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Abstract 12 

Uranium is a heavy metal with potential adverse human health effects when consumed via 13 

drinking water. Although associated quality regulations have been implemented, geological 14 
sources and hydrogeochemical behavior of uranium in groundwater used for drinking water 15 

supply remain little understood. This study presents a hydrogeochemical and mineralogical 16 
characterization of a Triassic sandstone aquifer on a macro- and micro-scale, and an 17 
evaluation of uranium remobilization into groundwater, also considering the 18 

paleoenvironment and the distribution of the affected aquifer itself. Syndiagenetic 19 
uraniferous carbonate fluorapatite inclusions within the aquifer sandstones (“active 20 

arkoses”) were found to show structurally (chemical substitution in the crystal structure) 21 
and radiatively (α-recoil damage from uranium decay) enhanced mineral solubility. 22 
Extraction experiments indicated that these inclusions release uranium to groundwater 23 

during weathering. In conclusion, apatite alteration was identified as the responsible 24 
mechanism for widespread groundwater uranium concentrations >10 µg L-1 in the region 25 
representing Germany´s most significant problem area in this respect. Therefore, results 26 

indicate that the studied sedimentary apatite deposits cause the regional geogenic 27 
groundwater uranium problem, and must be considered as potential uranium sources in 28 

comparable areas worldwide. 29 

  30 

 31 
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1 Introduction 37 

 38 

1.1 Rationale 39 

Uranium (U) is known to be a heavy metal with a nephrotoxic potential, possibly leading to 40 
adverse human health effects (Zamora et al., 1998; Kurttio et al., 2006). In order to limit 41 
public U exposure via drinking water, German authorities established a threshold value of 42 

10 µg L-1 in 2011, making Germany the only European Union member state to date with a 43 
binding legislation in this respect. Sources of U in groundwater can be natural or 44 

anthropogenic. While the former is mostly represented by uraniferous rocks like felsic 45 
magmatites (Banning et al., 2012; Frengsted et al., 2000) or fen peats (Read et al., 1993; 46 
Banning et al., 2013), the latter includes former U mining sites (Carvalho et al., 2005; 47 

Baborowski and Bozau, 2006), depleted U ammunition (Crançon et al., 2010; Dong et al., 48 
2006) or phosphorus fertilizer (Zielinski et al., 2006; Schnug and Lottermoser, 2013). 49 

Drinking water supply in northern Bavaria is dependent on groundwater extraction from 50 
terrestrial Triassic (Keuper) sandstones. Therein, large areas with groundwater U 51 
concentrations >10 µg L-1 were detected, making the region Germany´s most significant U 52 

problem area known so far. The U sources and mobilization processes have been unknown. 53 
Consequently, in an effort to unravel U dynamics in the given area, this study focused on a 54 

geochemical and mineralogical characterization of aquifer materials, elemental distribution 55 
on different scales, and U mineralogical fractionation and mobility.  56 

 57 

1.2 Study area and “active arkoses” 58 

The study area around the city of Nürnberg in southeastern Germany (Fig. 1,3) is part of the 59 

epicontinental South German Keuper Basin filled with terrestrial and shallow marine 60 
sediments (see geological map, Fig. A1 in the Appendix). A medium to coarse grained, 61 
feldspathic sandstone (“Burgsandstein”, Fig. 2) with clayey interbeddings from the 62 

terrestrial facies represents the major aquifer used for water extraction in the region.  63 

Typical groundwater type in the “Burgsandstein” aquifer is Ca-Mg-HCO3 (Heinrichs and 64 

Udluft, 1999). Hydrochemical data for 21 groundwater samples from this aquifer (kindly 65 
provided by the Bavarian Environment Agency, LfU) indicates a circumneutral pH milieu 66 
(mean: 7.1, ranging from 5.2-8.3). pH does not show any correlation with U concentrations 67 

(R2=0.04), maximum values are found around pH 7. The same is valid for U correlation 68 
with NO3

- (R2=0.10) or eC (R2=0.02). Total organic carbon is <0.1 mg L-1 in most 69 

groundwaters including all samples with U>10 µg L-1. Uranium concentrations above the 70 
guideline value were only found in oxic waters with Fe and Mn below detection limits and 71 
NO3

