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1. Introduction
Diabetes mellitus is a persistent metabolic disorder 
characterized by hyperglycemia with disturbed food 
metabolism, resulting from defect in either insulin action, 
insulin secretion or both, leading to vascular and tissue 
damage resulting in various other complications such as 
cataract, retinopathy, neuropathy, nephropathy, negative 
nitrogen balance, ketoacidosis, foot ulcers and cardiovascular 
disorders (Bastaki, 2005; Brownlee, 2001; Cade, 2008; 
Grewal et al., 2014). Type 2 diabetes (T2D) affecting more 
than 90% of all the diabetic patients, is a long-lasting malady 
of energy metabolism caused by reduced insulin action 
(Kohei et al., 2010; Olokoba et al., 2012). Even though a 
large number of options are available for the treatment of 
T2D, no single medicine is useful for achieving long lasting 
control of blood glucose levels in most of the T2D cases. 
Due to this reason, now-a-days physicians suggest treatment 
of T2D at an earlier stage with combination of antidiabetic 
agents. Overdose of antidiabetic drugs may cause severe 
hypoglycemia leading to severe toxic effects, and patients 

normally require urgent medical treatment (Olokoba  
et al., 2012). The scientific community is currently focusing 
on developing new, safe and clinically different antidiabetic 
agents that can be used as mono drug therapy with improved 
efficacy. Results from several recent studies, including 
emerging clinical data, have demonstrated that small-
molecule glucokinase (GK) activators may be able to fill this 
void (Pal, 2009; Pal, 2009a; Grewal et al., 2014).   

GK is a cytoplasmic enzyme which catalyzes the 
conversion of glucose to glucose-6-phosphate in presence 
of ATP and controls the blood glucose levels in a safe and 
narrow physiological range in humans. GK is predominantly 
expressed in the pancreatic β-cells and hepatocytes in liver 
(Matschinsky and Porte, 2010; Grewal et al., 2014). In 
pancreatic β-cells, it plays chief role by regulating glucose-
stimulated insulin release and in liver hepatocytes cells, it 
regulates the sugar metabolism. GK is an emerging target 
for the therapeutic management of T2D patients as it plays 
a key function in the regulation of carbohydrate breakdown. 
GK activators are the new class of drug candidates which 
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act on GK enzyme and show their hypoglycemic activity 
(Coghlan and Leighton, 2008; Pal, 2009; Perseghin, 2010; 
Matschinsky et al., 2011). A broad diversity of chemical 
entities including benzamide derivatives (Iino et al., 2010; 
Pike et al., 2011; Li et al., 2011; Mao et al., 2012; Zhang 
et al., 2012; Park et al., 2013; Park et al., 2014; Singh et 
al., 2016; Tsumura et al., 2017; Wang et al., 2017; Charaya 
et al., 2018), acetamides (Mitsuya et al., 2009; Pfefferkorn 
et al., 2012; Cheruvallath et al., 2013), carboxamides 
(Li et al., 2010; Pfefferkorn et al., 2012a; Ye et al., 2012), 
acrylamides (Sidduri et al., 2010), benzimidazoles (Ishikawa 
et al., 2009; Takahashi et al., 2009), quinazolines (Iino et al., 
2009), thiazoles (Hinklin et al., 2013), pyrimidines (Filipski 
et al., 2013), and urea derivatives (Zhang et al., 2012a; Li 

et al., 2014) have been reported in last few years to act as 
potent GK activators. The maximum research efforts related 
to GK activators had mainly focused on the benzamide 
derivatives owing to their orientation and binding pattern 
in the allosteric binding site of the GK protein (Grewal et 
al., 2014). In view of the critical importance of the GK 
activators in management of T2D and the potential of 
benzamide derivatives as GK activators, we planned to 
design and synthesize some novel GK activators based on 
benzamide nucleus. The substitutions on benzamide nucleus 
were carried out in such a way that strong H-bond and 
hydrophobic interactions with residues in the allosteric site 
of GK protein can be achieved (Figure 1).

Figure 1: Pharmacophoric features and general structure of sulfamoyl benzamide derivatives designed as potential GK activators. 

