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Abstract In this article, the augmented strength reliability models are derived 
by assuming that the Inverse Gaussian stress(Y) is subjected to equipment 
having exponential strength(X) and are independent to each other.In a real 
life situations many manufactured new equipments/ products are being failed 
completely or partially at very early stage of its use, due to lack of its strength. 
Hence, ASP is proposed to protect such types of failures. The maximum 
likelihood (ML) and Bayes estimation of augmented strength reliability are 
considered. In Bayesian paradigm the non-informative types (uniform and 
Jeffrey’s) priors are chosen under symmetric and asymmetric loss functions for 
better comprehension. A comparison between the ML and Bayes estimators of 
augmented strength reliability is carried out on the basis of their mean square 
errors (mse) by simulating Monte-Carlo samples from posterior distribution by 
using Metropolis-Hasting approximation.

Keywords: Stress-Strength reliability, Augmentation, Exponential 
Distribution, Inverse Gaussian distribution, Metropolis-Hasting Algorithm.

1. INTRODUCTION

The history of stress-strength reliability is old enough to the researchers. 
The problem of estimating R P X Y= >( ), where X and Y are considered to 
be independent random variables, has attracted the researchers because of its 
applicability in various directions of real life.It is considered as the reliability 
parameter that one random variable exceeds another. The strength reliability 
is defined as the probability that the system will survives its usual life by 
performing its intended function, provided that the random strength(X) should 
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be higher than the random stress(Y) and vice versa for its failure processes. In 
reliability theory, the era of stress-strength reliability was introduced by [4] and 
after that the procedure for obtaining distribution free confidence interval for 
stress-strength reliability have discussed by [5] and [15]. A plenty of literature 
is available towards the stress-strength reliability problems for both single 
component as well as for multi component designed system. Initially, [12], 
[23] and [14] have attempted single component reliability under stress-strength 
set up, where stress and strength of inbuilt component are independent. Even, 
a number of work related to multi-component stress-strength reliability have 
discussed by well known researchers, like, [3], [13] and [24] for various life 
time distributions with the assumption that random stresses are independent 
and identically distributed with known distribution and also independent of 
strength. More reference works on stress-strength reliability for last four 
decades can be found out in the classical monograph of Kotz et. al. [22]. For 
recent developments related to system reliability, one may refer to [25] and 
[26] and references therein.

In the present real life scenario of competitive global market, many 
manufacturing industries are lunching several types of newly designed products/
equipments viz., electronic devices, automobiles etc., after conducting their 
strength breaking tests in order to meet quality standards and the customers’ 
expectations. In fact, these products are highly sophisticated and costly. In 
some occasions, these products may have the impression of early failure in its 
first or subsequent use. Such types of failures are known as irrelevant failures 
and hence the strength of existing equipment becomes weaker. One can reuse 
such products by repair and may enhance its strength to dominate the imposed 
random stress by adopting the three possible cases of Augmentation Strategy 
Plan (ASP)(see., [7]).

The problem of augmenting strength reliability was firstly initiated by 
[1]. They derived augmenting strength reliability models for exponential 
distribution for three different possible cases of augmentation. After one 
decade, [7] extended the work of [1] and pointed out the applicability of ASP 
for augmenting the gamma strength reliability of equipment for same set up. 
In similar manner, [8] studied for augmenting Inverse Gaussian stress strength 
reliability under ASP. [9,10] have also attempted the problems of augmented 
strength reliability models under a coherent system set up for exponential and 
gamma life time models respectively. [2] have also studied strength reliability 
problem by assuming that the form of the distribution of strength (X) and 
stress(Y) follow power function distribution and exponential distribution 
respectively, a desired level of strength-reliability is achieved for the possible 
variations in model parameters, without using ASP.
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Some of the authors also focused on strength reliability of equipment to face 
the array of stresses. [19, 20] discussed with the exponential strength reliability 
problems for Rayleigh and generalized Weibull Stresses respectively. But [17] 
and [21] have attempted the strength reliability problems for multi-component 
stresses having exponential and Half-normal Distributions respectively with 
common strength follows power function distribution for usual stress-strength 
set up.

