∈{ }, , , , , .
Example 3.7: Let X be the set of all real numbers and µ = {φ {0}}. Then X ∉ 
λ where λ µ δ α π γ η∈{ }, , , , , .
Lemma 3.10: Let (X, µ) be a GTS which is not strong. Then the following 
hold.
(i) X ∉π and hence X ∉ α, 

(ii) X ∉ δ and hence X ∉ η  

Note that, if is a generalized topology on X, and let M
µ
 = ∪{A/A∈µ}. X 

∉ µ and λ belongs to the family of all µ- open sets µ, or the family of all α- 
open sets α, or the family of all Semi open sets σ or the family of all pre open 
sets π or the family of all b - open sets b or the family of all β- open sets β. 
Then by the Lemma 3.10, we have M X Mλ λµ α π δ≠ ∈{ } =if and X, , ,  if 
λ σ β ε ξ ψ∈{ }, , , , ,b  Moreover, M M M Xλ µ λ= ≠if .
Definition 3.10: Let X be a non-empty set and let µ be a generalized topology 
on X. The space (X, µ) is said to be gµ–regular if for each pair consisting of a 
point x ∈ Mλ and a gµ

*  – closed set F not containing x, there exist disjoint µ - 
open sets U and V such that x∈U and F⊂V. 
Remark: Every gµ –regular space is a µ-regular space.

Dhanabalan, AP



A Class of 
Separation Axioms 

in Generalized 
Topology

159

REFERENCES

[1] Csaszar, A., Generalized topology, generalized continuity. (2002). Acta. 
Mathematica Hungarica, 96 (4), 351-357.

 http://dx.doi.org/10.1023/A:1019713018007

[2] Csaszar, A., Extremally disconnected generalized topologies. (2004). Annales 
Univ. Budapest, Sectio Math, 17, 151-165.

[3] Csaszar, A., Generalized open sets in generalized topologies. (2005). Acta 
Mathematica Hungarica, 106, 1:2, 53-66.

[4] Csaszar, A., d and q modifications of generalized topologies. (2008). Acta 
Mathematica Hungarica, 120 (3), 275-279.

 http://dx.doi.org/10.1007/s10474-007-7136-9

[5] Dhana Balan, A.P., μ-Continuous Functions on Generalized topology and certain 
Allied Structures. (2014). Math. Sci. Int. Research jou, 3 (1), 180-183.

[6] Guldurdek, A and Ozbakir, O.B., On – semi open sets. (2005). Acta Mathematica 
Hungarica, 109 (4), 347-355.

[7] Levine, N., A decomposition of continuity in topological spaces, (1961) Amer. 
Math Monthly 68, 44-66. http://dx.doi.org/10.2307/2311363

[8] Maragathavalli, S., Sheik John, M and Sivaraj, D., On g – closed sets in 
generalized topological spaces. (2010). J.Adv. Res. Pure. Maths. 2 (1), 57-64, 

[9] Noiri, T, and Roy, B., Unification of generalized open sets on topological spaces. 
(2010). Acta. Math. Hungarica, 130 (4), 349 – 357. 

[10] Roy, B, and Jafari, S., On covering properties via generalized open sets. (2002). 
Annales universitatis scientiarum Budapestinensis de Rolando Ectros Nominate 
Mathematica, 55, 57 – 65.

[11] Roy, B., On a type of generalized open sets. (2011). Applied General Topology, 
12 (2), 163-173.