2. Experimental

2.1 Material and Methods
The chemicals were purchased from Spectrochem Ltd., Otto 
Chem. Pvt. Ltd., and SD Fine Chem. Ltd. and were utilized 
as such. Melting points were calculated by using open 
capillary tubes on a Veego VMP-D melting point apparatus 
and are uncorrected. The reaction completion was monitored 
by thin layer chromatography (TLC) on silica gel-G plates 
and the purity of the compounds was ascertained by single 
spot on TLC plate. Infrared (IR) spectra were recorded on 
a Shimadzu IR affinity FTIR spectrophotometer using KBr 
pellet method. 1H Nuclear magnetic resonance (1H-NMR) 
spectra were taken on BrukerAvance II 300 MHz NMR 
spectrophotometer using DMSO-d6 as solvent and are 
expressed in parts per million (δ, ppm) downfield from 
tetramethylsilane (internal standard).

2.2 Synthesis of Sulfamoyl Benzamide Derivatives
Anhydrous 3-nitrobenzoic acid (1 mmol) was taken in a RBF 
fitted with a stir bar and a Claisen adapter in a cold water 
bath maintained between 10 and 15°C. Chlorosulphonic 
acid (8.0 mL) was added in excess and funnel was 
stoppered and checked cautiously to confirm no leakage. 
The reaction showed exothermic reaction and when whole 
acid had dissolved and the exothermic reaction subsided, 
the reaction was completed by heating the flask on water 

bath at 70-80°C for 2 h. The reaction mixture was cooled 
and transferred to 150 g crushed ice with stirring to break 
lumps. The precipitates were filtered using vacuum filtration 
followed by washing with cold water and product was air 
dried. The resulting product (1 mmol) and commercially 
available amines (1 mmol) were refluxed in acetone, until the 
reaction was completed as observed by TLC. The contents 
of the flask were cooled and precipitates of sulphonamides 
of 3-nitrobenzoic acid obtained were washed and dried. 
The different sulphonamides (1 mmol) as obtained above 
and thionyl chloride (1 mmol) were refluxed for 3 h. On 
completion of reflux, the excess of thionyl chloride was 
distilled off to obtain the corresponding acid chlorides. The 
respective benzoyl chlorides (1 mmol) were refluxed with 
commercially available amines (1.5 mmol) in acetone and 
the final products received after evaporation of acetone were 
recrystallized from ethanol (Singh et al., 2016; Grewal et al., 
2017; Charaya et al., 2018).
3-[(4-Bromophenyl)sulfamoyl]-N-(4-methylphenyl)-5-
nitrobenzamide (1): FTIR (KBr Pellets) ν cm-1: 3377.55 
(NH str.), 2975.39 (CH str., Aromatic), 1616.64 (C=O str., 
CONH), 1529.62 (NO2 str., Asymm.), 1280.03 (CH bend, 
Aromatic), 1394.10 (SO2 str., SO2NH), 601 (C-Br str.).

