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Abstract 10 

Naturally high uranium (U) concentrations occur in the groundwater of northern Bavaria 11 

(south-eastern Germany) although the source(s) and geochemical processes controlling its 12 

occurrence are poorly understood. An earlier study identified the weathering of uraniferous 13 

apatite as responsible for elevated groundwater U in a part of the region. This present study 14 

focuses on a uraniferous dolomite facies in the Triassic sandstone aquifer of northern Bavaria 15 

as a potential source of dissolved uranium in the regional groundwater. Hydrogeochemical 16 

and mineralogical analytical methods (INAA, ICP-OES, SEP, XRD, C/S measurements), in 17 

conjunction with existing hydro- and geochemical datasets, as well as hydrogeochemical 18 

modelling approaches indicate a strong connection between groundwater U and the dolomitic 19 

facies. Highest groundwater concentrations (max: 58.3 µg L-1) occur under slightly alkaline 20 

and oxic to slightly reducing conditions. Uranium speciation is dominated by mobile U(VI), 21 

predominantly in the form of uranyl-carbonate complexes. Groundwater is undersaturated 22 

with respect to U mineral phases. In addition, high values in the dolomite extraction step 23 

(SEP) and a positive correlation of dolomite (XRD) and Ca with U (INAA) support the 24 

assumption of mobilization from the uraniferous dolomite as a potential source for elevated U 25 

concentrations, and hence one of the causes for the geogenic groundwater U problem in this 26 

region. 27 

 28 

Keywords: Triassic, dolcrete, sequential extraction, trace elements, hydrogeochemistry, 29 

mobility   30 
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1. Introduction 31 

Uranium (U), a heavy trace metal that has the potential for toxic impacts to humans (Schnug 32 

and Lottermoser 2013, Wrenn et al. 1985, Kurttio et al. 2002), has become an important topic 33 

in environmental health research. When consumed via drinking water, it is suspected to have 34 

a nephrotoxic potential, particularly for infants and children. Moreover, ecologic studies 35 

suggest elevated risks for some cancer types when drinking water concentrations are 36 

enhanced (Wagner et al. 2011, Radespiel-Tröger and Meyer 2013). As a result, Germany 37 

established a threshold value of 10 µg L-1 in its Drinking Water Ordinance. Sources of the U 38 

concentrations in groundwater can be either natural or anthropogenic. Whereas the former are 39 

represented by uraniferous rocks like acid magmatites (Welte 1962, Banning 2012), the latter 40 

can result from activities such as U mining (Fernandez et al. 1996) or phosphorus fertilization 41 

(Schnug and Lottermoser 2013). 42 

Responsible processes for high U concentrations are the oxidation of immobile U(IV) to 43 

mobile U(VI), which is driven by, amongst other factors, the influence of agricultural nitrate 44 

(Nolan and Weber 2015, Blum et al. 2016, van Berk and Fu 2017, Banning et al. 2013). 45 

Formation of uranyl complexes (Finch and Murakami 1999), e.g., with sulphate (Dorfner 46 

1964), iron hydroxide (O’Loughlin et al. 2003, Dickinson and Scott 2010), phosphate 47 

(Bachmaf et al. 2008, Dill 1988), carbonate (Finch and Murakami 1999) and organic material 48 

(Breger and Deul 1955, Gruner 1956), is another major control of environmental U mobility. 49 

The uranyl cation UO2
2+ can substitute for Ca2+ in mineral lattices, resulting in partly 50 

substantial U contents in Ca phosphates such as apatite (Starinsky et al. 1982, Rakovan et al. 51 

2002), or Ca carbonates such as calcite (Sturchio et al. 1998, Kelly et al. 2003). Uranium 52 

uptake by dolomite is less well characterized. Studying carbonate phases of variable Ca/Mg 53 

ratio, Deininger (1964) found no clear preference for U hosting in either calcite or dolomite. 54 

He concluded that U content in dolomite is a function of the chemical composition of the 55 

dolomitizing solution, and that U may substitute for Ca as well as Mg in the dolomite lattice.  56 

Parts of northern Bavaria are known for high U concentrations in groundwater. Prior studies 57 

dealt with phosphatic and carbonatic uraniferous concretions, so-called phoscretes and 58 

dolcretes (together also referred to as “active arkoses”), in the Norian aquifer sediments 59 

