Zeros of Lacunary Type of Polynomials

BA ZARGAR

Department of Mathematics University of Kashmir Srinagar
Email: bazargar@gmail.com
Received: November 05, 20161 Revised: December 01, 2016| Accepted: January 27, 2017
Published online: March 05, 2017
The Author(s) 2016. This article is published with open access at www.chitkara.edu.in/publications

Abstract

In this paper we use matrix methods and Gereshgorian disk Theorem to present some interesting generalizations of some well-known results concerning the distribution of the zeros of polynomial. Our results include as a special case some results due to A.Aziz and a result of Simon Reich-Lossar.

(AMS) Mathematics Subject Classification: 30c 10, 30c15.
Key words and Phrases: Lacunary type polynomial, coefficient, zeros.

1. INTRODUCTION AND STATEMENT OF RESULTS

The following result due to Cauchy [4] is well known in the theory of the distribution of the zeros of a polynomial.
Theorem A. Let

$$
P(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}
$$

be a polynomial of degree n then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk

$$
\begin{equation*}
|z|<1+A \text {. } \tag{1}
\end{equation*}
$$

where $A=\max \left|a_{j}\right|, j=0,1,2, \ldots, n-1$.
About forty years ago, in connection with Cauchy's Classical result (Theorem A) Simon Reich proposed and among others Lossers [6] verified that if $\mathrm{a}_{\mathrm{n}-1}=0, \mathrm{Q}>1$, then all the zeros of

Mathematical Journal of Interdisciplinary Sciences Vol-5, No-2, March 2017 pp. 93-99

Zargar, BA lie in the circle

$$
\begin{equation*}
|z| \leq Q+Q^{2}+\cdots+Q^{n-1} \tag{2}
\end{equation*}
$$

Aziz [2] generalized the problem to lacunary polynomials and showed that the assertion (2), remains valid even if we do not assume that $\mathrm{Q}>1$. In fact he proved:
Theorem B. Let

$$
P(z)=a_{n} z^{n}+a_{r} z^{r}+\ldots+a_{1} z+a_{0}
$$

$a_{r} \neq 0,0<r \leq n-1$ be a polynomial of degree $\mathrm{n} \geq 2$, with real or complex coefficients if

$$
Q=\left\{\operatorname{Max}_{0 \leq j \leq r}\left|\frac{a_{j}}{a_{n}}\right|\right\}^{1 / n}
$$

then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk

$$
\begin{equation*}
|z| \leq Q+Q^{2}+\ldots+Q^{r+1} \tag{3}
\end{equation*}
$$

Where $0 \leq r \leq n-1$. Other results of similar type were obtained among others by Alzer [1], Bell [3], Guggenheimer [5]. Mohammad [7], Rahman [8], Walsh [10] (see also [9]).

As a generalization of Theorem B, we prove:
Theorem 1. Let

$$
P(z)=a_{n} z^{n}+a_{r} z^{r}+\ldots+a_{1} z+a_{0}
$$

$\mathrm{a}_{r} \neq 00 \leq \mathrm{r} \leq \mathrm{n}-1$ be a polynomial of degree $\mathrm{n} \geq 2$, with real or complex coefficients if t is any given positive number and

$$
\begin{equation*}
Q_{t}=\left\{\operatorname{Max}_{0 \leq j \leq r}\left|\frac{a_{j}}{a_{n}}\right| t^{n-1}\right\}^{\frac{1}{n}} \tag{4}
\end{equation*}
$$

then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk

$$
\begin{equation*}
|z| \leq \frac{1}{t}\left\{Q_{t}+Q_{t}^{2}+\ldots+Q_{t}^{r+1}\right\} \tag{5}
\end{equation*}
$$

where $0 \leq \mathrm{r} \leq \mathrm{n}-1$.
Taking $t=1$, in equation (5), this reduces to Theorem B.
We next present the following result which provides an interesting refinement of Theorem 1.