We consider the problem of augmented strength reliability models 
of any equipment which have minimum possibility of survival in nature 
i.e., facing early failure due to weak in potential under the generalized 
case of ASP. It is assumed that initially the strength of equipment follows 
exponential distribution with scale parameter (θ ) and stress follows Inverse 
Gaussian distribution with parameters (μ, λ).The detailed descriptions 
and usefulness of the Inverse Gaussian distribution (also known as Wald 
Distribution) in the study of life testing and reliability problem is reported 
by [11]. In this article, a comparison between the maximum likelihood (ML) 
and Bayes estimators of augmented strength reliability for the generalized 
case of ASP has been carried out on the basis of their mean square errors. 
In Bayesian context, the non-informative (uniform and Jeffrey’s) types of 
priors are considered under squared error loss function (SELF) and LINEX 
loss function (LLF).

The rest of the paper is organized as follows. Section 2 presents the 
development of the augmented strength-reliability expression for generalized 
case of ASP. In section 3, the maximum Likelihood estimators of parameters of 
generalized augmented strength reliability have presented. Bayes estimators of 
augmented strength reliability for uniform and Jeffrey’s prior under symmetric 
and asymmetric loss functions have been presented in section 4. Section 5 
presents the simulation study and discussion. In section 6, the concluding 
remarks and further scope of proposed research are given.

2. AUGMENTED STRENGTH RELIABILITY MODELS

Let X and Y represent the strength and stress of the equipment respectively 
which are independently distributed. The strength (X) follows exponential 
distribution with parameter θ and the stress (Y) follow an Inverse Gaussian (IG) 
distribution with µ > 0 (mean) and λ > 0 (scale) parameters. The probability 
density functions (pdf) of random variables X and Y are given as

 f x e xX

x

( ) ; ,= > >
−1

0 0
θ

θθ  (1)
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To enhance the strength of a weaker strength / failed equipment, we implement 
the Augmentation Strategy Plan (ASP), which comprises three possible cases 
to enhance the strength reliability of an equipment to face the common stress 
proposed by [7]. It is noticed that case-I and case-II of ASP were special cases 
of case-III, which we call it as generalized case of ASP. Under the generalized 

case of ASP the enhanced strength Z Sk i
i

n

=
=
∑

1

 follow Gamma distribution with 

parameters m nθ ,( ), where the subscript ’ ’k  denotes the kth  (1, 2, 3) case of 
ASP and each S i ni ( , , ,..., )=1 2 3  are defined as m times of the initial strength 
(S mXi i= ) of the equipment with distribution as exp mθ( ) . The probability 
density function (pdf) of augmented strength Zk( )  under generalized case of 
ASP can be given as

 f z
m n

n
m z z n zZ k k k kk

( ) = ( )
− − > >

( )
exp( )

θ
θ θ

Γ
1  ;  0,m, 0  (3)

Where, ’ ’m  is a positive real number and ’ ’n  is positive integer. The probability 
density of two special cases of ASP can also be obtained from equation (3) as, 
case-I can be found by substituting k n= =1 1,  and case-II can be obtained by 
substituting k m= =2 1, .
Thus, the strength reliability of the equipment under generalized case of ASP 
is given by
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Where erfc(.) is complementary error function and it can also be defined in 
terms of error function. The error function equals the twice of the integral of 
a normalized Gaussian function between 0 2and x σ . Thus the error and 
complementary error functions are respectively defined by
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 erf x e dtt
x

( ) = −∫
2 2

0

2

π

σ

and erfc x erf x( ) = − ( )1  (5)

Here, one may notice that the augmented strength reliability for other two 
special cases of ASP can be found as, case-I can be found by substituting 
k n= =1 1,  and case-II can be obtained by substituting k m= =2 1, in  
equation (4).