(“Burgsandstein”) of the area (Dill 1988, Abele et al. 1962, Welte 1962). Banning and Rüde 60 

(2015) showed that the weathering of phoscretes (U-rich carbonate fluorapatite) is responsible 61 

for the occurrence of high groundwater U concentrations around the city of Nürnberg. The 62 

present study aims at unravelling the U distribution, fractionation and potential mobilization 63 

mechanisms in the dolcrete area farther to the north, between the cities of Bamberg and 64 
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Coburg (Fig. 1). Hydrochemical, geochemical and mineralogical data were combined to test 65 

the hypothesis that also in this area, elevated groundwater U concentrations are caused by 66 

interaction between groundwater and uraniferous aquifer sediment intercalations. 67 

 68 

2. Materials and Methods 69 

2.1 Study area 70 

The study area is located in south eastern Germany in the federal state of Bavaria, around the 71 

city of Bamberg (Fig. 1). Geologically, it is part of the German Keuper Basin, filled with late 72 

Triassic terrestrial and shallow marine sediments. This includes one of the most important 73 

regional aquifers (the “Burgsandstein”), which is used for water extraction. According to 74 

Heinrichs and Udluft (1999), the typical groundwater quality in this approximately 120 m 75 

thick coarse sandstone unit is Ca-Mg-HCO3. “Active arkoses”, however, exclusively appear 76 

in the upper approximately 70 m of this aquifer system (Middle and Upper “Burgsandstein”; 77 

Banning and Rüde 2015). 78 

 79 

Fig. 1 Distribution of U concentrations in groundwater (circles; data kindly provided by the Bavarian 80 
Environment Agency, LFU) of the study area (yellow box), the range of the Triassic sandstone facies and 81 
rock sampling locations (triangles). The distribution of the dolcrete facies according to Dill (1988) is 82 
bordered in red. 83 

 84 
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Dill (1988) described three different U-bearing facies in the "Burgsandstein" aquifer system: 85 

(1) silcretes, (2) calcretes/dolcretes, and (3) phoscretes. The research for this present study 86 

focused on an area where calcretes/dolcretes occur (Fig. 1). This carbonatic cement 87 

syndiagenetically incorporated U, which has its origin in the alteration of the mostly 88 

granitoidic Vindelician Swell (a meanwhile eroded part of the Central European Moldanubian 89 

Variscides), during the sandstone carbonation (Welte 1962, Banning 2012). 90 

The granitoidic character of its parental rocks gave rise to an increased amount of feldspar in 91 

the sandstone (often >25 vol.%) at the expense of quartz, conforming to the definition of an 92 

arkose. The feldspar is an indicator for short transport, a high accumulation rate and a low 93 

degree of chemical alteration (Füchtbauer 1988). Because uraniferous intercalations have 94 

incorporated radioactive elements through sorption and ionic substitution (as was detected 95 

during U exploration programmes in the 1950s), these sandstones are referred to as "active 96 

arkoses". 97 

Similar geological observations documenting a connection between dolomite and U 98 

concentrations were made worldwide, e.g., in Somalia (Mudugh), Kyrgyzstan (Tyuya 99 

Muyun), and the USA (Pryor Mts., Colorado) (Dahlkamp 1979; Nash 1979; Briot 1983). In 100 

these cases, U was concentrated in duricrusts composed of cement-forming calcite (calcretes), 101 

gypsum (gypcretes), dolomite (dolcretes), halite (salcretes), and ferric oxide (ferricretes) (e.g., 102 

Dill 2009 and references therein). 103 

Based on information given by the weather station Bamberg (+240 m a.sl.) recording both 104 

temperature and precipitation, the region has an average temperature from 0.3 °C (January) up 105 

to 19.0 °C (July). The measured absolute maximum temperatures vary from 14.5 °C (January) 106 

to 37.8 °C (August) and the absolute minimum temperatures from -20.9 °C (January) to 8.1 107 

°C (June). These are average values of the last decade (04/2007 – 04/2017) and were updated 108 

monthly. Average precipitation during the same period was determined as 32 mm (February) 109 

up to 75 mm (July). Annual average temperature is about 9.4 °C, annual precipitation about 110 

650 mm on average. 111 

2.2 Available hydrochemical and geochemical data  112 

Several datasets on the study area were kindly provided by the Bavarian Environment Agency 113 

(LfU) and include geological, geochemical, as well as hydrochemical information from the 114 

