
Journal of Technology Management
for Growing Economies

Volume 1 Number 1 April 2010

Chip Architecture for Data Sorting Using
Recursive Algorithm

Megha Agarwal
Indra Gupta

Indian Institute of Technology, Roorkee,Uttarakhand

admin
Typewriter
DOI: 10.15415/jtmge.2010.11006

INTRODUCTION

Recursion is an approach to write algorithms for repetitive tasks. In
recursion the whole problem is decomposed into smaller sub-
problems which are exactly similar to the original problem.

Recursion can be efficiently used in optimization problems, non-linear
data structures algorithms like binary trees, searching in dictionary,
recursive filter, data compression etc. Many examples demonstrate
advantages of recursion (Lipschutz, 2002). However, this technique is
not always appropriate, particularly when a clear efficient iterative solution
exists (Sklyarov, 2005). This is primarily due to the large amount of states
that are accumulated during deep recursive calls because at each level of
recursive call the current values of the parameters, local variables, return
addresses etc of the subprogram are pushed on the stack until the
subprogram is completed and these allocation records are popped out
when the subprogram is reactivated (Lipschutz, 2002). This also consumes
time to execute. But this execution time part can be taken care of by
implementing the developed recursive algorithm in hardware e.g. FPGA.

If any high-level language which admits recursion is used then
computer keeps the track of all the values of the parameters, local variables
and return addresses. But if a high-level languages which does not admits
recursion is used then a recursive procedure must be translated into a non-
recursive procedure at the programmer hand. For example VHDL does not

Chip Architecture for Data Sorting Using
Recursive Algorithm

Megha Agarwal
Indra Gupta

Indian Institute of Technology, Roorkee,Uttarakhand

Abstract

This paper suggests a way to implement recursive algorithm on hardware with an example
of sorting of numeric data. Every recursive call/return needs a mechanism to store/restore
parameters, local variables and return addresses respectively. Also a control sequence is
needed to control the flow of execution as in case of recursive call and recursive return. The
number of states required for the execution of a recursion in hardware can be reduced
compared with software. This paper describes all the details that are required to implement
recursive algorithm in hardware. For implementation all the entities are designed using
VHDL and are synthesized, configured on Spartan-2 XC2S200-5PQ208.
Keywords: Binary search tree, Field programmable gate arrays (FPGA), Recursive
Algorithms, Very high-speed integrated circuits hardware description language (VHDL).

©2010 by Chitkara
University. All Rights

Reserved.

Journal of Technology
Management for

Growing Economies
 Vol. 1 No. 1, April 2010

pp.93-102

Agarwal, M.
Gupta, I.

94

Journal of Technology Management for Growing Economies, Volume 1, Number 1, April 2010

support for recursion. So, the algorithm is required to be converted into non-
recursive algorithm. By combining the activation of a recursive subsequence
of operations with the execution of the operations that are required by the
respective algorithm, the recursion can be implemented in hardware much
more efficiently (Sklyarov, 2004). The same event takes place when any
recursive sub-sequence is being terminated, i.e. when control has to be returned
to the point which is just after the last recursive call and an operation of the
executing algorithm that follows the last recursive call has to be activated.

The results obtained for some known methods for implementing
recursive calls in hardware, have shown FPGA circuits to be significantly
faster than software programs executing on general-purpose computers.

Recursion shows better performance in case of non-linear data structures
problems (Ninos and Dollas, 2008). For example a binary search tree can be
constructed and used for sorting various types of data. In order to build such
tree for a given set of values, the appropriate place for each incoming node in
the current tree should be found out. Afterwards in order to sort the data, a
special technique using forward and backtracking propagation steps that are
exactly the same for each node is required. Thus, a recursive procedure is very
efficient in this area. Other application to implement recursive algorithm in
hardware may be in the field of lossless data compression such as Huffman
coding, Dictionary search tree, recursive filter etc (Sklyarov et al., 2005).

