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Abstract We study the effect of rotation in fission of the atomic nucleus 256Fm using an 
independent-particle shell model with the mean field represented by a deformed Woods-Saxon 
potential and the shapes defined through the Cassinian oval parametrization. The variations of 
barrier height with increasing angular momentum, appearance of double hump in fission path 
are analysed. Our calculations explain the appearance of double hump in fission path of 256Fm 
nucleus. The second minimum vanishes with increase in angular momentum which hints that 
the fission barrier disappears at large spin.
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1. INTRODUCTION

Nuclear fission is still an interesting topic for researchers because our understanding 
is incomplete due to the complexity of this process. Fission is a large amplitude 
collective motion of nucleons where nucleus evolves through different shapes. A 
proper understanding of fission process is very important in many areas of science 
and technology, for example, the understanding of nuclear fission helps us to improve 
our safety precautions of nuclear reactors. The term nuclear fission was introduced 
by Meitner and Frisch [1] to explain the experimental results as a division of a 
heavy nucleus into two lighter nuclei. Based on a liquid drop model in 1939, Bohr 
and Wheeler developed a theory of fission [2] as a competition between Coulomb 
energy and surface energy. Later, Hill and Wheeler [3] suggested that it is important 
to consider the microscopic nature of the nucleus by calculating the single-particle 
states of nucleons moving in a highly deformed nuclear potential to get a range of 
phenomena such as asymmetric fission, fission isomers etc. It was also realized that 
in such calculations the parameterization of shapes also plays a crucial role as the 
model should be capable of handling the binary shapes also. The nuclear shapes 
near the fission and beyond the fission point can be represented more efficiently 
by Cassinian ovals, which was introduced by Pashkevich [4]. The Cassinian ovals 
are a single-parameter family of curves convenient to approximate the shape of the 
nuclear surface while the nuclear volume is conserved. With this parameteriztion 
it is possible to the calculate fission barriers through an independent-particle shell 
model where the microscopic effects are taken care. In the present investigation, we 
look at the form of the fission barriers and potential energy surfaces in the nucleus 
256Fm obtained with independent-particle shell model with deformed Woods-Saxon 
potential. There are many works reported in recent literature [5, 6, 7, 8], explaining 
the process of fission. Most of them concern only the fission from non-rotating 256Fm 
and in Ref. [9] the momenta of inertia are calculated. The present work focusses on 
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the role of angular momentum, to which the barrier height for nuclear fission is quite 
sensitive.

2. THEORETICAL FRAMEWORK

The main development in this work is the extension of the Cassinian oval calculations 
to rotating nuclei. Here we present a brief outline of the shape parameterization 
[10] and the cranking method [11] for studying rotating nuclei. The shape of the 
nucleus in the zeroth-order approximation is taken to be the Cassinian ovaloid, 
the deviation being expanded in a series of Legendre polynomials. We can define 
new coordinates (R, x) in the plane containing the symmetry axis such that the 
coordinate line R =const., is a Cassinian oval with the limits 0 ≤ R < ∞, and −1 ≤ 
x ≤ 1. The (R, x) coordinates relate to the cylindrical ones, (r, z) by the following 
expressions [4]:

 R z r R z r R= + − − +[( ) ( ) ]2 2 2

0

2 2 2 2

0

42
1

4ε ε  (1)

and

 x
z z r R

z r R z r R
= +

− −

+ − − +







si ( )

[( ) ( ) ]

gn

2
1

2

2 2

0

2

2 2 2

0

2 2 2 2

0

4 1
2

ε

ε ε







1
2

.  (2)

Here the deformation parameter ε varies from zero, for sphere to higher values which 
correspond to the separated fragments. The nuclear shape can be defined as a curve 
R(x) that does not intersect any straight line x = const., in more than one point. εR2

0
 

can be understood as the distance between the origin of the coordinate and the focus 
of Cassinian ovals. The function R(x) can be expand as
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The deformed Woods-Saxon potential with the spin-orbit interaction proportional to 
the potential gradient is used for the calculations [4],
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Where dist(r,z,ε,βˆ ) is the distance between the point r and the nuclear surface, a 
represents the surface diffuseness and V

0
 stand for the depth of potential well. The 

single-particle energies with this potential are calculated by using the CASSINI 
code [10] which is most similar to work presented in Ref. [12] but for the shape 
parameterization. We consider only axially symmetric nuclear shapes.
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A very direct way of investigating the properties of a rotating nucleus is to rotate 
(crank) it with certain angular velocity ω. The angle θ defines the tilt of the cranking 
axis (n̂) with respect to the intrinsic z-axis within the principal xz-plane of the 
deformed potential, thus we get the cranking Hamiltonian as

 H H n Jω ω= −0 ˆ. ,  (5)

where H0 is the unperturbed (non-rotating) Hamiltonian and J
–
  is the angular momentum 

operator. A one dimensional cranking, also called a Principal Axis Cranking (PAC) can 
be performed by choosing the cranking axis by fixing θ. If we consider the rotation 
about the z-axis, we have

 ( . ) .n J JPAC zz


= =for θ 0  (6)

The expectation value of the above operator is diagonal and equal to the projection of 
single-particle angular momentum (Ω). Thus the angular frequency dependent terms 
are added to the Hamiltonian, to calculate the energy of the nucleus at a particular 
rotational frequency. A method of tuning is adopted such that the value of ω is tuned to 
achieve a desired angular momentum.