“Burgsandstein” and other regional aquifers. Because this study focused on uranium, only the 115 

hydrochemical datasets in which U was analyzed were used. This yielded 114 sets of data (54 116 

groundwater samples and 60 spring water samples), which were collected between 1971 and 117 
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2014. It also contains information on major and minor ion concentrations as well as physico-118 

chemical parameters. Figure 1 depicts the occurrence of U in groundwater during the 119 

mentioned time period; and, because Bavaria's water supply system is highly decentralized, it 120 

also represents the drinking water quality. Concentrations of redox-sensitive parameters were 121 

used to assign a general redox status to each sample following to the procedure described by 122 

Jurgens et al. (2009). 123 

2.3 Rock sampling and analytical procedures 124 

A total of 15 rock samples from 11 locations were collected from outcrops of the Upper and 125 

Middle “Burgsandstein” (Fig. 1). These were taken according to an optical differentiation 126 

between “normal” aquifer sandstones serving as reference samples (n=7), and carbonatic 127 

intercalations within the sandstone (n=8). All samples were analysed for bulk rock 128 

geochemistry (49 elements) using Instrumental Neutron Activation Analysis (INAA, thermal 129 

neutron flux: 7 x 1012 n cm-2 s-1, Ge detector: resolution better than 1.7 keV for the 1332 keV, 130 

60Co photopeak) and total digestion (HClO4–HNO3–HCl–HF at 240 °C) followed by ICP-131 

OES analysis. These analyses were performed by Activation Laboratories Ltd., Ancaster, 132 

Ontario/Canada. Analytical quality was ensured by duplicate and blank measurements, and 133 

usage of certified reference materials such as GXR-1, 4 and 6; DNC-1a; SBC-1; OREAS 45d; 134 

SdAR-M2 and DMMAS 119 (the latter used for U determination).  135 

Based on the geochemical results as well as the macroscopic rock identification, 10 samples 136 

were selected for XRD analyses to characterise their mineralogical composition, with special 137 

attention given to both the dolomite component and U contents. The samples were ground to 138 

powder grain size in a tungsten carbide mill before measurements were performed on a 139 

PANalytical Diffractometer Empyrean (PANalytical B.V., Almelo, Netherlands) with a 140 

vertical Theta-Theta Goniometer including Bragg-Brentano-Geometry (operational 141 

adjustments: 40 kV, 45 mA; 2 range: 4.0-65.0°, step size: 0.01° 2, anode material: Cu). 142 

Two samples (Dol_6, Dol_7) were measured a second time after passing the sequential 143 

extraction procedure (SEP) to study possible changes in the mineralogical composition and to 144 

evaluate the SEP´s dissolution efficiency. 145 

Five samples with U contents >1 µg g-1 (range: 1.6-36.6 µg g-1) and one reference aquifer 146 

sandstone sample with U<0.5 µg g-1 (and without dolomite) were subjected to a sequential 147 

extraction procedure (SEP) as described by Regenspurg et al. (2010) and Wenzel et al. (2001), 148 

slightly modified in centrifuge speed (20 min, 5000 rpm) and solid/solution ratio (SSR) 149 

(Table 1). The SSR was modified to insure that the dolomite in these samples would 150 
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completely dissolve. The successful extraction of dolomite using NaAc (1 M) in acetic acid 151 

(25 %) is reported by both Tessier et al. (1979) and Eichfeld (2004). The required SSR was 152 

calculated using equilibrium modelling with PHREEQC 3 (Parkhurst and Appelo 2013), 153 

resulting in at least 50 ml solution for 300 mg dolomite. Because 1 g of sample was placed in 154 

a 50-ml container to perform the extraction, this step required three repetitions (except for one 155 

sample with the highest dolomite content taking four repetitions, and the dolomite-free 156 

reference sample with only one repetition). A further variation from Regenspurg et al. (2010) 157 

was to limit the repetitions of the step targeting organically bound U to 1, because both the 158 

marginal amount of organic material in the regional “active arkose” as reported by Abele et 159 

al. (1962) and our own results from Corg measurements (cf. 3.2). 160 

Aliquots of the powder (1 g), which was also used in XRD measurements, were placed in 50 161 

ml centrifugation tubes and extraction solutions were added in each step, followed by the 162 

decantation of each used solution. Every powder sample was subjected to the entire procedure 163 

(Table 1). Extracted solutions were analysed for U concentrations using ICP-MS (Agilent 164 