The design of data sorting are coded with VHDL (Roth, 2001),
synthesized and configured onto Spartan-2 XC2S200-5Q208 FPGA, from
Xilinx family (www.xilinx.com). The concept behind sorting is discussed
in section 2 and results of synthesis and simulation are discussed in section
3. Here Modelsim 6.0d is used as simulation tool and ISE 8.1i project
navigator is used as synthesis tool.

IMPLEMENTATION OF SORTING ALGORITHM

To develop the sorting algorithm firstly a binary search tree should be
constructed and after that inorder traversal of that binary search tree provides
sorted data. Both of theses functions can be effectively illustrated by recursive
procedure. The concept used for the design is to divide the algorithm to a
discrete number of modules (labeled zi, i.e. z1, z2 etc), each of which will
have a number of discrete states (labeled ai, i.e. a1, a2 etc). Two separate
stacks are used one to store the current module executed (the M_stack), one
to store the current state of the current module (the FSM_stack). So, this
needs support of control and execution mechanism. Control Unit is to transfer
the control among the different modules and states so it needs to store and
restore data from the different stacks (Sklyarov, 2005).

Chip Architecture
for Data Sorting

95

Journal of Technology Management for Growing Economies, Volume 1, Number 1, April 2010

Figure 1 demonstrates the function of Recursive hierarchical finite state
machine (RHFSM) which works as the Control Unit. This unit is having two
stacks and one combinational circuit (CC). Functions of FSM_stack and
M_stack are as discussed before. A combinational circuit is connected to the
stacks and operates on the inputs (some of which are receives from the stacks)
and produces the appropriate outputs (Sklyarov, 2004). It is worth noting that
both the stacks (M_stack and FSM_stack) use the same stack pointer.

 Figure 1: Control Unit (RHFSM) demonstrating a new module z1
invocation

Begin

z1

x5

END

z2

0

1

 z0
a0

a1

a2

a3

 Nodes Begin

x2

x4

x3

y1,y2,z1 y1,y4,z1

y6 y7

END (y5)

y9

y8

0

1
1

0
1 0

a0

a1

 a6

a2 a3

 a5 a4

 a7

 z1

Figure 2: Modular representation of module z0, z1

Agarwal, M.
Gupta, I.

96

Journal of Technology Management for Growing Economies, Volume 1, Number 1, April 2010

Complete problem of sorting is decomposed into three modules z0, z1, z2.
In Figure 2 module z0 is the main module and z1 is the module to construct
binary search tree (Sklyarov, 1999). Module z0 is invoking the module z1
in the state a1.

Begin

y1,y2,z2

x1

END, y5

y3

 z2

a0

a1

a2

a3y1,y4,z2

0

1

 a4

Nodes

Figure 3: Modular representation of module z2

Figure 3 shows module z2. z2 accepts the constructed binary search tree
and gives the sorted data. z2 is invoked by the a2 state of module z0
(Figure 2). Module z1 and z2 are recursive because these contain self
reference. Every module has its states (ai), its input (xi) and output (yi).
Each module begins with state a0, which is the Begin state, and ends with
the End state, which is labeled according to the module’s number of states
(in module z0 it’s a3).

Execution Control Unit

Error

Figure 4: A composition on Control Unit and Execution Unit

Chip Architecture
for Data Sorting

97

Journal of Technology Management for Growing Economies, Volume 1, Number 1, April 2010

Figure 4 gives the complete circuitry of implementation of sorting algorithm
on hardware. In Figure 4 RHFSM works as the Control Unit and the rest circuitry
works as Execution Unit (Sklyarov and Skliarova, 2006). The function of the
Figure 4 is as follows; at some state the module produces the outputs (y1, y2,
etc) that are inputs to the Execution Unit. At every decision point, the module’s
inputs (xi) are the outputs of the Execution Unit. Every time a new module is
called from another module (i.e. module z2 from module z0) then the common
stack pointer is incremented by one, the new module is saved at the M_stack,
the new Begin state is also saved at the FSM_stack and the new module starts
execution (Sklyarove, et al. (nd)). Every time a module state is changed, the
new state is stored at the FSM_stack, overwriting the previous state stored at
the same location. Using this concept, the recursive algorithm can be easily
described in hardware, as it is easy for the circuit to determine new states,
modules and recursive calls using the stacks.