Theorem 2. Let

$$
P(z)=a_{n} z^{n}+a_{r} z^{r}+\ldots+a_{1} z+a_{0}
$$

$\mathrm{a}_{r} \neq 0 \leq \mathrm{r} \leq \mathrm{n}-1$ be a polynomial of degree $\mathrm{n} \geq 2$, with real or complex coefficients if t is any given positive number and

$$
Q_{t}=\left\{\operatorname{Max}_{0 \leq j \leq r}\left|\frac{a_{j}}{a_{n}}\right|^{n-1}\right\}^{\frac{1}{n}},
$$

then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk

$$
\begin{equation*}
|z| \leq \frac{1}{t}\left\{Q_{t}+\operatorname{Max}\left(Q_{t}^{2}, Q_{t}^{r+1}\right)\right\} \tag{6}
\end{equation*}
$$

where $1 \leq \mathrm{r} \leq \mathrm{n}-1$. The following result immediately follows from Theorem 2 by taking $\mathrm{t}=1$:
Corollary 1. Let

$$
P(z)=a_{n} z^{n}+a_{r} z^{r}+\ldots+a_{1} z+a_{0}
$$

$\mathrm{a}_{r} \neq 0 \leq \mathrm{r} \leq \mathrm{n}-1$ be a polynomial of degree $\mathrm{n} \geq 2$, with real or complex coefficients if t is any given positive number and

$$
Q_{t}=\left\{\operatorname{Max}_{0 \leq j \leq r}\left|\frac{a_{j}}{a_{n}}\right| t^{n-1}\right\}^{\frac{1}{n}}
$$

then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the disk

Zargar, BA

$$
\begin{equation*}
|z| \leq Q+\operatorname{Max}\left\{Q^{2}+\ldots+Q^{r+1}\right\} \tag{7}
\end{equation*}
$$

where $1 \leq \mathrm{r} \leq \mathrm{n}-1$,

PROOF OF THE THEOREMS

Proof of Theorem 1. The companion matrix of the polynomial

$$
P(z)=a_{n} z^{n}+a_{r} z^{r}+\ldots+a_{1} z+a_{0}
$$

$\mathrm{a}_{r} \neq 00 \leq \mathrm{r} \leq \mathrm{n}-1$ of degree n is

$$
\mathrm{C}=\left(\begin{array}{ccccccc}
0 & 0 & \ldots . & 0 & \ldots . & 0 & \frac{-a_{0} t^{n-1}}{a_{n} Q_{t}^{n-1}} \\
\frac{Q_{t}}{t} & 0 & \ldots & 0 & \ldots & 0 & \\
\ldots & \ldots & \ldots & \ldots . & \ldots . & \ldots . & \frac{-a_{1} t^{n-2}}{a_{n} Q_{t}^{n-1}} \\
0 & 0 & \ldots . & \frac{Q_{t}}{t} & \ldots . & 0 & \frac{-a_{r} t^{n-r-1}}{a_{n} Q_{t}^{n-r-1}} \\
\ldots . & \ldots & \ldots & \ldots . & \ldots & \ldots . & \ldots . \\
0 & 0 & \ldots & 0 & \ldots . & \frac{Q_{t}}{t} & 0
\end{array}\right)
$$

By hypothesis,

$$
Q_{t}=\left\{\operatorname{Max}_{0 \leq j \leq r}\left|\frac{a_{j}}{a_{n}}\right| t^{n-j}\right\}^{\frac{1}{n}}
$$

therefore,

$$
\begin{equation*}
\left|\frac{a_{j}}{a_{n}}\right| t^{n-j} \leq Q_{t}^{n} \quad \text { for } j=0,1,2, \ldots, r . \text { and } Q_{t} \neq 0 \tag{7}
\end{equation*}
$$