- presence, while anoxic waters containing Fe and Mn (but no nitrate) yielded low U. 72 

These observations reflect the redox-dependent mobility of U in solution being mobile as 73 
U(VI) and insoluble as U(IV).  74 

The sandstone contains abundant U-rich intercalations appearing in outcrops as mainly red 75 
to violet lenses, shards or cloudy patches with partly significant dimensions in the m2 range. 76 



3 
 

These U anomalies were first discovered in the 1950s during U exploration programmes, 77 

but never mined due to their patchy distribution in the sandstone (Abele et al., 1962).  78 

 79 

 80 

Fig. 1. Uranium concentrations in Bavarian drinking water and distribution of uraniferous  facies in Triassic 81 
sandstones (the latter after Dill, 1988). The dashed red box indicates the study area. 82 

 83 

Two main types of uraniferous sediments (also referred to as “active arkoses” due to 84 

significant radioactivity from U α-decay) were distinguished according to their 85 
paleogeographical position in the basin: carbonatic “dolcretes” in the northern, basinward 86 

part (playa margin, U bound to carbonate phases), and apatitic “phoscretes” (U bound to 87 
phosphate phases) deposited in a more proximal part of the sedimentary fan derived from 88 
Variscan provenance in the south (Dill, 1988; Figs. 1,3). This study focuses on the apatitic 89 

deposits. Carbonate fluorapatite (francolite) occurring as fine grained cement between the 90 
silicate grains was suggested as the U carrier phase (Abele et al., 1962). The heavy metaĺ s 91 

ability to substitute on the Ca site in the apatite crystal structure is explainable by the 92 
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similarity of U(IV) and Ca(II) ionic radii and can result in U contents up to the wt.% range 93 

(Starinsky et al., 1982; Rakovan et al., 2002).  94 

 95 

 96 

Fig. 2. Keuper stratigraphy of the study area with sampled units highlighted by hachures, approximate unit 97 
thicknesses and basic hydrogeology (modified after Heinrichs and Udluft, 1999). “Active arkoses” only occur 98 
in Middle and Upper “Burgsandstein” aquifers, parts of the terrestrial Norian “Sandsteinkeuper”. 99 

 100 

“Active arkoses” are interpreted as syndiagenetic formations derived from apatite 101 
precipitation from U-, Fe- and PO4

3--enriched groundwater with simultaneous 102 

immobilization of U. Precipitation of fine-grained apatite and ferric oxide occurred during a 103 
substantial rise of pH when the solution encountered playa lake carbonates. The apatites 104 
replaced the latter and therefore resemble the paleo distribution of Triassic playa lakes in 105 

the study area (Abele et al., 1962; Dill, 1988; Dill, 2010). These genetic and mineralogical 106 
aspects make the described German francolite occurrence readily comparable to numerous 107 

examples worldwide, e.g. in the U.S.A., Morocco, New Zealand, Sri Lanka and South 108 
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Africa (Swirydczuk et al., 1981; McArthur, 1985; Dahanayake and Subasinghe, 1989). 109 

Conclusions from these regions can be utilised in understanding this system, and vice versa, 110 
results on U dynamics obtained here may be transferred to comparable study areas.  111 

 112 

 113 

Fig. 3. Paleogeographical situation during the Middle Keuper with sediment input directions, sediment 114 
thicknesses and distribution of the main U-bearing depositional facies (modified after Dill, 1988; Dill 2010). 115 
See Fig. 1 for a geographical overview. The sedimentary basin filling mainly derived from erosion of the 116 
Vindelician Swell – a former part of the Central European Variscides consisting of crystalline magmatic and 117 
metamorphic rocks – under arid conditions. It may be subdivided into a terrestrial (alluvial fan with playa 118 
lakes) and a basinal (shallow marine) facies with transitional character (sabhka) in between  (Abele et al., 119 
1962; Dill, 2010; Heinrichs and Udluft, 1999).  120 
 121 

  122 

 123 
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2 Methodology 124 

 125 

2.1 Hydrochemical data 126 

A dissolved U distribution map for Bavarian drinking water (Fig. 1) was derived using 127 
freely available data from an internet resource provided by the German non-profit 128 
organisation “foodwatch” which collected and published U concentration data from 129 