N-(4-bromophenyl)-3-nitro-5-[(4-nitrophenyl)sulfamoyl]
benzamide (2): FTIR (KBr Pellets) ν cm–1: 3354.55 (NH 
str.,),  2975.39 (CH str., Aromatic), 1616.64 (C=O str., 
amide), 1529.62 (NO2 str., Asymm.), 128.003 (CH bend., 
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Aromatic), 1394.10 (SO2, SO2NH), 1309 (C-N str.), 603 
(C-Br str.); 1H NMR (δ ppm, DMSO): 10.02  (s, 1H, NH, 
NHCO), 8.32-8.45 (s, 3H, CH, C6H3CO), 7.44-7.59 (m, 
4H, CH, C6H4-NO2), 7.02-7.34 (m, 4H, CH, C6H4-Br),  
2.50 (s, 1H, NH, SO2NH).
3-[ (4 -Chloro-2-n i t ropheny l ) su l famoy l ] -N- (4 -
chlorophenyl)-5-nitrobenzamide (3): FTIR (KBr Pellets) 
ν cm–1: 3354.55 (NH str.), 3097.39 (CH str., Aromatic), 
1689.64 (C=O str., CONH), 1529.62 (NO2 str.), 1247.03 
(CH bend, Aromatic), 1346.10 (SO2, SO2NH), 1072 (C-N 
str.), 746 (C-Cl str.). 
N-(4‐Chlorophenyl)‐3‐((3‐chlorophenyl)sulfamoyl)‐5‐
nitrobenzamide (4): FTIR (KBr Pellets) ν cm–1: 3304.55 
(NH str.), 3055.39 (CH str., Aromatic), 1651.64 (C=O 
str., CONH), 1529.62 (NO2 str., Asymm.), 1238.03 (CH 
bend, Aromatic), 1350.10 (SO2, SO2NH), 1078 (C-N str.), 
783 (C-Cl str.); 1H NMR (δ ppm, DMSO): 10.7 (s, 1H, 
NH, NHCO), 8.21-8.38 (s, 3H, CH, C6H3CO), 7.85-7.89 
(m, 4H, CH, C6H4-Cl), 7.55-7.59 (m, 4H, CH, C6H4-Cl), 
2.50 (s, 1H, NH, SO2NH). 
N-(4-Chlorophenyl)-3-((2-chlorophenyl)sulfamoyl)-5-
nitrobenzamide (5): FTIR (KBr Pellets) ν cm–1: 3277.55 
(NH str.), 3194.39 (CH str., Aromatic), 1689.64 (C=O 
str., CONH), 1529.62 (NO2 str.), 1259.03 (CH bend, 
Aromatic), 1319.10 (SO2, SO2NH), 1053 (C-N str.), 845 
(C-Cl str.). 
N-(4-Bromophenyl)-3-((2-chlorophenyl)sulfamoyl)-5-
nitrobenzamide (6): FTIR (KBr Pellets) ν cm–1: FTIR 
(KBr Pellets) ν cm–1: 3305.55 (NH str.), 3094.39 (CH 
str., Aromatic), 1589.64 (C=O str., CONH), 1529.62 
(NO2 str.), 1205.03 (CH bend, Aromatic), 1348.10 (SO2, 
SO2NH), 1012 (C-N str.), 815 (C-Cl str.), 682 (C-Br str.); 
1H NMR (δ ppm, DMSO): 10.02  (s, 1H, NH, NHCO), 
8.34-8.36 (s, 3H, CH, C6H3CO), 7.44-7.59 (m, 4H, CH, 
C6H4-Cl), 7.57-7.61 (m, 4H, CH, C6H4-Br), 2.50 (s, 1H, 
NH, SO2NH). 
N-(4-Bromophenyl)-3-((4-chloro-2-nitrophenyl)
sulfamoyl)-5-nitrobenzamide (7): FTIR (KBr Pellets) 
ν cm–1: 3334.55 (NH str.), 2992.39 (CH str., Aromatic), 
1546.64 (C=O str., CONH), 1251.62 (NO2 str.), 1251.03 
(CH bend, Aromatic), 1346.10 (SO2, SO2NH), 1012 (C-N 
str.), 822 (C-Cl str.), 669 (C-Br str.); 1H NMR (δ ppm, 
DMSO): 10.7 (s, 1H, NH, CONH), 8.16-8.28 (s, 3H, CH, 
C6H3CO), 7.41-7.46 (m, 3H, CH, C6H3-Cl-NO2), 7.52-
7.69 (m, 4H, CH, C6H4-Br), 2.51 (s, 1H, NH, SO2NH).
3-[(3-Bromophenyl)sulfamoyl]-5-nitro-N-(4-nitrophenyl)
benzamide (8): FTIR (KBr Pellets) ν cm–1: 3400.55 (NH 
str.), 3080.39 (CH str., Aromatic), 1610.64 (C=O str., 
CONH), 1350.62 (NO2 str.), 1205.03 (CH bend, Aromatic), 
1350.10 (SO2, SO2NH), 1010 (C-N str.), 682 (C-Br str.); 
1H NMR (δ ppm, DMSO): 10.76  (s, 1H, NH, NHCO), 

8.32-8.63 (s, 3H, CH, C6H3CO), 7.82-8.01 (m, 4H, CH, 
C6H4-NO2), 7.26-7.34 (m, 4H, CH, C6H4-Br),  2.51 (s, 1H, 
NH, SO2NH).
N - ( 4 - B ro m o p h e n y l ) - 3 - ( m e t h y l s u l f a m o y l ) - 5 -
nitrobenzamide (9): FTIR (KBr Pellets) ν cm–1: FTIR 
(KBr Pellets) ν cm-1: 3394.55 (NH str.), 2989.39 (CH 
str., Aromatic), 1616.64 (C=O str., CONH), 2858 (C-C 
str.) 1398.62 (NO2 str.), 1203.03 (CH bend, Aromatic), 
1350.10 (SO2, SO2NH), 1014 (C-N str.), 603 (C-Br str.).
3-((4-Bromophenyl)sulfamoyl)-5-nitro-N-(4-nitrophenyl)
benzamide (10): FTIR (KBr Pellets) ν cm–1: 3215.55 (NH 
str.), 2973.39 (CH str., Aromatic), 1610.64 (C=O str., 
CONH), 1350.62 (NO2 str.), 1205.03 (CH bend, Aromatic), 
1531.10 (SO2, SO2NH), 1013 (C-N str.), 667 (C-Br str.). 
3-((4-Bromophenyl)sulfamoyl)-N-(4-chlorophenyl)-5-
nitrobenzamide (11): FTIR (KBr Pellets) ν cm–1: 3331.55 
(NH str.), 3078.39 (CH str., Aromatic), 1624.64 (C=O 
str., CONH), 1327.62 (NO2 str.), 1207.03 (CH bend, 
Aromatic), 1327.10 (SO2, SO2NH), 1089 (C-N str.), 667 
(C-Br str.) 732 (C-Cl str.).