3. RESULTS AND DISCUSSION

The potential energy surface calculated at zero angular frequency (ω = 0) which is 
eventually the zero angular momentum state (I = 0 ) for the considered even-even 
nucleus 256Fm, is shown in Fig. 1(a). We can identify from Fig. 1(a) that the ground 
state corresponds to a lower deformation with a strong barrier towards the highly-
deformed or binary shapes leading to fission. The fission path is mostly through the 
states with large negative β

4
 values which correspond to the formation of the “neck” 

which at higher β
2
 value, correspond to a binary shape.

For rotating nuclei, we find that the tuning to fixed spin plays a key role in obtaining 
the results at fixed angular momentum, which are more physical than those obtained 
at a constant ω. As explained in the formalism, spin tuning is the process of searching 
for the ω that leads to the desired angular momentum. Such a tuning has to be done 
at every point in the deformation mesh. By varying the angular momentum values 
from 0  to higher values, the potential energy surfaces have been calculated and 
the results are shown in Fig. 1(b). We see that the increase in angular momentum 
leads to the development of second minimum (second hump) at larger deformations. 
Interestingly, at a high value of angular momentum of 100 , the first minimum 
vanishes but there is a local minimum at very high deformation with a large fission 
barrier.

The variations in the humps are vividly seen in the fission profiles shown in Fig. 
2. From this figure, it can be observed that there is a sudden increase in the fission 
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barrier from I =0  to I =20 . As the angular momenta increases, the fission path 
develops a second hump. This can be seen as one moves from I = 20  to other 
higher values. At very high angular momenta, like at I = 100  one minimum 
vanishes. Nuclei at this region can sustain angular momenta up to a certain value 
which in case of 256 Fm is ∼65  as suggested by the rotating liquid drop model 
(RLDM)[13]. The RLDM also suggests that the fission barrier should decrease as 
a function of angular momentum and hence beyond a critical angular momentum 
the fission barrier should vanish. Our calculations do not reveal such vanishing 
fission barriers. This discrepancy in the results could be attributed to the lack of 
considering the shell correction approach. Another drawback in our approach is that 

 (a)          (b)

Figure 1: (a) Potential energy surface for 256Fm at zero angular momentum. 
(b) Potential energy surface for 256Fm at I = 80

Figure 2: Fission profile for different values of spin (I) with 
negative and positive deformations
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our cranking is restricted to rotation about symmetry axis (non-collective rotation). 
Fission is understood to be a collective phenomenon. Hence, one should consider 
rotation about an axis perpendicular to the symmetry axis i.e, either x or y axis. 
It is interesting to note that even without shell corrections, this model is able to 
explain the double humped fission barriers. This success of this model is attributed 
to the realistic potential considered with finite depth. Another possibility is that at 
lower angular momenta, a collective (liquid drop) behaviour mean that the nucleus 
would prefer to have an oblate shape which corresponds to negative values of β

2
 . 

Beyond sufficiently large angular momentum (close to the one which the nucleus 
can sustain without undergoing fission), there could be a transition from the oblate 
(non-collective) to prolate (collective) shape. Such shape transitions are predicted in 
gravitating rotating stars [14] and called as Jacobi transition. Though we do not have 
the configuration of collective prolate, we analyse how the oblate and prolate shapes 
compete within the non-collective rotation. From, Fig. 2, we can see that the barrier 
for fission through prolate shape is always smaller than that for the oblate shape.

At lower angular momenta (I=20 ) there is a strong preference towards an oblate 
shape. Such an oblate shape could not sustain higher angular momentum except for 
100 which is rather an unphysical angular momentum for this nucleus.

4. CONCLUSIONS

Calculations with Cassinian oval paramaterization capable of explaining the binary 
shapes has been extended to study rotating nuclei. The cranking method is adopted 
along with the spin tuning to study the fission process at fixed angular momentum. The 
results obtained for the fission profiles and potential energy surfaces are analyzed in 
the case of 256Fm. The vanishing second minima in the expected double humped fission 
for 256Fm at higher angular momentum values was observed which would strengthen 
the fact that at higher angular momentum values fission barrier disappears. Our 
calculations do not explicitly reveal such vanishing fission barriers. This discrepancy 
could be attributed to the lack of considering the shell correction approach. We 
observed that the barrier for fission through prolate shape is always smaller than that 
for the oblate shape. A macroscopic-microscopic approach based on Strutinsky’s 
method shall be adopted to improve the present approach. In spite of this, the present 
calculations could provide a better insight in to the structural and fission properties of 
256Fm nucleus.
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