7900, Santa Clara, USA; analytical detection limit: 0.1 µg L-1). 165 

 166 

Table 1: Applied sequential extraction procedure, modified from Regenspurg et al. (2010) and Wenzel et al. 167 
(2001). 168 

Step no. Target U fraction Extractant Procedure Repetition SSR* 

1 Easily mobilisable MgCl2 (0.4 M) 1 h shaking 1x 1:25 

2 
Bound to 

organic matter 
NaOCl (5-6 %) 1 h shaking 1x 1:25 

3 
Bound to 

carbonate 

NaAc (1 M) in acetic acid 

(25%) 
2 h shaking **3x **1:150 

4 
Bound to Fe- 

and Mn-Hydr(oxide) 

NH4–oxalate (0.2 M) with 

acetic acid (1 M); pH=2 

5 h shaking in 

the dark 
1x 1:25 

5 Residual  Calculated with Utot
 _ U∑steps 1–4 

*SSR = Solid Solution Ratio, **except for two samples: highest dolomite content – 4 (1:200); dolomite-free sample – 1 (1:25) 169 

 170 

Additionally, samples were dried and weighed to determine extraction mass loss during SEP, 171 

i.e. the difference between initial and output weight. For dolomite bearing samples, a weight 172 

loss percentage in the same range as the dolomite contents confirmed that the applied 173 

extractant is suitable for dolomitic rock samples. Further aliquots of the six samples were 174 
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analyzed for carbon (Corg/Cinorg) and sulfur (Stotal/Spyrite) contents in a combustion analyser (G4 175 

ICARUS HF, Bruker, Billerica, MA, USA; analytical detection limit: 0.01 wt.%). 176 

2.4 Hydrogeochemical modelling  177 

In this study the hydrochemical groundwater dataset was used to model U speciation and the 178 

stability of potential U phases and other minerals applying the code PhreeqC 3 (Parkhurst and 179 

Appelo 2013). The databank minteq.v4.dat was selected for the calculations. Since the 180 

hydrochemical dataset did not include information about the current redox potential, the 181 

applied pE values were estimated using the aforementioned redox categories following the 182 

method described by Jurgens et al. (2009), and assigning pE values representative for these 183 

redox categories (Drever 1997; Huang et al. 2011).  184 

 185 

3. Results and discussion  186 

3.1 Uranium distribution in the aquifer 187 

Uranium concentrations in the groundwater near Bamberg are presented according to their 188 

geologic host formation in Table 2. The spatial distribution of these values is shown in Figure 189 

1.  190 

 191 

Table 2: Uranium groundwater concentrations (µg L-1) in various geologic formations . 192 

Rock formation  

Triassic Triassic/Jurassic Jurassic Quaternary 

“Burg-

sandstein” 

(n=61) 

undiff. 

sandstone 

(n=8) 

Rhaetian-Lower Jurassic 

transient layer 

(n=13) 

Rhaetian 

sandstone 

(n=18) 

Lower 

Jurassic 

(n=4) 

fluviatile 

deposits 

(n=10) 

UMax (µg L-1) 42.33 19.77 7.066 6.677 2.773 1.906 

UMean (µg L-1) 7.237 7.704 1.081 1.403 1.385 0.654 

UMin (µg L-1) 0.325 0.899 0.006 0.090 0.323 0.032 

 193 

 194 

Table 2 shows that the highest dissolved uranium concentrations were measured in the 195 

"Burgsandstein", followed by undifferentiated Triassic sandstone (which may include some 196 

samples from the "Burgsandstein"). The mean and minimum values are also highest in these 197 

formations. Younger sedimentary units (Triassic/Jurassic, Jurassic, and Quaternary) have 198 

much lower maximum and mean U concentrations, as is reflected in Figure 1.  199 
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Groundwater in the study area indicates dominantly circumneutral pH conditions (mean: 7.3, 200 

ranging from 4.4 to 9.2). A plot of U against pH reveals no correlation between these 201 

parameters. However, it shows that the highest U concentrations occur in the neutral to 202 

slightly alkaline pH milieu, whereas no threshold-exceeding concentrations are found at 203 

pH<6.7 and >7.7 (Fig. 2). 204 

Based on the redox assignment obtained using the procedure described by Jurgens et al. 205 