3. MAXIMUM LIKELIHOOD ESTIMATION OF GENERALIZED 
AUGMENTED STRENGTH RELIABILITY

Suppose Z Z Z Zk k k k n={ }1 2 1
, , ... , and Y Y Y Yn={ }1 2 2

, ,..., be the two independent 
random samples of sizes n n1 2and  drawn from the augmented exponential 
strength and inverse Gaussian stress distributions respectively. Then the 
generalized form of likelihood function based on the observed random samples 
is defined as follows
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The log-likelihood function is given by
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Thus the maximum likelihood estimators of θ µ λ, and  can be obtained by 
solving the following likelihood equations with respect to θ µ λ, and
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The maximum likelihood estimators ˆ , ˆ ˆθ µ λk k kand  are respectively given as

 ˆ , ˆ ˆθ µ λk
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ML estimator ( )Rk

∧
of augmented strength reliability ( )Rk  can be obtained 

through invariance property of ML estimators by substituting ˆ , ˆ ˆθ µ λk k kand in 
place of θ µ λ, and  respectively in the equation (4).

4. BAYES ESTIMATE OF AUGMENTED STRENGTH RELIABILITY 
MODEL

In this section, we considered the Bayes estimation of R kk =( )1 2 3, ,  for the 
generalized case of ASP by assuming the model parameters θ µ λ, and  as 
independently distributed random variables. In Bayesian paradigm, the choice 
of a prior distribution is a challenging task and there is no any hard and fast 
rule available in the literature. Choosing prior distribution totally depends on the 
subjectivity and personal belief of the concern experimenter. However, if one has 
adequate information about the parameter(s) one should use informative prior(s); 
otherwise it is preferable to use non informative prior(s).The notion of a non-
informative prior has attracted much attention in recent years. There are different 
notions of non-informative priors. In this study we consider non-informative 
(uniform and Jeffrey’s) types of priors by assuming that no information is 
known priori about the underlying parameters of interest. For a comprehensive 
comparison of the proposed Bayes estimators, we consider two different loss 
functions known as symmetric (SELF) and asymmetric (LLF). In fact, the 
squared error loss function considers the overestimation and underestimation as 
equally penalized, whereas, in LINEX loss function the overestimation is more 
serious than the underestimation or vice-versa (see; [27] and [28]).

4.1 Assuming Uniform prior

In this study, we considerθ µ λ, and are independent random variables having 
non-informative uniform prior with joint prior probability density function 
given as follows
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The joint posterior probability distribution of random variables θ µ λ, and is 
obtained by combining both likelihood function L z yk kθ µ λ, , / ,( )  and joint 
prior probability density function g1( , , )θ µ λ given by
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Thus, the proposed Bayes estimators of augmenting strength reliability
R kk ; , ,={ }1 2 3  under squared error loss function for general case of ASP, is 

given by

 ˆ , , / ,
, ,

R R z y d d dk
self

k k k= ∏ ( )
( )∫ 1 θ µ λ θ µ λ
θ µ λ  (12)

Under Linex loss function (LLF), the Bayes estimate ( R̂k
llf ) of augmented 

strength reliability model is given by

 ˆ ln exp , , / ,
, ,

R
p

pR z y d d dk
llf

k k k=− −( ) ∏ ( ){ }( )∫
1

1 θ µ λ θ µ λ
θ µ λ

 (13)

The expressions for Bayes estimates of augmented strength reliability 
obtained under uniform prior are not in explicit form and cannot be evaluated 
manually, thus the numerical methods (MCMC) can be applied to evaluate the 
expressions.

4.2. Assuming Jeffrey’s prior

Considering the parameters θ µ λ, and as independent random variables 
having non-informative Jeffrey’s prior. [18] proposed a type of non-informative 
prior, which is defined as

J Iθ µ λ θ µ λ, , det , ,( )∝ ( )
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Where I θ µ λ, ,( )  is Fisher information matrix. The joint Jeffrey prior of 
θ µ λ, and for general case of ASP is given as

 J θ µ λ θ µ
λ µ

, ,( )∝ +
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The joint posterior distribution of θ µ λ, and is defined by
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Under squared error loss function, the Bayes estimator of augmented strength 
reliability for Jeffrey’s prior of augmented strength reliability Rk ( , , )k =1 2 3 for 
general case of ASP is given as

 ˆ , , / ,
, ,

R R z y d d dk
self

k k k= ∏ ( )
( )∫ 2 θ µ λ θ µ λ
θ µ λ

 (16)