We take the matrix

$$
\mathrm{P}=\operatorname{diag}\left\{\left(\frac{Q_{t}}{t}\right)^{n-1},\left(\frac{Q_{t}}{t}\right)^{n-2}, \ldots,\left(\frac{Q_{t}}{t}\right), 1\right\}
$$

and form the matrix

$$
P^{-1} C P\left(\begin{array}{cccccccc}
0 & 0 & \ldots . & 0 & \ldots . & 0 & & \frac{-a_{0} t^{n-1}}{a_{n} Q_{t}^{n-1}} \\
\frac{Q_{t}}{t} & 0 & \ldots & 0 & \ldots . & 0 & & \frac{-a_{1} t^{n-2}}{a_{n} Q_{t}^{n-1}} \\
\ldots & \ldots & \ldots & \ldots . & \ldots . & \ldots . . \\
0 & 0 & \ldots & \frac{Q_{t}}{t} & \ldots . . & 0 & \frac{-a_{t} t^{n-r-1}}{a_{n} Q_{t}^{n-r-1}} \\
\ldots . & \ldots . & \ldots & \ldots & \ldots . & \ldots . & \ldots . \\
0 & 0 & \ldots & 0 & \ldots . & \frac{Q_{t}}{t} & 0
\end{array}\right)
$$

Applying Gereshgorian Theorem to the columns of $\mathrm{P}^{-1} \mathrm{CP}$ and noting (7), it follows that all the eigen values of the matrix $\mathrm{P}^{-1} \mathrm{CP}$ lie in the circle

$$
\begin{aligned}
|z| & \leq \operatorname{Max}\left\{\frac{Q_{t}}{t}, \sum_{j=0}^{r}\left|\frac{a_{j}}{a_{n}}\right| \frac{t^{n-j-1}}{Q_{t}^{n-j-1}}\right\} \\
& \leq \frac{1}{t} \operatorname{Max}\left\{Q_{t}, \sum_{j=0}^{r} Q_{t}^{j+1}\right\} \\
& =\frac{1}{t}\left\{Q_{t}+Q_{t}^{2}+\ldots+Q_{t}^{r+1}\right\}
\end{aligned}
$$

Since the matrix $\mathrm{P}^{-1} \mathrm{CP}$ is similar to the matrix C and the eigen values of C are the zeros of the polynomial $\mathrm{P}(\mathrm{z})$, it follows that all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the circle

$$
|z| \leq \frac{1}{t}\left\{Q_{t}+Q_{t}^{2}+\ldots+Q_{t}^{r+1}\right\}
$$

Which completes the proof of Theorem 1.
Proof of Theorem 2. The companion matrix of the polynomial

$$
P(z)=a_{n} z^{n}+a_{r} z^{r}+\ldots+a_{1} z+a_{0}
$$

$\mathrm{a}_{r} \neq 00 \leq \mathrm{r} \leq \mathrm{n}-1$ of degree n is given by

Zargar, BA

$$
\mathrm{C}=\left(\begin{array}{ccccccc}
0 & 0 & \ldots & 0 & \ldots . & 0 & \\
\frac{-a_{0} t^{n-1}}{a_{n} Q_{t}^{n-1}} \\
\frac{Q_{t}}{t} & 0 & \ldots & 0 & \ldots . & 0 & \\
\ldots & \ldots & \ldots & \ldots . & \ldots . & \ldots . . \\
0 & 0 & \ldots . & \frac{Q_{t}}{a_{1} Q_{t}^{n-1}} & \ldots . . & 0 & \frac{-a_{r} t^{n-r-1}}{a_{n} Q_{t}^{n-r-1}} \\
\ldots & \ldots . & \ldots . & \ldots & \ldots . & \ldots . & \ldots . \\
0 & 0 & \ldots & 0 & \ldots . & \frac{Q_{t}}{} & 0
\end{array}\right)
$$

Proceeding similarly as in the proof of Theorem 1 and noting that

$$
\begin{gathered}
\mathrm{P}=\operatorname{diag}\left\{\left(\frac{Q_{t}}{t}\right)^{n-1},\left(\frac{Q_{t}}{t}\right)^{n-2}, \ldots,\left(\frac{Q_{t}}{t}\right), 1\right\} \\
Q_{t}=\left\{\operatorname{Max}_{0 \leq j \leq r}\left|\frac{a_{j}}{a_{n}}\right| t^{n-j}\right\}^{\frac{1}{n}}
\end{gathered}
$$