(2009), four groundwater redox milieus were distinguished in the study area. The majority of 206 

waters is oxic, i.e. O2-reducing (86 %), fewer waters plot in the Mn- and/or NO3
-- (together 8 207 

%) and Fe(III)/SO4
2-- (6 %) reduction ranges. Elevated U concentrations (> 10 µg/L) occur 208 

under oxic and slightly reducing conditions (not in the Fe/SO4-reducing milieu), as might be 209 

expected from an understanding of the geochemical controls on U mobility (cf. 1.1). 210 

However, there is no clear relationship between redox conditions and elevated U in the study 211 

area, which suggests that U is not mobilized from the aquifer matrix through oxidation, as has 212 

been found in other studies (e.g., Banning et al., 2013). 213 

 214 

 215 

Fig. 2: pH-dependent distribution of U concentrations in groundwater within the study area. Symbols indicate 216 
redox assignments made using the methodology of Jurgens et al. (2009). Filled symbols are data from the 217 
"Burgsandstein” aquifer; hollow symbols are data from undifferentiated sandstone and other aquifers.  218 

 219 

In terms of cations, groundwater chemistry is dominated by Ca2+ and Mg2+ in nearly equal 220 

proportions, while HCO3
-
 is the dominant anion (Fig. 3) leading to Ca-Mg-HCO3 as the 221 
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typical groundwater quality. This is consistent with the characterization of groundwater in the 222 

"Burgsandstein" aquifer reported by Heinrichs and Udluft (1999) and indicates that dolomite 223 

dissolution is controlling the overall water quality. Only few samples contain considerable 224 

SO4
2- concentrations. These almost exclusively occur in groundwater samples from late 225 

Triassic and Jurassic sediments, hardly in the “Burgsandstein” itself. Some relatively Na+-rich 226 

samples from the “Burgsandstein”, mainly of the Na-HCO3 quality type, were probably 227 

generated by ion exchange processes. Sporadic elevated SO4
2- or Cl- concentrations in 228 

“Burgsandstein” groundwater samples may be explained by dissolution of evaporites such as 229 

gypsum and halite, partly occurring in Triassic sediments of the study area (Reinhardt and 230 

Ricken, 2000).   231 

 232 

 233 

Fig. 3: Piper plot of studied groundwater samples .  234 

 235 

3.2 Geochemistry and mineralogy  236 

Table 3 presents the results of "Burgsandstein" rock sample analyses, which include seven 237 

"normal" (reference) sandstone samples (Ref_1 through Ref_7) and eight dolomitic sandstone 238 

samples (Dol_1 through Dol_8), as described in Section 2.2. The mean U content of the 239 

reference samples is 1.1 µg g-1 (ranging from <0.5 to 3.7 µg g-1), whereas the mean U content 240 

of the dolomitic samples is 7.1 µg g-1 (ranging from <0.5 to 36.3 µg g-1). These data support 241 
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the hypothesis that U is incorporated within the carbonatic cements of the dolomitic 242 

sandstone. 243 

 244 

Table 3: Geochemistry (selected elements) of the “Burgsandstein” rock samples (LOD: analytical limit of 245 
detection; ICP: ICP-OES analysis following total dissolution; INAA: instrumental neutron activation analysis, 246 
cf. 2.2). 247 

element 

unit 

method 

LOD 

Ca 

(wt.%) 

ICP 

0.01 

Mg 

(wt.%) 

ICP 

0.01 

Al 

(wt.%) 

ICP 

0.01 

K 

(wt.%) 

ICP 

0.01 

P 

(wt.%) 

ICP 

0.001 

Fe 

(wt.%) 

INAA 

0.01 

Mn 

(µg g-1) 

ICP 

1 

U 

(µg g-1) 

INAA 

0.5 

As 

(µg g-1) 

INAA 

0.5 

Pb 

(µg g-1) 

ICP 

3 

Zn 

(µg g-1) 

ICP 

1 

Sandstones  

  

   

   

   