The Bayes estimate ( R̂k
llf ) of augmented strength reliability model

R kk ; , ,=( )1 2 3 for Jeffrey’s prior under Linex loss function (LLF), is given by

 ˆ ln exp , , / ,
, ,

R
p

pR z y d d dk
llf

k k k=− −( ) ∏ ( ){ }( )∫
1

2 θ µ λ θ µ λ
θ µ λ

 (17)

Here one can notice that in each of the cases the joint posterior densities have 
not in any distributional form and it is difficult to get analytical solution. In 
this situation the Markov Chain Monte Carlo (MCMC) sampling method 
can be used to approximate the integrals (see; [6] and [16]) numerically. To 
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approximate the above integrals for finding Bayes estimates, we used the 
Metropolis-Hastings algorithm.

5. SIMULATION STUDY AND DISCUSSIONS

In this section, we studied the behavior of ML and Bayesian estimators of 
augmented strength reliability parameters under the augmentation strategy 
plan through simulated samples with different combinations of sample sizes 
and stress-strength reliability parameters. The comparison between the ML 
and Bayes estimators has carried out on the basis of their mean square errors. 
The Bayesian estimators have calculated for uniform and Jeffery’s types of 
priors under two different loss function (SELF and LLF). Performances of 
proposed maximum likelihood estimates and Bayes estimates of augmented 
strength reliability for uniform prior under two different loss functions (i.e. 
self and llf) were compared through its mean square errors (MSE). The whole 
procedure was replicated randomly 1000 times in order to evaluate its MSEs. 
In order to observe the effect of sample sizes to the proposed estimation 
procedures, we drawn the random samples from the stress and augmented 
strength distributions with different combinations sample sizes s t, .( )

It may be noticed from the expressions of Bayes estimates of augmented 
strength reliability that finding the posterior expectations are difficult 
because of the form of joint posterior density are not in any standard 
distributional form, which cannot be solved analytically. In such a situation, 
the well-known MCMC technique viz. Metropolis-Hastings algorithm is 
used for drawing the samples from any arbitrary posterior distribution. For 
generating a random sample of size N (say) from a posterior distribution
π θ µ λθθ θθ/data( ) =; ( , , )’, the basic Metropolis-Hastings algorithm consist 

the following steps:

1. Choose initial value for the parameter θθ( ) ( ) ( ) ( ), ,0 0 0 0= ( )θ µ λ such that
π θθ( )0 0( ) > .

2. For j N=1 2, ,..., repeat the following steps
 i. Set θθ θθ= −( )j 1

 ii. Draw a ‘candidate’ value θθc from a proposal density say q c( )θθ θθ/ .
 iii. Generate ‘U’ uniform variate on range 0 and 1 i.e., u U~ ( , )0 1 .

 iv. If u R″ min( , )1 , accept the candidate point θθc( )with probability 

min ,1 R
q

q

c c

c
=

( ) ( )
( ) ( )













π

π

θθ θθ θθ

θθ θθ θθ

/ /

/ /

data

data
, otherwise set θθ θθ( ) .j =
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Table 1: AVG and MSE for estimates of Rk for variation of µ when
λ θ= = = =2 5 1 5 2. ; . ;n m .