Bavarian health and environmental authorities (Foodwatch, 2008). The dataset includes 703 130 
single values obtained between 2000 and 2006. Drinking water U concentrations have 131 

partly decreased since then, mainly because of remediation measures taken by water 132 
suppliers as a reaction towards the political discussion on U limitations. Nevertheless, the 133 
map reflects the U occurrence in Bavarian groundwater (by far the most important drinking 134 

water source) during the given period. This approach – drawing conclusions from tap water 135 
quality to groundwater composition – is possible because of the special structure of 136 

drinking water supply in Bavaria: the highly decentralized system consists of around 2,350 137 
municipal water suppliers enabling a spatially accurate and high-resolution visualization of 138 
U distribution. 139 

 140 

2.2 Rock samples 141 

A total of 47 rock samples were obtained from outcrops of the middle and upper 142 
Burgsandstein (Fig. 2, sampling locations in Fig. A1 in the Appendix). All samples were 143 
analyzed using INAA (thermal neutron flux: 7*1012 n cm-2 s-1; Ge detector: resolution 144 

better than 1.7 keV for the 1332 keV, 60Co photopeak) and total digestion (HClO4-HNO3-145 
HCl-HF at 240°C) followed by ICP-OES analysis (Varian 735ES) for bulk rock 146 

geochemistry (49 elements, see complete data table A2 in the Appendix).  147 

Ten samples (seven “active arkoses”, two sandstones and one clay band) were selected for 148 
XRD analysis to characterize their mineralogical composition. These were ground to 149 

powder grain size in a McCrone corundum mill before measurements applying a Huber Co-150 
kα diffractometer (operational adjustments: 40 kV, 40 mA; 2θ range: 2-110°, step size: 151 

0.02° 2θ à 10 s counting time). Quantitative phase analysis was accomplished performing 152 
Rietveld analysis with the software BGMN 4.2.3 (Taut et al., 1998).  153 

Thin sections were produced from three “active arkose” samples and studied 154 

microscopically before selecting two of them for laser-ablation (NewWave UP193Fx, ArF-155 
Excimer-Laser) ICP-MS (PerkinElmer Elan DRCe) analysis (calibration standard: NIST 156 

612, spot diameter: 150 µm) to characterize major and trace element abundance and 157 
distribution on a microscale.  158 

Eight samples (five “active arkoses”, two sandstones, one clay band) were subjected to a 159 

sequential extraction procedure (SEP). The BCR approach (Ure et al., 1993) was used as a 160 
basis. It was modified after Sahuquillo et al. (1999) to improve method reproducibility. 161 

Moreover, an extraction step targeting the trace element fraction bound to apatite after 162 
Nezat et al. (2007) was added to the procedure. These authors found that 1 M HNO3 163 
congruently dissolves apatite at 20° C but that the solution becomes saturated at ~90 mmol 164 
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apatite L-1. Converting this finding to 10 mL solution (needed to work with 1 g solid 165 

sample and the solid-solution ratio 1:10 used by Nezat et al. (2007), ~0.44 g of apatite are 166 
dissolvable. According to the geochemical and mineralogical results in this study, up to 0.5 167 

g apatite g-1 solid sample can be expected (cf. 3.2). The solid-solution ratio for this step was 168 
therefore changed to 1:20. Aliquots of the samples (1 g) were ground in an agate mortar 169 
and placed in 50 mL centrifugation tubes. Extraction solutions were added in each step and 170 

the respective procedure was carried out. After centrifugation (15 min, 3000 rpm) and 171 
filtration (0.45 µm cellulose acetate filters) of the supernatant solution, a washing step with 172 

20 mL deionized water (15 min shaking, 15 min centrifugation, supernatant discarded) was 173 
implemented to avoid U transfer to the next fraction. Subsequently, the remaining sediment 174 
was subjected to the following procedure (Table 1). Extracted solutions were analyzed for 175 

U using ICP-MS (PerkinElmer Elan DRCe).  176 

 177 

 178 
Table 1. Applied sequential extraction procedure (“BCR+apatite”). 179 

 180 

 181 

3 Results and Discussion 182 

3.1 Uranium distribution in drinking water 183 

The distribution of U in Bavarian drinking water (Fig. 1) documents U “hot spots” around 184 
Nürnberg and Bamberg with a maximum U concentration of about 40 µg L-1, and rather 185 

unremarkable values (<10 µg L-1) in the southern and eastern parts of the federal state. 186 
There is a marked congruence of this spatial groundwater U pattern with the facies 187 
distribution of U-rich phoscretes (“active arkoses”) and dolcretes (Fig. 1,3) in the 188 

