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Abstract: Fluoride concentration in groundwater supply above the guideline value of 1.5 21 

mg/L is a health hazard for the population living in two thirds of the Mexican territory. 22 

Enhanced groundwater extraction in the city of San Luis Potosí (SLP), Mexico, led to a 23 

substantial territorial increase in water with high fluoride (F-) which originates from thermal 24 

water-rock interaction with regional rhyolites. Previous knowledge of the Tóthian 25 
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groundwater flow systems around SLP City and their F- concentrations from 1987 data 26 

provided an insight into natural F- controls for the construction and operation of boreholes. 27 

During the period 1987-2007, the number of new boreholes increased as well as the re-28 

location of boreholes whose production diminished. Overall estimated extraction augmented 29 

from 2.6 to 4.1 m3/s. Results obtained for 2007 suggest that F- controls defined for 1987 data 30 

(e.g. variable portions of F--rich deep thermal water in borehole yields) are also valid in newly 31 

constructed boreholes. Water authority actions related to groundwater extraction lack 32 

consideration of proposed F- controls, so constructed boreholes progressively tapping the high 33 

F- groundwater flow system resulted in a 85 % increase of the F- affected territory (>2 mg/L) 34 

between 1987 and 2007. Reduction in F- extraction following the proposed natural control 35 

mechanisms (e.g. fluorite precipitation) was also confirmed. Applying geochemical and 36 

mineralogical analysis, rhyolites surrounding the SLP graben basin and contributing to its 37 

volcano-clastic sedimentary filling were identified as the primary F- source for elevated 38 

concentrations in groundwater of the area under investigation.  39 

 40 
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Mexico 42 
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 44 

1 Introduction 45 

1.1 Importance of fluoride management 46 

Groundwater is the major source of potable water supply in arid and semi-arid regions. 47 

However, its availability may be threatened not only by the introduction of contaminants 48 

through human activities but also by natural processes (McArthur et al. 2012; Nicolli et al. 49 

2012; Jia et al. 2014; Edmunds et al. 2015; Banning and Rüde 2015). The contribution of 50 
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some minor and trace elements (e.g., fluoride, iron, arsenic, uranium, lead, and cadmium) that 51 

change the quality of extracted groundwater is a substantial health hazard in many 52 

groundwater regions worldwide (e.g., Edmunds and Smedley 1996; Fendorf et al. 2010; Guo 53 

et al. 2014; Jia et al. 2014; Jia et al. 2017; Bjørklund et al. 2017). Recently, the impact of trace 54 

elements in the water supply of Mexico has started to be given consideration in groundwater 55 

management. Carrillo-Rivera et al. (2002) proposed feasible natural F- management controls 56 

at borehole site without the need of a water treatment plant. These management approaches 57 

might be applied elsewhere as F- is a common natural constituent that threatens groundwater 58 

supply in both industrialized and developing countries (e.g., Lucas 1988; Gaciri and Davies 59 

1993; Valenzuela-Vásquez et al. 2006; Amini et al. 2008; Nicolli et al. 2012; Guo et al. 2012; 60 

Navarro et al. 2017; Raju 2017). In the semi-arid eastern part of the Sierra Madre Occidental 61 

alone, at least some 15 % of the total Mexican population (estimated to be in excess of 110 62 

million people), are supplied with regional F--rich groundwater.  63 

 64 

1.2 Study area 65 

The investigation area is located around San Luis Potosí (SLP) City, capital of the 66 

homonymous state, in the semi-arid north-central part of Mexico (Fig. 1). It hosts one of the 67 

conurbations of the country with the highest population growing rate (broadly 5-7 % p.a.), 68 

and presently has around one million inhabitants. 69 

 70 
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 71 

Fig. 1: Morphologic-geological map of the study area (including territories with high groundwater F- 72 

concentrations 1987 and 2007, and location of the sampled boreholes in the SLP graben basin), location of the 73 

study area in Mexico, and geological cross section I-I´ (bottom; including the location of sampled boreholes 74 

along it). Sources: simplified geological and structural map modified after Labarthe-Hernández et al. (1982) and 75 