Ref_1 0.10 0.34 3.54 1.46 0.009 0.41 139 <0.5 3.9 9 9 

Ref_2 5.02 0.39 2.15 1.38 0.009 0.2 182 <0.5 5.4 9 17 

Ref_3 2.26 1.34 3.08 1.65 0.011 0.37 397 <0.5 2.6 11 10 

Ref_4 0.27 1.02 5.86 2.78 0.020 1.01 67 2.9 2.0 12 13 

Ref_5 0.25 1.10 5.93 2.52 0.020 1.84 59 3.7 3.4 15 20 

Ref_6 0.01 0.08 1.25 0.07 0.004 0.52 49 <0.5 <0.5 6 7 

Ref_7 0.08 0.38 2.77 1.18 0.009 0.28 12 <0.5 1.3 6 6 

Dolcretes            

Dol_1 12.7 7.51 1.74 1.24 0.009 0.11 1710 1.7 4.9 39 12 

Dol_2 10.8 6.53 2.55 1.37 0.016 0.32 1290 <0.5 2.7 21 14 

Dol_3 5.10 3.13 2.18 1.15 0.007 0.39 633 <0.5 <0.5 8 6 

Dol_4 10.9 6.43 1.85 1.41 0.009 0.29 447 1.6 <0.5 11 6 

Dol_5 7.35 3.97 2.73 2.04 0.020 0.39 1360 <0.5 <0.5 13 8 

Dol_6 9.50 6.56 5.43 2.67 0.051 3.17 979 16.2 4.9 71 27 

Dol_7 16.5 10.9 2.83 1.35 0.027 1.09 1840 36.3 7.8 93 20 

Dol_8 18.0 11.6 1.89 1.12 0.005 0.74 2450 <0.5 <0.5 21 14 

            

 248 

 249 

The bulk rock geochemistry of the uraniferous dolomitic sandstone samples was compared to 250 

that of the reference sandstone samples using Enrichment Factors (EF), which are calculated 251 

by dividing the elemental content of each dolomitic sample by the corresponding median 252 

value for the reference sandstones. The results, shown in Figure 4, reveal several differences 253 

between the two categories of rock samples. Two obvious differences are for the elements Mg 254 

(median EF = 17) and Ca (median EF = 43), which reflects the presence of dolomite in the 255 

uraniferous samples (Ca and Mg are also strongly correlated in these samples). Uranium is 256 

enriched by a factor of 3.7 (on average), but the maximum EF value of 145 reveals the 257 

heterogeneous nature of the "active arkoses". The median EF values for Mn (20), Cs (3.5), Sr 258 

(3.2), and Pb (2.3) indicate that these elements are also concentrated within the carbonatic 259 

cement. The remaining elements occur either in similar abundance or are depleted relative to 260 

the reference sandstone samples (Table 3, Fig. 4). 261 
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 262 

 263 

Fig. 4: Element enrichment/depletion of dolomitic samples compared to median reference sandstone contents. 264 

 265 

Quantitative XRD analyses indicate that the sampled reference “Burgsandstein” is 266 

dominantly composed of quartz (70-78 wt.%) and feldspar (15-25 wt.%), with minor amounts 267 

of clay minerals, calcite, and dolomite (Table 4). Increasing dolomite content in the dolcrete 268 

samples is mainly at the expense of quartz; feldspar contents remain in the order of the 269 

reference sandstones. This implies that dolcrete intercalations dominantly consist of dolomite 270 

(18-72 wt.%), feldspar (8-22 wt.%), as well as quartz (around 8-73 wt.%). Muscovite/illite, 271 

kaolinite, chlorite – together representing the clay minerals – and calcite make up the minor 272 

and accessory phases. 273 

 274 

Table 4: Quantitative XRD results  of the Triassic rock samples (n.d. – not detected). 275 

Sample 
Quartz 

(wt.%) 

Feldspar 

(wt.%) 

Dolomite 

(wt.%) 

Clay minerals 

(wt.%) 

Calcite 

(wt.%) 

Sandstones  

     Ref_1 70 25 n.d. 5 n.d. 

Ref_2 78 15 n.d. 2 5 

Ref_3 70 15 10 3 2 

Dolcretes 

     Dol_1 45 20 35 n.d. <1 

Dol_2 40 22 37 1 n.d. 

Dol_3 73 8 18 1 n.d. 

Dol_4 41 21 38 <1 n.d. 

Dol_5 51 19 25 5 n.d. 

Dol_6 20 18 45 17 n.d. 

Dol_7 8 10 72 10 n.d. 

Dolcretes after SEP 

     Dol_6_SEP 58 29 3 10 n.d. 