“Burgsandstein” aquifer, which gives a first indication towards a geological U source in the 189 
area. 190 

 191 

3.2 Aquifer geochemistry and mineralogy 192 

While aquifer sandstones exhibit low median U contents of 1.3 µg g-1, embedded “active 193 

arkoses” contain up to 260 µg g-1 U in bulk rock samples. Their median enrichment factors 194 

Step no. Target U fraction Extractant Procedure 

1 Easily mobilizable CH3COOH (0.11 M) 16 h shaking, 20°C 

2 Reducible NH2OH-HCl (0.5 M) 16 h shaking, 20°C 

3 Oxidizable H2O2 (30 %) 2 h in a water bath (85°C) 

4 Bound to apatite HNO3 (1 M) 16 h shaking, 20°C 

5 Residual Utot – U∑steps 1-4 
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compared to the sandstones are 44 for U, 32 for Ca and 98 for P. They furthermore 195 

represent sinks for Fe, most REE, Y, V, Pb and Cr while other minor and trace elements are 196 
in equal range or even depleted (Fig. 4, see complete data table A2 in the Appendix). 197 

 198 

 199 

Fig. 4. Element enrichment/depletion of “active arkoses” compared to mean aquifer sandstone concentrations, 200 
ordered by increasing median of enrichment factors. Note change of scale on the ordinate. 201 

 202 
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Quantitative XRD analyses indicate the aquifer sandstone is composed of dominantly 203 

quartz (nearly 90 wt.%) with minor amounts of feldspars and clay minerals. “Active 204 
arkoses” contain varying degrees of quartz (24-81 wt.%), feldspars (6-17 wt.%) and clay 205 

minerals (1-18 wt.%). Fluorapatite is always present, sometimes as a dominant component 206 
up to 50 wt.%. The relatively high Fe content is present as hematite (1-11 wt.%) and Fe-207 
bearing clay minerals like chlorite and illite (Table 2). 208 
 209 

 Quartz Feldspars Clay minerals F-Apatite Hematite 

 wt.% wt.% wt.% wt.% wt.% 

      

Sandstones     

Sand_1 87 6.4 6.3 n.d. n.d. 

Sand_2 89 7.3 3.6 n.d. n.d. 

      
Clay band     

Clay_1 21 16 59 n.d. 2.9 

      

“Active arkoses“     

AA_1_inner core 59 17 18 0.9 5.2 

AA_1_outer core 24 6.2 9.3 50 11 

AA_1_purple rim 74 9.8 6.0 9.5 0.5 

AA_2 69 8.5 0.8 20 2.1 

AA_3 68 13 3.6 12 4.6 

AA_4 81 6.3 1.2 9.9 1.4 

AA_5 81 10 2.3 1.9 4.5 

      

 210 
Table 2. Results of quantitative XRD analyses. “Feldspars” – sum of orthoclase and microcline, “Clay 211 
minerals” – sum of kaolinite, illite and chlorite. “n.d.” – not detected. Cf. 3.3 for “AA_1” details. 212 

 213 

Plotting the bulk contents of the main apatite components Ca and P in “active arkoses” 214 

yields a very close positive correlation (R2>0.99, Fig. 5) and enables the calculation of F 215 
and CO2 concentrations in the minerals – 3.9 and 4.5 wt.%, respectively. Thus, a 216 
comparison to stoichiometric fluorapatite in terms of Ca:P ratio documents a clear offset 217 

caused by partial coupled substitution of CO3
2- + F- for PO4

3- in the crystal structure 218 
(Binder and Troll, 1989; Regnier et al., 1994). This suggests a francolite stoichiometry 219 

close to Ca5(PO4)2.5(CO3)0.5F1.5 in the studied samples.  220 
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 221 