RESULTS AND DISCUSSION

In this paper sorting algorithm is considered for the hardware
implementation of recursive algorithms. Two different data sizes namely
12 and 6 are considered and the results are analyzed. Simulation results for
the above two cases which verifies the functionality of complete design
are given in Figure 5 and Figure 6 respectively.

For this purpose Modelsim 6.0d is used as simulation tool. Design is
also verified by the test bench. After simulation for synthesis and evaluation
of design ISE 8.1.i project navigator synthesis tool is used.

Figure 5: Simulation results with 12 data sets

Agarwal, M.
Gupta, I.

98

Journal of Technology Management for Growing Economies, Volume 1, Number 1, April 2010

Figure 5 is the simulation waveform obtained when the 12 dataset are
given for data sorting. The waveforms show sorted output data and discrete
steps for translation from recursive to non-recursive.

Figure 6: Simulation results with 6 data sets

Figure 6 shows the simulation waveform with 6 data sets. Waveforms
showing change in outputs x1, x2,…., x5 of Execution Unit and storing of
sorted data by Execution Unit.

After performing simulation on the data sets of length of 6 several
times, the average simulation time is 10300 ns, similarly with the data
set of length 12 the average simulation time is 23040 ns. For both the
cases clock cycle of 100 ns is used. Hence here it can be observed that
simulation time is approx doubled if the length of data set is doubled.
Test bench of the main entity also gives the same result. So, the design
is also verified by the test bench. Whenever the data is changed (for
same number of data) the simulation time is also varied. Because the
number of steps taken to get the sorted data varies with the change in
the nature of data and number of steps affects the total number of clock
cycles taken.

Chip Architecture
for Data Sorting

99

Journal of Technology Management for Growing Economies, Volume 1, Number 1, April 2010

After the simulation the design is synthesized for Spartan-2 XC2S00-
5PQ208 of Xilinx family using ISE8.1i. Synthesis process generates a flat
netlist of HDL with the synthesis report and device utilization summary.
Figure 7 shows the RTL view of design entity.

Figure 7: Top Level Schematic Diagram of Sorting Design

In Figure 7 clk, rst are the inputs port and out0, out1,……., out11
are the output ports to get the sorted output data. Error signal sets to
show stack overflow. All other signals are the intermediate signals.
Both the units work on the same clock and resets simultaneously.

The synthesis report for the design is generated in ISE8.1i. The
synthesis report gives the details of hardware resources used and also
timing analysis. Here synthesis report is partially presented. The design
can operate with minimum period of 17.841ns (Maximum Frequency:
56.051MHz).

Figure 8 shows the device utilization report of data sorting design
with 12 data. This report gives the information about total available
hardware resources of the target device and used resources of the target
device by the design. Total memory usage in this case is 110788
kilobytes.

Agarwal, M.
Gupta, I.

100

Journal of Technology Management for Growing Economies, Volume 1, Number 1, April 2010

Figure 8: Device Utilization with 12 Data Sets

Figure 8 shows that the numbers of slices occupied are 22% of total available
slices and total gate count for the design is 9,785. Fig. 9 shows the device
utilization for complete data sorting design with data size equal to 6. Total
memory usage in this case is 108740 kilobytes.

Figure 9: Device Utilization with 6 data sets

Figure 9 shows that the total numbers of slices occupied by the design are
18% of total available number of slices and total gate count for the design
is 7,332. This shows that when the data is increased by 100% then there is
only 33.45% increment in total gate count. Similarly occupied slices are
incremented by 22.22%.

Chip Architecture
for Data Sorting

101

Journal of Technology Management for Growing Economies, Volume 1, Number 1, April 2010

In both the cases hardware resources used are less than the available
hardware resources on the Spartan- 2 so, synthesized designs are configured
on Spartan-2 FPGA.