µµ = =1.5, R 0.891697

(n1, n2) Statistic MLE
Uniform prior Jeffrey’s prior

SELF LLF SELF LLF

(10,10) Avg.
Mse

0.891084
0.001463

0.8298
0.003926

0.828725
0.004224

0.828546
0.004085

0.827459
0.004224

(20,30) Avg.
Mse

0.8916
0.000505

0.910775
0.000376

0.910664
0.000366

0.910631
0.00037

0.910522
0.000366

(30,20) Avg.
Mse

0.891846
0.000786

0.881349
0.000123

0.881088
0.000132

0.881224
0.000126

0.880961
0.000132

(50,50) Avg.
Mse

0.891135
0.000288

0.882973
0.000092

0.882844
0.000097

0.882841
0.000095

0.882712
0.000097

µµ = =3.5, R 0.724949

(n1, n2) Statistic MLE
Uniform prior Jeffrey’s prior

SELF LLF SELF LLF

(10,10) Avg.
Mse

0.724734
0.003053

0.74529
0.000309

0.743276
0.000249

0.743257
0.000281

0.741267
0.000249

(20,30) Avg.
Mse

0.727523
0.002058

0.772715
0.002347

0.772185
0.00224

0.772093
0.002289

0.771569
0.00224

(30,20) Avg.
Mse

0.730443
0.002864

0.715866
0.000203

0.714668
0.000241

0.715096
0.00022

0.713907
0.000241

(50,50) Avg.
Mse

0.725943
0.001237

0.727525
0.000068

0.727089
0.000061

0.727171
0.000063

0.726734
0.000061

Here q is the transition probability matrix of the Markov chain with same 
support as that of likelihood function and q c( )θθ θθ/ is the transition probability 
from θθ θθto c .  we assume asymptotic normal distribution as proposal 
distribution. The initial values θ θ µ µ λ λ( ) ( ) ( ), ,0 0 0= = =

∧ ∧

 are fixed as the ML 
estimates along with asymptotic variance covariance matrix to draw the initial 
random samples from proposal density. The Bayes estimates were calculated 
by assuming non-informative types (uniform and Jeffrey’s) of priors under 
squared error loss function and Linex loss functions. To evaluate the Bayes 
estimate of augmented strength reliability we generated 10000 MCMC random 
samples from posterior density by using Metropolis-Hastings algorithm. The 
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Table 2: AVG and MSE for estimates of R
k
 for variation of λ  when

µ θ= = = =2 5 1 5 2. ; . ; n m .

λλ = =2.5, R 0.795637

(n1, n2) Statistic MLE
Uniform prior Jeffrey’s prior

SELF LLF SELF LLF

(10,10) Avg.
Mse

0.797896
0.004208

0.770767
0.000832

0.76896
0.001026

0.769128
0.000927

0.767329
0.001026

(20,30) Avg.
Mse

0.796616
0.001416

0.83334
0.001455

0.833037
0.001413

0.833079
0.001435

0.832777
0.001413

(30,20) Avg.
Mse

0.798803
0.00225

0.785671
0.000178

0.784901
0.000206

0.785169
0.000189

0.784395
0.000206

(50,50) Avg.
Mse

0.795286
0.000861

0.799179
0.000048

0.798903
0.000044

0.799145
0.000046

0.798867
0.000044

λλ = =4.5, R 0.78848

(n1, n2) Statistic MLE
Uniform prior Jeffrey’s prior

SELF LLF SELF LLF

(10,10) Avg.
Mse

0.787564
0.00323

0.733922
0.003213

0.731773
0.003904

0.730101
0.00365

0.727994
0.003904

(20,30) Avg.
Mse

0.788923
0.001143

0.822565
0.001198

0.822278
0.001174

0.822522
0.001193

0.822238
0.001174

(30,20) Avg.
Mse

0.789566
0.001797

0.797431
0.000124

0.79683
0.000101

0.79662
0.00011

0.796027
0.000101

(50,50) Avg.
Mse

0.787752
0.000653

0.783514
0.000063

0.78323
0.000071

0.783299
0.000068

0.783019
0.000071

first thousand samples have been discarded as burn-in period of Markov chain. 
We also tested the autocorrelation and it is noticed that the chains are highly 
auto correlated. For reducing the autocorrelation within the chain, we thinned 
the chain equally spaced at every second simulation.

The comparison among the proposed estimators of augmented strength 
reliability for third (viz. generalized) case of ASP was carried out for 
varying values of stress-strength parameters µ λ θ, , , m nand  for different 
combinations of sample sizes (s, t). The findings of simulation study are 
presented in Tables 1-5 for variations in µ λ θ, , ,n mand respectively. The 
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Table 3: AVG and MSE for estimates of R
k
 for variation of θ when

µ λ= = = =2 5 2. ;n m .