Tristán-González (1986); digital elevation model from INEGI (2013). 76 
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 77 

The study area is part of one of the several closed basins existing in the north-central part of 78 

Mexico. The steep surrounding mountain ranges of Sierra de San Miguelito (SSM, west of 79 

SLP) and Sierra de San Pedro (SSP, east of SLP) consist of Tertiary felsic volcanic and 80 

Cretaceous calcareous rocks, respectively (Fig. 1). These sierras have an elevation exceeding 81 

2,300 m a.m.s.l. and slope towards the plane of the drainage basin which has an altitude of 82 

about 1,900 m a.m.s.l. The mean annual air temperature is around 17.5 °C, while the summer 83 

mean temperature is around 21 °C. 84 

The San Luis Potosí Volcanic Field (SLPVF) is located between the morphotectonic province 85 

of Sierra Madre Oriental, and the volcanic province of Sierra Madre Occidental (Guzmán and 86 

DeCserna 1963), in the southern part of the Mesa Central. The main local geological features 87 

are associated with a thick (>1500 m) sequence of extrusive Tertiary volcanic rocks and 88 

alluvial materials, covering a Cretaceous limestone and calcareous mudstone sequence 89 

outcropping in folded NW-SE-striking structures in SSP (Fig. 1, cross section); suchlike 90 

features are typical for a number of similar basins in the Sierra Madre Occidental (400 km 91 

wide and 1,500 km long, hosting volcanic rocks with a total thickness of 2-3 km) and other 92 

regions of northwestern Mexico and the southwestern U.S.A. The Tertiary volcanic units 93 

relevant for this study were generated in several stages and are briefly presented in the 94 

following paragraph, according to the volcano-stratigraphy developed by Labarthe-Hernández 95 

et al. (1982; cf. Fig. 1).  96 

The emplacement of the SLPVF began with the Casita Blanca Andesite which is composed of 97 

basaltic to andesitic lava flows of porphyric texture with ~5 vol. % of biotite and plagioclase 98 

phenocrystals; ages obtained for this unit are between 43.7 and 36.5 Ma (Tristán-González et 99 

al. 2009). The subsequent Santa María Ignimbrite yields welded ash-flow tuffs with 30 to 40 100 

vol. % of mainly quartz and sanidine phenocrystals and collapsed pumice (Tristán-González 101 

et al. 2006; Tristán-González et al. 2009). The Portezuelo Latite, generated around 30.6 Ma, 102 
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consists of different lava flows with porphyric texture (30 vol.% of sanidine, albite and quartz 103 

phenocrystals). It overlies some Mesozoic marine formations with discordant contact and is 104 

stratigraphically followed by the Panalillo Ignimbrite (Tristán-González 1986). The latter unit 105 

is composed of two members with the inferior member consisting of pyroclastic flows filling 106 

small tectonic structures and the superior one of co-ignimbrite and welded ignimbrite; their 107 

age is between 26.8 and 28.0 Ma (Tristán-González et al. 2009). The San Miguelito Rhyolite 108 

was named after the outcrop of the lava flows in the Sierra de San Miguelito. This widespread 109 

unit is composed of highly viscous, topaz bearing lava flows that formed dome structures 110 

showing flow foliation, shrinkage fractures and tephra surges similar to structures reported 111 

from the U.S.A. by Christiansen et al. (1983). This rock has 5 to 20 vol.% of phenocrystals of 112 

quartz and feldspar in the devitrified matrix (Aguillón-Robles et al. 1994; Tristán-González et 113 

al. 2009). The Cantera Ignimbrite was described as a violet to gray coloured rock with 5 to 10 114 

vol.% of phenocrystals (quartz and sanidine) and uncollapsed pumice. It is associated with the 115 

main volcanic event of the Sierra de San Miguelito. The El Zapote Rhyolite (not sampled for 116 

this study) represents the latest volcanic event of the Sierra de San Miguelito, and is 117 

composed of gray coloured lava flows with ~30 vol.% of phenocrystals (quartz, sanidine) and 118 