 222 
Fig. 5. Ca-P scatter plot for studied sediments. Lines for ideal fluorapatite stoichiometries  with different 223 
degrees of carbonate substitution for phosphate are indicated (equivalent to 0 wt.% [blue line], 2.25 wt.% 224 
[brown line] and 4.5 wt.% [red line] structural CO2). The studied francolites plot exactly along the 225 
Ca5(PO4)2.5(CO3)0.5F1.5 stoichiometry. Aquifer sandstones and interbedded clay lenses do not show indications 226 
for apatite presence. 227 

 228 

XRD results for unit cell parameters were used to evaluate the substitutional effect on the 229 

apatite crystal structure by comparing to values for Cl-, OH- and F-apatite end members 230 
and a carbonate fluorapatite (Table 3). 231 

 232 
 233 

 Ca5(PO4)3Cl Ca5(PO4)3OH Ca5(PO4)3F Carb-F this study 

a (Å) 9.5979a 9.4166a 9.3973a 9.368±0.002b 9.364±0.003  

Offset from apatites in 

this study (Å) 
+0.234 +0.053 +0.033 +0.004  

c (Å) 6.7762a 6.8745a 6.8782a 6.890±0.002b 6.895±0.005 

Offset from apatites in 

this study (Å) 
-0.119 -0.021 -0.017 -0.005 

 

 234 
Table 3. Apatite unit cell parameters in comparison to end members of the Ca5(PO4)3(Cl,OH,F) structure and 235 
carbonate fluorapatite (Carb-F). adata from Hughes et al., 1989; bdata from Gulbrandsen et al., 1966. 236 

 237 
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Cell dimensions of the studied apatites are almost identical with the carbonate fluorapatite 238 

(Table 3). Substitution of planar CO3
2- for tetrahedral PO4

3-, accompanied by occupation of 239 
the vacant oxygen site by F-, can cause significant changes in the crystal structure, 240 

expressed by changes in unit cell parameters. This includes shortening of the a-axis and 241 
elongation of the c-axis, compared to apatite end members (Smith and Lehr, 1966), as is 242 
observed in our samples. Consequently, apatites analyzed in this study are characterized as 243 

francolites containing high amounts of structural CO2 – especially when considering that 244 
the maximum CO3

2- substitution until disruption of the francolite structure corresponds to 245 

6.3 wt.% CO2 (McArthur, 1985).  246 

 247 

3.3 Microscale U distribution 248 

LA-ICP-MS measurements were conducted to characterize the distribution of U and other 249 
elements on a microscale. A bulb-like active arkose with distinct zonation, sampled from a 250 

fresh outcrop, was selected for chemical profiling and microscopical characterization (Fig. 251 
6). 252 

The reddish inner core of the sample contains little apatite (0.9 wt.%) and low U (mean: 25 253 

µg g-1), but high Fe contents (mean: 18 wt.%). Conversely, the thicker purple outer core 254 
reaches 50 wt.% fluorapatite and U of about 400 µg g-1 with several concentration peaks of 255 

up to 1070 µg g-1. The latter are observed in relatively pure, grey apatite matrix bands (high 256 
Ca and P, low Fe) visible under the microscope and probably formed by accretive 257 
crystallization of francolite (Fig. 6). Uranium hosting by apatite – not hematite – is 258 

confirmed here. Significantly lower elemental contents were detected in the yellow/white 259 
“leached” rim of the “active arkose”. Single reddish matrix spots with higher 260 

concentrations probably represent relics of a formerly more abundant material. This 261 
indicates a past mobilization mechanism and, therefore, U release to solution in the course 262 
of water-rock-interaction processes. 263 

 264 

 265 
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 266 
 267 

Fig. 6. LA-ICP-MS data for U, Fe and P along a zoned active arkose sample profile (A-A´). The line of 268 
calculated critical α-recoil damage in apatite (at 370 µg g-1 U) is indicated (cf. 3.4). Vertical dashed blue lines 269 
mark zone boundaries of the active arkose specimen (cf. 3.3). 270 