2.3 Docking Studies
In silico docking studies were performed out for the 
synthesized derivatives in the binding site of GK using 
AutoDock Vina (Trott & Olson, 2010), graphical user 
interface, AutoDock Tools (Morris et al., 2009) and PyMOL 
(The PyMOL Molecular Graphics System, Schrödinger, 
LLC) installed on Windows (Trott & Olson, 2010; Morris 
et al., 2009). Two-dimensional structures of the ligands 
were drawn using Marvin Sketch (Marvin 15.9.21, 2015, 
ChemAxon) and converted to 3-D using Frog2 server 
(Miteva et al., 2010). The co-crystallized GK information 
was obtained from the RCSB protein data bank (Berman 
et al., 2000) and after evaluating a number of entries, the 
best ligand bound complex (PDB entry: 3IMX) was selected 
by analyzing 3-D structures with highest resolution. The 
same protocol for molecular docking of the synthesized 
sulfamoyl benzamide derivatives using AutoDock Vina 
was used as reported in detail in earlier publications (Singh  
et al., 2016; Grewal et al., 2017; Grewal et al., 2017a). At 
the end of docking, the ligand poses with the most favorable 
binding free energy (ΔG, kcal/mol) were selected. The 
H-bond interactions, hydrophobic interactions etc., were 
analysed further for the docked poses of all the ligands using 
PyMOL and the best poses in the binding site were selected 
for further analysis.

2.4 Evaluation of Antidiabetic Activity
Male Sprague-Dawley rats weighing 160-180 g were 
procured from Lala Lajpat Rai University of Veterinary 



ISSN No.: 2321-2217(Print) ISSN No.: 2321-2225(Online); Registration No. : CHAENG/2013/50088

pp.118Journal of Pharmaceutical Technology, Research and Management Vol. 6, No.2, Nov. 2018

and Animal Sciences, Hisar. The rats were kept and 
maintained at controlled room temperature (22 ± 2°C) 
and humidity (55 ± 5%) with 12:12 h light and dark 
cycle. All the rats were fed with the normal pellet diet 
and water ad libitum, prior to the dietary manipulation. 
Permission was taken from institutional animal ethics 
committee and associated guidelines of Committee for 
the Purpose of Control and Supervision of Experiments 
on Animals, Govt. of India were followed for conducting 
this study (Approval No. JCDMCOP/IAEC/06/14/23). 
A cohort of male Wistar rats was fasted for at least 8 
hours. Hyperglycemia was induced in each fasted rat 
by administering alloxan monohydrate (150 mg/kg 
body weight; intraperitoneal) in normal saline. Blood 
glucose was checked using a glucometer after 72 h 
post-induction of hyperglycemia and only the rats with 
established hyperglycemia were included for subsequent 
experiment. Based on the screening carried out in the 
molecular docking studies, the selected sulfamoyl 
benzamide derivatives (2, 6, 7, 8 and 10) at a dose of 
50 mg/kg and metformin (standard antidiabetic drug) 
at a dose of 100 mg/kg were administered orally in 

0.5% CMC solution to a cohort of diabetic rats (n = 6). 
Untreated diabetic group received only the vehicle (0.5% 
CMC solution). Blood glucose levels were measured at 
specified time intervals (0, 2, 4 and 6 h) in all the rats 
(Akinola et al., 2012).

