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Abstract In this paper we use matrix methods and Gereshgorian disk Theorem 
to present some interesting generalizations of some well-known results 
concerning the distribution of the zeros of polynomial. Our results include as 
a special case some results due to A .Aziz and a result of Simon Reich-Lossar.
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1. INTRODUCTION AND STATEMENT OF RESULTS 

The following result due to Cauchy [4] is well known in the theory of the 
distribution of the zeros of a polynomial.
Theorem A. Let 

 P z z a z a z an
n

n( )= + + + +-
-

1
1

1 0

 

be a polynomial of degree n then all the zeros of P(z) lie in the disk

 | | .z A< +1  (1)

where A a j nj= = -max | |, , , , ,0 1 2 1 .

About forty years ago, in connection with Cauchy’s Classical result 
(Theorem A) Simon Reich proposed and among others Lossers [6] verified 
that if an-1= 0, Q>1, then all the zeros of 

 P z z a z a z an
n

n( )= + + + +-
-

1
1

1 0 , 
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lie in the circle

 z Q Q Qn≤ + + + -2 1


 (2)

Aziz [2] generalized the problem to lacunary polynomials and showed that 
the assertion (2), remains valid even if we do not assume that Q>1. In fact he 
proved:
Theorem B. Let 

 P z a z a z a z an
n

r
r( ) ,= + + + + 1 0  

a
r 
≠ 0, 0 < r ≤ n -1 be a polynomial of degree n ≥ 2, with real or complex 

coefficients if 

 Q Max
a
aj r

j

n

n

=











≤ ≤0

1

 

then all the zeros of P(z) lie in the disk 

 | |z Q Q Qr≤ + + + +2 1


 (3)

Where 0 ≤ r ≤ n -1. Other results of similar type were obtained among others 
by Alzer [1], Bell [3], Guggenheimer [5]. Mohammad [7], Rahman [8], Walsh 
[10] (see also [9]).

As a generalization of Theorem B, we prove:
Theorem 1. Let 

 P z a z a z a z an
n

r
r( )= + + + + 1 0  

a
r
 ≠ 0 0 ≤ r ≤ n - 1 be a polynomial of degree n ≥ 2, with real or complex 

coefficients if t is any given positive number and 
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a
a
tt j r
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n

n
n

=











≤ ≤

-
0

1

1

 (4)

then all the zeros of P(z) lie in the disk 



On The 
Distribution of The 
Zeros of Lacunary 
Type Polynomials

95

 | | ...z
t
Q Q Qt t t

r≤ + + +{ }+1 2 1  (5)

where 0≤ r ≤ n-1.
Taking t = 1, in equation (5), this reduces to Theorem B.
We next present the following result which provides an interesting 

refinement of Theorem 1.
Theorem 2. Let

 P z a z a z a z an
n

r
r( )= + + + + 1 0  

a
r 

≠  0 ≤ r ≤ n - 1 be a polynomial of degree n ≥ 2, with real or complex 
coefficients if t is any given positive number and 

 Q Max
a
a
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=
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,  

then all the zeros of P(z) lie in the disk 

 | | ( , )z
t
Q Max Q Qt t t

r≤ +{ }+1 2 1  (6)

where 1 ≤ r ≤ n-1. The following result immediately follows from Theorem 
2 by taking t = 1:
Corollary 1. Let 

 P z a z a z a z an
n

r
r( )= + + + + 1 0  

a
r 

≠  0 ≤ r ≤ n - 1 be a polynomial of degree n ≥ 2, with real or complex 
coefficients if t is any given positive number and 
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then all the zeros of P(z) lie in the disk 
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 | | ...z Q Max Q Qr≤ + + +{ }+2 1  (7)

where 1≤ r ≤ n-1,

PROOF OF THE THEOREMS

Proof of Theorem 1. The companion matrix of the polynomial 

 P z a z a z a z an
n
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r( )= + + + + 1 0  

a
r
 ≠ 0 0 ≤ r ≤ n - 1 of degree n is 

 C = 

0 0 0 0

0 0 0

0
1

1

1
2

1

.... ....

.... ....

... .

-

-

-

-

-

-

a t
a Q

Q
t

a t
a Q

n

n t
n

t
n

n t
n

... .... .... .... .....

.... .....

.... .

0 0 0
1

1

Q
t

a t
a Q

t r
n r

n t
n r

- - -

- -

.... .... .... .... .... ....

.... ....0 0 0 0
Q
t
t













 

By hypothesis,
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therefore,

 
a
a
t Q for j r and Qj

n

n j
t
n

t
- ≤ = ≠0 1 2 0, , ,..., . .  (7)

We take the matrix 

 P diag=
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and form the matrix 

 P CP

a t
a Q

Q
t

a t
a Q

n

n t
n

t
n

n t
n

-

-

-

-

-

-

-

1

0
1

1

1
2

0 0 0 0

0 0 0

.... ....

.... ....
11

1

1
0 0 0

... ... .... .... .... .....

.... .....Q
t

a t
a Q

t r
n r

n t
n r

- - -

- -

..... .... .... .... .... .... ....

.... ....0 0 0 0
Q
t
t













 

Applying Gereshgorian Theorem to the columns of P-1 CP and noting (7), it 
follows that all the eigen values of the matrix P-1 CP lie in the circle 
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Since the matrix P-1 CP is similar to the matrix C and the eigen values of C are 
the zeros of the polynomial P(z), it follows that all the zeros of P(z) lie in the 
circle

 | | ...z
t
Q Q Qt t t

r≤ + + +{ }+1 2 1  

Which completes the proof of Theorem 1.
Proof of Theorem 2. The companion matrix of the polynomial 

 P z a z a z a z an
n

r
r( )= + + + + 1 0  

a
r
 ≠ 0 0 ≤ r ≤ n - 1 of degree n is given by
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Proceeding similarly as in the proof of Theorem 1 and noting that 

 P diag=
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It follows that the matrix
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Applying Gereshgorian Theorem to the columns of P-1 CP and noting (7), it 
follows that all the eigen values of the matrix P-1 CP therefore that of C lie in 
the circle 
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Since the matrix P-1 CP is similar to the matrix C and the eigen values of C are 
the zeros of the polynomial P(z), therefore we conclude that all the zeros of 
P(z) lie in the circle denoted by (4). This proves Theorem 2 completely. 
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