θθ = =2.5, R 0.890163

(n1, n2) Statistic MLE
Uniform prior Jeffrey’s prior

SELF LLF SELF LLF

(10,10) Avg.
Mse

0.890856
0.001852

0.857471
0.001067

0.856563
0.001132

0.85746
0.001075

0.856539
0.001132

(20,30) Avg.
Mse

0.89044
0.000694

0.907436
0.000311

0.907302
0.000304

0.907353
0.000308

0.90722
0.000304

(30,20) Avg.
Mse

0.891592
0.001079

0.870237
0.000426

0.869862
0.000435

0.870403
0.00042

0.870022
0.000435

(50,50) Avg.
Mse

0.889715
0.00042

0.883705
0.000057

0.883564
0.000059

0.883695
0.000057

0.883554
0.000059

θθ = =4.5, R 0.9587555

(n1, n2) Statistic MLE
Uniform prior Jeffrey’s prior

SELF LLF SELF LLF

(10,10) Avg.
Mse

0.952590
0.000504

0.925414
0.000613

0.925055
0.000597

0.926187
0.000582

0.92582
0.000597

(20,30) Avg.
Mse

0.953118
0.000219

0.958349
0.000029

0.958302
0.000029

0.95837
0.000029

0.958323
0.000029

(30,20) Avg.
Mse

0.953509
0.000338

0.934705
0.000355

0.934562
0.000344

0.935141
0.000339

0.934997
0.000344

(50,50) Avg.
Mse

0.952890
0.000130

0.944992
0.000075

0.944935
0.000076

0.94500
0.000075

0.944944
0.000076

Table 4: AVG and MSE for estimates of R
k
 for variation of n when

µ λ θ= = = =2 5 2. ; m .

n 3, R 0.967818= =

(n1, n2) Statistic MLE
Uniform prior Jeffrey’s prior

SELF LLF SELF LLF

(10,10)
Avg.
Mse

0.96674
0.000595

0.962099
0.000038

0.961990
0.000030

0.962976
0.000029

0.962866
0.00003

(20,30)
Avg.
Mse

0.967674
0.000206

0.958019
0.000100

0.957954
0.000098

0.958193
0.000096

0.958130
0.000098
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(30,20) Avg.
Mse

0.967472
0.000307

0.960727
0.000054

0.960653
0.000050

0.961108
0.000049

0.961034
0.00005

(50,50)
Avg.
Mse

0.967671
0.000118

0.954997
0.000171

0.954926
0.000176

0.954873
0.000174

0.954804
0.000176

n 5, R 0.99556= =

(n1, n2) Statistic MLE
Uniform prior Jeffrey’s prior

SELF LLF SELF LLF

(10,10)
Avg.
Mse

0.994383
0.000054

0.997294
0.000003

0.99729
0.000004

0.997558
0.000004

0.997555
0.000004

(20,30)
Avg.
Mse

0.995104
0.000018

0.9551
0.001639

0.954959
0.001591

0.955842
0.00158

0.9557
0.001591

(30,20)
Avg.
Mse

0.994735
0.000028

0.978553
0.000291

0.978493
0.000273

0.979153
0.000271

0.979094
0.000273

(50,50)
Avg.
Mse

0.995151
0.000009

0.973871
0.000318

0.973828
0.000309

0.974230
0.000308

0.974186
0.000309

following observations have been made based on the given tables, which are 
stated as follow.

∗	 In Table 1 the effect of the variation in µ 1 5 3 5. , .( ) has been seen by fixing 
rest of the parameters λ θ= = = =( )2 5 1 5 2. , . , n m and it is noticed that 
the mean square errors decrease for increasing sample sizes. The Bayes 

Table 5: AVG and MSE for estimates of R
k
 for variation of m when

µ λ θ= = = =2 5 2. ; n .

m 2.5, R 0.919202= =

(n1, n2) Statistic MLE
Uniform prior Jeffrey’s prior

SELF LLF SELF LLF

(10,10) Avg.
Mse

0.918349
0.000679

0.886958
0.000508

0.88631
0.000517

0.887386
0.000497

0.886725
0.000517

(20,30) Avg.
Mse

0.91922
0.000466

0.930568
0.000138

0.930476
0.000135

0.930537
0.000137

0.930446
0.000135

(30,20) Avg.
Mse

0.920021
0.000721

0.898595
0.000442

0.898329
0.000441

0.898917
0.00043

0.898648
0.000441

(Table 5: Continued)
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m 2.5, R 0.919202= =