3. Results and Discussion

3.1 Chemistry
The general scheme followed for synthesizing designed 
sulfamoyl benzamide derivatives is presented in Figure 2. 
3-(Chlorosulphonyl)-5-nitrobenzoic acid was prepared 
by chlorosulphonation of 3-nitrobenzoic acid followed by 
refluxing with amines to obtain the sulphonamides. The 
different sulphonamides were refluxed with thionyl chloride 
to get their respective benzoyl chlorides which were then 
refluxed with available aromatic amines to get the designed 
derivatives. The physiochemical properties of the final 
synthesized compounds are presented in Table 1 and all the 
synthesized compounds were characterized using FTIR and 
1H-NMR spectroscopy.

Figure 2: Synthetic route followed for sulfamoyl benzamide derivatives. Reagents and conditions: (a) Chlorosulphonic acid, 80 –, 2h;  
(b) NH2–R1, acetone, reflux; (c) Thionyl chloride, acetone, reflux; (d) NH2–R2, acetone, reflux. 

Table 1: Physicochemical properties of the synthesized sulfamoyl benzamide derivatives. 

Compound R1 R2 Mol. formula M. Pt. (°C) Rf
* % Yield

1 C19H13Br2N3O5S 150-155 0.72 45

2 C19H13BrN4O7S 172-177 0.65 48
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3 C19H12Cl2N4O7S 160-165 0.73 54

4 C19H13Cl2N3O5S 165-179 0.75 39

5 C19H13Cl2N3O5S 165-170 0.60 55

6 C19H13BrClN3O5S 175-180 0.54 49

7 C19H12BrClN4O7S 177-183 0.71 38

8 C19H13BrN4O7S 172-177 0.70 40

9 –CH3 C14H10BrN3O5S 155-160 0.59 39

10 C19H13BrN4O7S 165-170 0.78 54

11 C19H13BrClN3O5S 180-185 0.79 48

*TLC mobile phase: Benzene: Ethyl acetate (7:3). 

The 1H-NMR spectra of synthesized sulfamoyl benzamide 
derivatives showed singlet signal equivalent to one proton 
of the -NHCO group around δ 10 ppm, confirming the 
formation of amide bond in the synthesized benzamide 
derivatives by the reaction of various benzoyl chlorides with 
commercially available anilines. The presence of singlet signal 
in the 1H-NMR spectra of the synthesized compounds for 
the NH proton of SO2NH group was observed around δ 2.5 
ppm which confirmed the formation of sulphonamides by 
the reaction of various sulfonyl chlorides with commercially 
available aliphatic and aromatic amines. The FTIR spectra 
of synthesized derivatives showed the presence of NH- 
stretching of NHCO around 3200-3300 cm–1, aromatic 
-CH stretching above 3000 cm-1 as well as -SO2 asymmetric 
and symmetric stretching around 1350 cm-1 and 1150 
cm-1 respectively, thus supporting the fact that an amide 
linkage and a sulphonamide functional group was present 

in the structure of synthesized benzamide derivatives. The 
various stretching and bending vibration related to various 
functional groups were present in the FTIR spectra of the 
synthesized compounds.

3.2 Docking Studies
Lead optimization of the synthesized compounds was done 
by computation of drug-likeness properties (molecular 
weight, log P, hydrogen bond donors (HBD), and hydrogen 
bond acceptors (HBA). Most of the compounds selected 
for in silico docking studies were found to possess drug like 
properties as contrived by Lipinski’s rule of five (Table 2). 
The docking simulations were carried out by AutoDock 
Vina, by energy minimization and optimization of designed 
ligands in the allosteric binding site of GK protein and 
validated by docking of 3IMX ligand in the allosteric 
binding site of GK protein. Docking score of synthesized 
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derivatives are presented in Table 2. Out of these derivatives, 
compounds 2, 6, 7, 8 and 10 observed appreciable binding 
in the allosteric site as determined by analyzing the H-bond 
and hydrophobic interactions of the selected best docked 
poses. The docking studies of these molecules suggested a 

complimentary fit in the allosteric site of GK protein. On 
the basis of their lowest binding free energy (kcal/mol) and 
docking interactions in the binding site, compounds 1, 2, 5, 
and 8 were further analyzed in details by PyMOL.

Table 2: Molecular properties and docking score of the synthesized sulfamoyl benzamide derivatives.

Compound Mol. Wt.* log P* HBA* HBD* Docking score 
(ΔG)

1 555.20 5.03 5 2 -8.7

2 521.30 4.20 7 2 -9.3

3 511.29 4.64 7 2 -8.9

4 466.29 4.70 5 2 -8.8

5 466.29 4.70 5 2 -8.7

6 510.74 4.87 5 2 -9.3

7 455.74 4.81 7 2 -9.9 

8 521.30 4.20 7 2 -9.0

9 414.23 2.60 5 2 -8.0

10 521.30 4.20 7 2 -9.0

11 510.74 4.87 5 2 -8.9
*Mol. Wt., Log P, HBA, and HBD were calculated using MarvinSketch (2015).