Dol_7_SEP 29 31 25 15 n.d. 
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 276 

Two samples were analyzed by XRD a second time after the SEP (cf. 3.3) and exhibited two 277 

new mineral phases: whewellite (Ca(C2O4*H2O) and (probably) gibbsite (Al(OH)3), neither of 278 

which was present in the first round of XRD analyzes (Fig. 5). Because these new mineral 279 

phases appeared in both samples, it is likely that they formed as a result of sample reaction 280 

with one of the extraction solutions. 281 

 282 

Fig. 5: Comparison of the XRD analysis of dolcrete sample Dol_6 before (blue) and after (red) the sequential extraction 283 
procedure. Different peak positions and heights display changes in mineralogical composition (D: dolomite, Q: 284 
quartz, I: illite/muscovite, W: whewellite, G: gibbsite, A: albite). 285 

 286 

The occurrence of whewellite might be traced back to botanical relics incorporated in the bulk 287 

rock samples, which have been dissolved by one of the solutions during the SEP. Nakata 288 

(2003) reported that many plants contain calcium oxalate phytolites in their leaves, bark and 289 

wood as monoclinic whewellite crystals. A second, and in this case more likely scenario, is 290 

described by Maia et al. (2012), who treated samples containing gypsum and epsomite with a 291 

mixture of ammonium oxalate and oxalic acid (similar to SEP step 4 in this study, Table 1), 292 

also resulting in the precipitation of whewellite. Adapted to the present study, gypsum might 293 

have temporarily been formed due to one of the first three extraction steps (Cappuyns et al. 294 
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2007), leading to precipitation of whewellite after the fourth step. Also in connection with the 295 

marginal amount of organic matter in the studied samples (Table 5), whewellite precipitation 296 

here is more likely caused by the ammonium oxalate step, as described by Maia et al. (2012). 297 

Results furthermore show that the majority of the dolomite in these samples (65 and 93 % of 298 

the initial dolomite content) – but not all of it – was dissolved during the SEP. Accordingly, 299 

quartz and feldspars became relatively enriched.  300 

As mentioned previously, all rock samples contain minor amounts of organic matter (Table 301 

5), which is consistent with the study conducted by Abele et al. (1962). The greatest 302 

percentage of carbon in dolcretes is inorganic (5-10 wt.%), as would be expected for samples 303 

containing dolomite. Spyrite as well as Stotal values are negligible. 304 

 305 

Table 5: Results of carbon/sulphur measurements . 306 

Sample Spyrite [wt.%] Stotal [wt.%] Cinorg [wt.%] Corg [wt.%] 

Ref_1 < 0.01 < 0.01 0.02 0.04 

Ref_4 < 0.01 0.02 0.07 0.03 

Dol_1 < 0.01 0.04 6.40 0.13 

Dol_4 < 0.01 0.02 6.35 0.10 

Dol_6 < 0.01 0.02 5.25 0.75 

Dol_7 < 0.01 0.04 9.65 0.15 

 307 

Consistent with results reported by Welte (1962), Ca content (INAA) plotted against dolomite 308 

content (quantitative XRD) shows a positive correlation (R2 = 0.85, p<0.05) for the samples 309 

analyzed in this study (Fig. 6). Elevated U contents (> 0.5 ppm) occurred in samples where 310 

the Ca content exceeded 10 wt.% and the dolomite content exceeded 30 wt.%. This supports 311 

the conclusions of Welte (1962) and of Abele et al. (1962), who also reported that dolomite is 312 

enriched in U, possibly due to the exchange of U for Ca or Mg in the crystal lattice. 313 

 314 
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 315 

Fig. 6: Correlation of quantitative dolomite (XRD, wt.%) and Ca (INAA, wt.%) with U contents (INAA). 316 

 317 

3.3 Uranium fractionation, remobilisation and speciation  318 

The sequential extraction procedure (SEP) enables an assessment of U mineralogical 319 

fractionation and remobilisation behaviour. Results show that U rarely occurs in the easily 320 

mobilisable fraction (SEP step 1, Fig. 7). The U bound to organic matter (step 2) is also a 321 

very minor percentage of the total content. Apart from the residual fraction, most U is bound 322 

to carbonate/dolomite (step 3), with a maximum value of 14.6 µg g-1, corresponding to 41 % 323 

Utot in the sample containing the highest dolomite content. Concentrations measured by the 324 

amorphous Fe hydroxide targeting step (step 4) reached a maximum value of 10.5 µg g-1, 325 

corresponding to 29 % Utot  in the sample with highest Fe (3.17 wt.%). The mass of sample 326 

dissolved during the SEP (in % initial weight) was determined by weighing prior to and after 327 

the procedure, yielding values between 5 and 50 %. Together with quantitative XRD results 328 