an isotopic age of 27.0 Ma (Nieto-Samaniego et al. 1996). Overall, the studied volcanic rocks 119 

are geochemically well differentiated (felsic to intermediate).  120 

Expansive structures (mainly normal faults) bound a regional horst and graben structure and 121 

were used as conduits for volcanism (Tristán-González 1986). Based on geochemical 122 

variations, Orozco-Esquivel et al. (2002) divided the described succession into a lower and an 123 

upper volcanic sequence. The younger (upper) one consists of mainly rhyolitic lavas that 124 

contain topaz and are enriched in F and incompatible lithophile elements. This subdivision 125 

was adopted for geochemical interpretations in the present study (cf. chapter 3.1). The 126 

allocation of the sampled lithologies for the two sequences can be found in Table 1. 127 
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A clastic sequence of debris flow sediments containing volcanic material derived from the 128 

weathering of the surrounding volcanic rocks syn-tectonically filled the graben structure as 129 

basin-fill sediments. Calcareous material resulting from erosion of Cretaceous rocks in Sierra 130 

San Pedro also contributed to these sediments and is inter-bedded with the pyroclastic 131 

material; the total filling is referred to as Tertiary Granular Undifferentiated (TGU). Cardona 132 

(2007) used information from borehole logging, resistivity surveys and lithology samples to 133 

determine the general granulometric distribution and thickness of the basin filling. Depending 134 

on the intra-graben position, the granulometric distribution varies from alluvial fan deposits to 135 

playa sediments in the lowest topographical part of the graben structure. Depth to the Tertiary 136 

fractured volcanic rocks beneath the basin fill sediments is about 250-300 m on average with 137 

highest thicknesses of about 450-500 m in the northeastern region of SLP City.  138 

Within the SLP City plain, two main hydrogeological units – I) shallow, and II) deep aquifer 139 

– are vertically separated by a fine-grained layer with low hydraulic conductivity (ca. 10-11 140 

m/s). The shallow alluvial aquifer unit is unconfined while the deep aquifer unit is confined 141 

below the mentioned fine-grained layer and unconfined elsewhere, being heterogeneous and 142 

anisotropic in both fractured (volcanic rocks) and granular (TGU) material. Cretaceous 143 

carbonate rocks represent the lower flow boundary. 144 

Information presented by Carrillo-Rivera et al. (1996, 2002, 2007) and Cardona and Carrillo-145 

Rivera (2006) indicate the presence of two flow systems sensu Tóth (1998) in the deep aquifer 146 

unit: IIa) a deep regional flow system represented by thermal water (35-40°C at borehole-147 

head); elevated B, F, Na and Li concentrations indicate interaction with fractured volcanic 148 

rocks, and IIb) an intermediate shallow flow system with a temperature of 23-28°C and low 149 

concentrations of B, F, Na and Li, indicating interaction with the basin fill sediments. Both 150 

systems are 3H free. Absolute age determinations using 14C indicate that actually extracted 151 

groundwater from the regional system is around 5,000-6,000 years old while the intermediate 152 



8 

system water shows ages of 2,000-3,000 years. Intensive water extraction was applied to the 153 

top of the deep aquifer unit to supply the growing city for the 1977-2007 period. This resulted 154 

in considerable groundwater table drawdown (ranging from 90 to 25 m) in deep (100 to 450 155 

m below ground surface) boreholes following from an increase in total annual extraction from 156 

1.9 to 4.1 m3/s in the same period of time. As a consequence, old regional flow groundwater 157 

started ascending to the production boreholes depth.  158 

 159 

1.3 Fluoride situation in SLP 160 

Dental fluorosis has been increasingly reported from the inhabitants of the city of SLP 161 

(Carrillo-Rivera et al. 2002) and recognized as the result of high exposure to naturally 162 

occurring F- in the drinking water supply, a connection also observed in other parts of Mexico 163 