Figure 3: (a) Overlay of the docked pose of compounds 2, 6, 7, 8 and 10 (white) with that of PDB Ligand 3IMX (green); (b) Docked pose 
showing H-bond interactions for compound 2; (c) Docked pose showing H-bond interactions for compound 6; (d) Docked pose showing 
H-bond interactions for compound 7; (e) Docked pose showing H-bond interactions for compound 8; (f ) Docked pose showing H-bond 
interactions for compound 10 in the allosteric site of GK protein.  
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Docked pose showing overlay of the selected compounds 
with that of the PDB ligand 3IMX are presented in Figure 
3. An overlay of docked poses of the selected compounds 2, 
6, 7, 8 and 10 with that of 3IMX ligand showed that the 
selected compounds had the similar binding pattern in the 
allosteric site of the GK enzyme as that of co-crystallized 
ligand (Figure 3a). The 4-bromophenyl group of compound 
2 showed hydrophobic interactions with Val455 and Ala456, 
phenyl ring packs between Tyr214 and Met210 residues 
whereas the 4-bromophenyl group of sulphonamide oriented 
into the hydrophobic pocket comprising Trp99, Tyr215 and 
Leu451. Similarly overlay of the docked poses of compounds 
6, 7, 8 and 10 also showed that these selected compounds 
had the similar binding pattern in the allosteric site of the 
GK protein as that of co-crystallized ligand. The docked pose 
of compounds 2, 6, 7, 8 and 10 in the allosteric binding site 
of GK showed the H-bond interaction between the amide 
carbonyl of benzamide and NH of Arg63 on GK protein 
with H-bond distance of 3.1, 3.3, 3.1, 3.4, and 3.1 Å (Figure 
3b-3f ). Thus, the molecular docking study of designed 
sulfamoyl benzamide derivatives in the allosteric binding 
site GK protein helped us in predicting that the designed 
benzamide derivatives could act as potent GK activators. 

3.3 Antidiabetic Activity
The selected compounds 2, 6, 7, 8 and 10 screened by 
in silico docking studies were further studied for their 
antidiabetic effect in induced diabetic rats. The results 
of antidiabetic activity measured as blood glucose levels 
(mg/dl) at different time intervals are presented in  
Figure 4. The results of antidiabetic activity indicated that 
compounds 2 and 7 had better glucose lowering effects 
in diabetic animals than other compounds. Compound 
2 lowered blood glucose levels in diabetic rats but not 
equivalent to that of the standard drug metformin. 
Compounds 6 and 8 were found to be ineffective as 
antidiabetic agents. Compound 10 slightly lowered blood 
glucose level in diabetic rats at 2 h but it was ineffective at 
4 h and 6 h. Compound 7 was almost similarly effective 
in lowering blood glucose levels at 2 h compared to that 
of the standard drug metformin and showed a significant 
decrease in blood glucose levels at 4 h and 6 h. The 
antidiabetic activity data was statistically analyzed by one-
way ANOVA. All the data was significantly different from 
the control group (p < 0.05). 

Figure 4: Blood glucose levels of selected molecules at different time intervals. All the values are mean of six measurements ± SD. *Data was 
significantly different compared to the control group (p < 0.05). 

4. Conclusion
A new series of sulfamoyl benzamide derivatives were 
designed based on the pharmacophoric features required for 
binding of GK activators with GK by means of substitution 
at amide linker and addition of sulphonamide moieties 
at the aromatic ring. Amongst the several synthesized 
derivatives, compounds 2, 6,7, 8 and 10 showed good 
interactions with the residues in the allosteric binding 
site GK protein in molecular docking studies. Amongst, 

the selected compounds tested in vivo, compound 7 
displayed greater antihyperglycemic efficacy in antidiabetic 
studies. The results of the in vivo antidiabetic assay were in 
accordance to that of in silico molecular docking studies. The 
molecular properties of these newer benzamide derivatives 
were also found to follow the Lipinski’s rule of five for 
drug-like property. These synthesized molecules can behave 
as the early hit molecules for further development of safe, 
potent and oral GK activators for the potential treatment of 
diabetic disorders.
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