(Table 4), this implies that the residual fraction could indeed be lower than shown in Figure 329 

7 and that the dolomite-bound U content could be higher, because not all dolomite was 330 

dissolved in the SEP step. In any case, high-dolomite samples were most likely to release 331 

high concentrations of U (70 % of the Utot was dissolved in the SEP procedure). In contrast, 332 

reference sandstone samples subjected to SEP show considerably lower mobilization 333 

potentials, with residual fractions >80 % Utot, and much lower absolute U contents. Here, 334 

minor fractions (<10 % Utot each) are bound to organic matter and Fe hydroxides (Fig. 7). 335 
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Another important parameter may be rock weathering, which can have an effect on U 336 

contents and fractionation. A similar study of geogenic U behavior documented a decreasing 337 

trend in U contents with the degree of rock weathering, indicating the release of U to 338 

groundwater during rock alteration (Banning and Rüde 2015). However, all samples 339 

analysed in this study were taken from comparably fresh outcrop surfaces and therefore 340 

assumed to have experienced similar degrees of weathering. Differences in weathering 341 

phenomena were not observed. 342 

 343 

Fig. 7: Results of the sequential extraction procedure.  344 

 345 

Furthermore, a positive (however statistically insignificant, p>0.05) correlation (R²=0.73) 346 

between the quantitative dolomite content and the determined dolomite-hosted (NaAc-347 

soluble) U concentrations was observed (Fig. 8). Increasing dolomite content appears to 348 

implicate a higher potential for U release. 349 

 350 
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 351 

Fig. 8: Content of dolomite-bound U (extracted with 1 M NaAc in 25 % acetic acid) vs. dolomite content (XRD). 352 

 353 

In aqueous systems, U concentrations and mobility are mainly controlled by pH, redox 354 

conditions, and the available species that can serve as complexing agents (Langmuir 1997).  355 

Under the prevailing pH and redox conditions found in the "Burgsandstein" aquifer, 356 

speciation modeling indicates that dissolved U occurs mostly in the form of uranyl-carbonate 357 

complexes (such as UO2CO3, UO2(CO3)2
2-, and UO2(CO3)3

4-), followed by (in descending 358 

order) complexes formed with sulfate, nitrate, and hydroxide ions. Complexation with 359 

phosphates, vanadates, silicates, and other species is not significant. 360 

Geochemical modeling also revealed that groundwater in the study area is largely 361 

undersaturated with respect to dolomite. This indicates that dolomite dissolution is possible, 362 

which could release additional dolomite-bound U to groundwater. Uraninite and other mineral 363 

phases with stoichiometric U are also undersaturated (with SI values between -28.5 and -1.5).  364 

Precipitation is therefore an unlikely mechanism for the removal of geogenic U from 365 

groundwater under current hydrogeochemical conditions. 366 

 367 

4. Conclusions 368 

Parts of the "Burgsandstein" aquifer system in northern Bavaria are comprised of a dolomitic 369 

sandstone facies ("dolcrete") that produces a Ca-Mg-HCO3 type of groundwater quality.  370 

Samples of this sandstone analyzed for mineralogy and subjected to a sequential extraction 371 
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procedure revealed that uraniferous intercalations have a significant potential to release U to 372 

groundwater and are susceptible to dissolution. Geochemical modeling suggests that the 373 

prevailing pH and redox conditions favor the occurrence of U in its mobile, U(VI) oxidation 374 

state, which forms stable uranyl-carbonate complexes. Thus, these uraniferous dolcretes, 375 

along with their apatitic equivalents located farther to the south ("phoscretes", characterized in 376 

an earlier study), are important controls on the occurrence of geogenic U in a region of 377 

Germany where geogenic U contamination is most pronounced. 378 

Apart from its regional significance, this study underscores the importance of characterizing 379 

both the aquifer matrix and the groundwater geochemistry in order to fully understand the 380 

occurrence of geogenic contaminants. In the case of a trace element whose mobility is 381 

controlled by numerous factors that can vary spatially over even small distances, a thorough 382 

understanding of the local and regional environment is crucial. This is particularly true for 383 

geogenic U, an "emerging" contaminant that is now receiving increased attention worldwide 384 

in environmental and health-related studies. 385 
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