The total hardware resources should neither be very much less nor more.
It should be optimum. Because if we are configuring only a single design
onto the FPGA and the design is coded into VHDL such as it consumes very
less hardware resources then the rest of the available hardware resources of
target device are wasted. But in case if multiple design entries are configured
on the same FPGA and each design it taking more hardware resources then
it will not be possible to configure all the designs on FPGA. Further also
there is a memory and time trade off. So all these constraints must be taken
into consideration while designing any entity.

CONCLUSIONS

Recursive algorithms permit complex solutions to be specified in relatively
simple manner. Although recursion takes more time to get executed but it
can be reduced by implementing on recursion on hardware. FPGAs do not
use operating system; minimize reliability concerns with true parallel
executions and deterministic hardware dedicated to every task.

This paper covers a way to implement recursive algorithm on hardware
with an example of sorting of numeric data. The complete unit is been
designed in VHDL and verified by the testbench in Modelsim 6.0d and is
implemented in an FPGA of the Spartan-2E family with ISE 8.0i project
navigator. It is also verified that when the data is increased by 100% then
there is only 33.45% increment in total gate count. Similarly occupied
slices are incremented by 22.22%. Because there is time-memory tradeoff
so, the model should be designed such as the hardware resources used by
the design should be optimum.

All the modules developed for the discrete steps for the translation of
recursive procedure to non-recursive procedures are reusable for different
sizes of the same problem. Further the design can be made dynamic and
accurate timing analysis can be performed by logic analyzer. Further work
can be done in many more application involving recursive algorithms such
as data compression and optimization problems.

REFERENCES

http://www.xilinx.com (Last viewed on 27/6/09)
Lipschutz, S. (2002) Theory and problems of data structures, New Delhi, Tata McGraw-Hill.
Ninos, S. and Dollas, A. (2008) ‘Modelling recursion data structures for FPGA-based

implementation’, paper presented at International Conference on Field- Programmable Logic
and Applications, September.

Agarwal, M.
Gupta, I.

102

Journal of Technology Management for Growing Economies, Volume 1, Number 1, April 2010

Roth, C.H. (2001) Digital system design using VHDL (3rd edn.), PWS publishing company.
Sklyarov, V. (1999) ‘Hierarchical finite-state machines and their use for digital control’, IEEE

Transactions on VLSI Systems, 7: 2, 222–228.
Sklyarov, V. (2004) ‘FPGA-based implementation of recursive algorithm’, Microprocessors and

Microsystems, 28, 197-211.
Sklyarov, V. (2005) ‘Hardware implementation of hierarchical FSMs’, ACM International

Conference Proceeding, Proceedings of the 4th international symposium on Information and
communication technologies, Cape Town, SA, p. 148–153.

Sklyarov, V. and Skliarova, I. (2006) ‘Reconfigurable Hierarchical Finite State Machines’,
Proceedings of the 3rd International Conference on Autonomous Robots and Agents,
Palmerston North, p. 599-604.

Sklyarov, V., Skliarova, I. and Pimentel, B. (2005) ‘FPGA- Based implementation and comparison
of recursive and iterative algorithms’, Proceedings of the 15th International Conference on
Field- Programmable Logic and Application, Finland, p. 235-240.

Sklyarove, V., Skliarova, I. and Ferrari, A.B. (nd) ‘Hierarchical Specification and Implementation
of Combinatorial Algorithms based on RHS Model’ (online) (cited 27th June 2009). Available
from http://www.ieeta.pt/~iouliia/Papers/2001/p13005.pdf.

Megha Agarwal is Sudent in Department of Electrical Engineering, Indian
Institute of Technology, Roorkee, Uttarakhand, India.

Dr. Indra Gupta is Associate Professor in Department of Electrical
Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India.

Chitkara University
Saraswati Kendra, Plot 11-12, Dainik Bhaskar Building
Sector 25-D, Chandigarh-160014, India
Email: journal@chitkarauniversity.edu.in
Website: www.chitkara.edu.in/journal/index.php