(n1, n2) Statistic MLE
Uniform prior Jeffrey’s prior

SELF LLF SELF LLF

(50,50) Avg.
Mse

0.918723
0.000281

0.911116
0.000076

0.911013
0.000077

0.911115
0.000076

0.911012
0.000077

m 4.5, R 0.967641= =

(n1, n2) Statistic MLE
Uniform prior Jeffrey’s prior

SELF LLF SELF LLF

(10,10) Avg.
Mse

0.966201
0.000271

0.943231
0.000401

0.942989
0.000383

0.944067
0.000375

0.943821
0.000383

(20,30) Avg.
Mse

0.96736
0.00013

0.970308
0.00001

0.970278
0.00001

0.970343
0.00001

0.970314
0.00001

(30,20) Avg.
Mse

0.967587
0.00020

0.951277
0.000272

0.951183
0.000261

0.951717
0.000258

0.951622
0.000261

(50,50) Avg.
Mse

0.967236
0.000077

0.960015
0.000061

0.959978
0.000062

0.960027
0.000061

0.95999
0.000062

(Table 5: Continued)

estimators under uniform and Jeffrey priors performs better with minimum 
MSEs than that of maximum likelihood estimates for increasing values of 
the sample sizes (s, t). Among the Bayes estimators, the Jeffery’s prior 
under SELF performs better than others.

∗	 The ML and Bayesian estimates of augmented strength reliability and their 
mean square errors are presented in Table 2 for variation in λ 2 5 4 5. , .( )  
by fixing other parameters µ θ= = = =( )2 5 1 5 2. , . , n m . It is observe that 
the Bayes estimators give more precise estimates with minimum mean  
square errors. The augmented strength reliability decreases for higher 
values of λ.

∗	 Similarly, Table 3 presents the variations in θ 2 5 4 5. , .( ) for fixed values 
of rest of the parameters µ λ= = = =( )2 5 2. ;n m  and it is observed that 
the Bayes estimators give precise estimates with minimum MSE than ML 
estimator. The MSEs decrease for increasing values of sample sizes.

∗	 In Table 4, the effect of variation in augmentation parameter n 3 5,( )  is 
presented by keeping other model parameters µ λ θ= = = =( )2 5 2. ; m
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fixed and it is observed that the strength reliability of the equipment get 
enhanced by 99% by adding n= 5 components to the system. The Bayes 
estimators dominate the ML estimator and give the minimum MSEs.

∗	 Table 5 presents the effect of variation in augmentation parameter
m 2 5 4 5. , .( )  by fixing rest of the other parameters µ λ θ= = = =( )2 5 2. ; n
and it is seen that strength reliability get enhanced by increasing the 
values of m. The Bayes estimators dominate the ML estimator with lesser 
MSE. It is also observed that the MSEs gradually decrease for increasing 
combinations of samples sizes.

6. CONCLUDING REMARKS

In this article, the augmented strategy plan is considered for enhancing the 
strength of an unreliable equipment/system. A system becomes unreliable 
due to its unwanted frequent failure occurs and hence assessing the life of 
such kind of equipments are very difficult to the experimenter. ASP may be a 
useful technique for boosting the system reliability and its durability. We have 
attempted the estimation of augmented strength reliability under generalized 
case of ASP through ML and Bayes methods. The Bayes estimation of 
augmented strength reliability for different types of non-informative (uniform 
and Jeffrey’s) priors under both of squared error and LINEX loss functions 
separately for generalized case (case-III) of ASP are considered. Overall, it 
may be concluded from the given Tables that the Bayes estimators performs 
quite well than that of ML estimators. Thus, all three possible cases of ASP are 
useful to augment the strength of a system; even adding new components for 
some desired level to the existing system may be suggestive.

In further, one may think over for attempting the Bayes estimation of 
augmenting strength reliability for different censoring schemes.
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