It follows that the matrix

$$
P^{-1} C P\left(\begin{array}{cccccccc}
0 & 0 & \ldots . & 0 & \ldots & 0 & & \frac{-a_{0} t^{n-1}}{a_{n} Q_{t}^{n-1}} \\
\frac{Q_{t}}{t} & 0 & \ldots & 0 & \ldots . & 0 & & \frac{-a_{1} t^{n-2}}{a_{n} Q_{t}^{n-1}} \\
\ldots & \ldots & \ldots & \ldots . & \ldots . & \ldots . . \\
0 & 0 & \ldots & \frac{Q_{t}}{t} & \ldots . . & 0 & \frac{-a_{t} t^{n-r-1}}{a_{n} Q_{t}^{n-r-1}} \\
\ldots . & \ldots & \ldots . & \ldots & \ldots . & \ldots . & \ldots . \\
0 & 0 & \ldots & 0 & \ldots . & \frac{Q_{t}}{t} & 0
\end{array}\right)
$$

Applying Gereshgorian Theorem to the columns of $\mathrm{P}^{-1} \mathrm{CP}$ and noting (7), it follows that all the eigen values of the matrix $\mathrm{P}^{-1} \mathrm{CP}$ therefore that of C lie in the circle

$$
\begin{aligned}
|z| & \leq \operatorname{Max}_{1 \leq j \leq r}\left\{\left|\frac{a_{0}}{a_{n}}\right| \frac{t^{n-1}}{Q_{t}^{n-1}}, \frac{Q_{t}}{t}+\left|\frac{a_{j}}{a_{n}}\right| \frac{t^{n-j-1}}{Q_{t}^{n-j-1}}\right\} \\
& \leq \frac{1}{t} \operatorname{Max}_{1 \leq j \leq r}\left\{Q_{t}, Q_{t}+Q_{t}^{j+1}\right\} \\
& =\frac{1}{t}\left\{Q_{t}+\operatorname{Max}\left(Q_{t}^{2}, Q_{t}^{r+1}\right\}\right.
\end{aligned}
$$

Since the matrix $\mathrm{P}^{-1} \mathrm{CP}$ is similar to the matrix C and the eigen values of C are the zeros of the polynomial $\mathrm{P}(\mathrm{z})$, therefore we conclude that all the zeros of $\mathrm{P}(\mathrm{z})$ lie in the circle denoted by (4). This proves Theorem 2 completely.

REFERENCES

[1] Alzer, H (1995). On the zeros of a Polynomial, J. Approx. Theory, 81, 421-424.
[2] Aziz, A. Studies in zeros and Extremal properties of Polynomials, Ph.D. Thesis submitted to Kashmir University, 1981.
[3] Bell, H.E (1965). Gereshgorian Theorem and the zero of polynomials, Amer. Math. Monthly, 72, 292-295.
[4] Cauchy, A.L. Exercises de mathe'matique in ceurres 9(1929), 122.
[5] Guggenheimmer, H (1964). On a note of Q.G. Mohammad, Amer. math. monthly, 71, 54-55.
[6] Lossers, O.P (1971). Advanced problem 5739,Amer. Math. Monthly, 78, 681-683.
[7] Mohammad, Q.G. (1965), On the zeros of polynomials, Amer. Math. Monthly, 72(6), 631-633.
[8] Rahman, Q.I. (1970) A Bound for the moduli of the zeros of polynomials, Canad .math. Bull. 13, 541-542.
[9] Rahman, Q.I. and Schmeisser, G. Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002.
[10] Walsh, J.L (1924). An inequality for the roots of an algebraic equation. Ann. math. 25, 283-286.

On The Distribution of The Zeros of Lacunary Type Polynomials