 271 

 272 

3.4 Uranium fractionation and remobilization 273 

Mineralogical fractionation and remobilization behaviour of U were assessed in a 274 
sequential extraction procedure (SEP). Easily mobilizable, i.e. CH3COOH-extractable, U 275 
represents 7 % of the total U pool in active arkoses on average. However, a freshly exposed 276 

specimen yielded no more than 1 % Utot in this fraction. Thus, secondary alteration is likely 277 
to lead to U oxidation and transformation into more soluble species, suggesting elevated U 278 

mobility in active arkoses during weathering. Uranium concentrations in the apatite-279 
targeting extraction step (1 M HNO3) are highly variable in active arkoses (<1 to >80 % 280 
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Utot). Specifically, 294 µg g-1 U were dissolved from a freshly exposed francolite-rich 281 

specimen. Samples from older, more weathered outcrops follow a trend towards lower 282 
apatite content and simultaneously decreasing U dissolution by HNO3 (Fig. 7). 283 

 284 

 285 

Fig. 7. Apatite-hosted U concentration (determined by 1 M HNO3 extraction) vs. apatite content (determined 286 
by quantitative XRD) in active arkoses from very fresh (right picture) and weathered (left picture) outcrops.  287 

 288 

Negligible U mobilization was detected for samples with less than 10 wt.% fluorapatite 289 

although they partly contain significant bulk U concentrations (cf. Appendix A2), largely 290 
bound in the unreactive residual fraction as determined by SEP (cf. Table 1). It is 291 
concluded that the aforementioned trend represents a weathering line (i.e. a geochemical 292 

development from the upper right to the lower left corner in Fig. 7 during weathering) 293 
including a gradual loss of apatite and a decreasing reactivity in terms of U mobilization 294 

potential.  295 

At first glance, these results appear surprising given the generally low solubility of 296 
fluorapatite (Ks0 = 10-60.6; Valsami-Jones et al., 1998). Nevertheless, apatite was shown to 297 

be the least stable member of the heavy mineral group (Lång, 2000) – its weathering is 298 
considered to control P fluxes and availability in the exosphere, and thus biological 299 

productivity on geological time scales (Guidry and Mackenzie, 2000). Solubility and 300 
vulnerability to weathering and thus, trace element mobilization potential, of the francolites 301 
studied here are likely to be significantly enhanced compared to standard apatites in 302 

laboratory studies, mainly for two reasons. Firstly, fluorapatite structural stability is 303 
significantly altered by coupled CO3

2- substitution – mineral solubility increases 304 

dramatically with increasing carbonate content (Jahnke, 1984). This effect is due to the 305 
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interstitial position of substituted F- ions in the mineral structure and associated breakdown 306 

of crystal symmetry, already at 1 wt.% structural CO2 in the apatite (Regnier et al., 1994). 307 
Secondly, radiation from U decay in certain minerals of sufficient U concentration and/or 308 

age can greatly increase dissolution rates due to α-recoil damage in the crystals. A critical 309 
dose of radiation must be exceeded in order to drastically enhance mineral solubility in an 310 
aqueous solution of typical groundwater composition. Apatite is sensitive to radiation-311 

enhanced dissolution, whereas e.g.uraninite and zircon do not show this effect (Petit et al., 312 
1985). Uranium concentrations necessary to reach a critical dose of α-recoil damage were 313 

calculated for the studied francolite using equation (1) (Petit et al., 1985).  314 

 315 

(1) Nc = T * ni * λi * Ci 316 

where  317 

Nc is the critical dose of α-recoil [cm-3] 318 

T is the mineral age [a] 319 

ni is the number of α-decays in the disintegration chain of a radioactive element [-] 320 

λi is the decay constant of the radioactive element [a-1] 321 

Ci is the concentration of the radioactive element in the mineral [atoms g-1] 322 

 323 

Calculations were only performed for U as it is the only relevant radioactive component in 324 
the analyzed francolites, Th radiation is negligible (Abele et al., 1962). Ergo, ni = 8 and λi = 325 
1.53 * 10-10 a-1. Nc is given as 2.5 * 1018 cm-3 (Petit et al., 1985), T was set to 210 Ma 326 

accounting for the syngenetic formation of the francolites in Norian times. It is then 327 
possible to calculate the minimum U concentration necessary to exceed the critical α-decay 328 

dose reached after mineral formation, and to evaluate if francolite U contents are sufficient 329 
to account for significantly radiation-enhanced solubility. With a carbonate fluorapatite 330 
density of 3.12 g cm-3 (Barthelmy, 2011), the result of the calculation is ca. 370 µg g-1 U. 331 

Regarding U concentrations in the studied apatites of up to 1070 µg g-1 (cf. 3.3), it is 332 
concluded that a high percentage of the Norian francolites clearly exceed the critical dose 333 

value and thus exhibit radiation-enhanced solubility and an increased tendency to lose 334 
incorporated U to solution and, therefore, to groundwater of the study area. 335 

 336 

 337 

4 Conclusions 338 

In groundwater extracted from an important Upper Triassic sandstone aquifer 339 
(“Burgsandstein”) in Northern Bavaria, elevated concentrations of U, partly in excess of the 340 
drinking water limitation, were identified in recent years. The geological conditions 341 

probably responsible for the creation of this hydrochemical signature are discussed here. 342 
Results indicate the major role of abundant syngenetic intercalations within the terrestrial 343 
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facies of the aquifer sandstones, so-called “active arkoses”. These exhibit a carbonate 344 

fluorapatite (francolite)-dominated matrix containing high U contents hosted by the 345 
francolite. It was shown here that the studied francolite is highly susceptible to alteration 346 

and thus, loss of the heavy metal to solution. In consequence, active arkoses were identified 347 
as most likely source for elevated groundwater U in the study area – their weathering 348 
controls the geogenic U problem in Northern Bavaria.  349 

This study tried to shed light not only on the background of Germany´s most significant 350 
groundwater U problem area, but also on the probably underestimated importance of the 351 

ubiquitary apatite mineral family members as players in the structure of trace element 352 
sources and sinks in many affected areas worldwide. This appears to be especially true for 353 
U, an element which increasingly finds itself in the focus of hydrogeochemical and health-354 

related research. 355 

 356 
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Figure captions 490 

 491 

Fig. 1. Uranium concentrations in Bavarian drinking water and distribution of uraniferous 492 

facies in Triassic sandstones (the latter after Dill, 1988). The dashed red box indicates the 493 
study area. 494 

Fig. 2. Keuper stratigraphy of the study area with sampled units highlighted by hachures, 495 

approximate unit thicknesses and basic hydrogeology (modified after Heinrichs and Udluft, 496 
1999). “Active arkoses” only occur in Middle and Upper “Burgsandstein” aquifers, parts of 497 

the terrestrial Norian “Sandsteinkeuper”. 498 

Fig. 3. Paleogeographical situation during the Middle Keuper with sediment input 499 
directions, sediment thicknesses and distribution of the main U-bearing depositional facies 500 

(modified after Dill, 1988; Dill 2010). See Fig. 1 for a geographical overview. The 501 
sedimentary basin filling mainly derived from erosion of the Vindelician Swell – a former 502 

part of the Central European Variscides consisting of crystalline magmatic and 503 
metamorphic rocks – under arid conditions. It may be subdivided into a terrestrial (alluvial 504 
fan with playa lakes) and a basinal (shallow marine) facies with transitional character 505 

(sabhka) in between (Abele et al., 1962; Dill, 2010; Heinrichs and Udluft, 1999).  506 

Fig. 4. Element enrichment/depletion of “active arkoses” compared to mean aquifer 507 

sandstone concentrations, ordered by increasing median of enrichment factors. Mind 508 
change of scale on the ordinate. 509 

Fig. 5. Ca-P scatter plot for studied sediments. Lines for ideal fluorapatite stoichiometries 510 

with different degrees of carbonate substitution for phosphate are indicated (equivalent to 511 
0 wt.% [blue line], 2.25 wt.% [brown line] and 4.5 wt.% [red line] structural CO2). The 512 

studied francolites plot exactly along the Ca5(PO4)2.5(CO3)0.5F1.5 stoichiometry. Aquifer 513 
sandstones and interbedded clay lenses do not show indications for apatite presence. 514 

Fig. 6. LA-ICP-MS data for U, Fe and P along a zoned “active arkose” sample profile (A-515 

A´). The line of calculated critical α-recoil damage in apatite (at 370 µg g-1 U) is indicated 516 
(cf. 3.4). Vertical dashed blue lines mark zone boundaries of the active arkose specimen (cf. 517 

3.3). 518 

Fig. 7. Apatite-hosted U concentration (determined by 1 M HNO3 extraction) vs. apatite 519 
content (determined by quantitative XRD) in “active arkoses” from very fresh (right 520 

picture) and weathered (left picture) outcrops.  521 