(e.g., García-Pérez et al. 2013). This is causing some degree of dental fluorosis in 84 % of the 164 

inhabitants between 6 and 30 years of age; 34 % of the 11 to 13 years old children showed 165 

severe fluorosis (Medellín-Milán et al. 1993; Grimaldo et al. 1995). Severe dental fluorosis 166 

was observed in children only, senior citizens lack significant effects (Sarabia 1989) 167 

suggesting the former have been in contact with comparative ly higher F- concentrations in the 168 

water supply than the latter users. 169 

Tapped groundwater in 1987 for SLP city comprised various proportions of the aforementioned 170 

shallow intermediate and the deep regional flow systems (Carrillo-Rivera et al. 2002). Mixing of 171 

these flows takes place depending on extraction regime, local contrast in hydraulic 172 

characteristics, and borehole construction, depth, design and operation. Maximum F- 173 

concentrations found in 1987 (3.7 mg/L) were argued to become higher still, in time and space, 174 

should the input of regional F--rich flow to the extraction boreholes be further enhanced. The 175 

worst case scenario would be the extraction of 100 % of the deep regional flow component. It 176 

was suggested that by controlling the extraction borehole-head water temperature at 28-30 ºC, an 177 
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extracted raw water mixture with F- concentrations close to the maximum drinking water 178 

standard of 1.5 mg/L could be obtained (Carrillo-Rivera et al. 2002).  179 

Historical chemical analyses of regional flow groundwater (Stretta and Del Arenal 1960) show 180 

remarkable temporal constancy in major ion hydrochemical composition. Field groundwater 181 

temperature measurements exhibit a linear relationship to F- concentrations which permits an 182 

indirect estimation for the F- concentration in extracted groundwater. Extraction rates increased 183 

from 0.6 m3/s in the 1960’s to 2.6 m3/s in 1987, thereby inducing vertical F--rich water flow 184 

into boreholes (in this paper understood as all ground perforations with pumping equipment for 185 

the extraction of water serving for public supply) located in the centre of the SLP catchment.  186 

Assessing the situation in 1987, regionalization of F- concentrations in 52 groundwater samples 187 

from boreholes distributed in the territories as represented in Figure 1 produced a surface area 188 

affected by high F- (>2 mg/L) of about 73 km2. The contour map represented by the 2 mg/L F- 189 

isoline was delineated using linear kriging without any data transformation (model range: 7,483 190 

m). The goodness of fit for the gridding method was calculated using residuals and the 191 

coefficient of multiple determination (R2). Results for 1987 data indicate a R2 value of 0.996, 192 

showing that in this case linear kriging is a suitable method as compared with e.g., polynomial 193 

regression (R2=0.401). The high F- (>2 mg/L) surface area (135 km2) determined for 2007 (107 194 

groundwater samples) was delineated with the same gridding method. The higher sampling 195 

density allowed a model range of 4,246 m, producing a R2 value of 0.987. Comparison of F- 196 

concentration values for the eastern, southern and northeastern regions of the study area show no 197 

major evolution in the 1987-2007 period with most concentrations below the drinking water 198 

standard of 1.5 mg/L F- (exceptions: territories associated with the boreholes D and H; Fig. 1). 199 

Consequently, further increase in groundwater extraction enhanced the surface area affected by 200 

high F- (>2 mg/L) inflow from 73 km2 in 1987 to 135 km2 in 2007 (i.e. +85 %; Fig. 1).  201 
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At present, the estimated withdrawal is 4.1 m3/s, additional boreholes are mainly tapping the 202 

regional system at the foot of the felsic volcanic SSM to the west of the catchment. Additional F- 203 

attenuation methods in extraction boreholes should consider the hydrogeological and 204 

geochemical control mechanisms of F- as well as the borehole construction design to regulate the 205 

percentage of different groundwater flows supplying an extraction borehole. The objectives of 206 

this study are to characterize the primary F- source, to evaluate natural F- control under observed 207 

increased groundwater extraction in the SLP catchment and to reassess F- attenuation measures 208 

as proposed under 1987 conditions. 209 

 210 

2 Materials and Methods 211 

2.1 Water sampling and analyses 212 

Standard water sampling procedures included detailed field measurements of temperature, 213 

pH, Eh, dissolved O2 and electrical conductivity (APHA-AWWA-WPCF, 1989). An in-line 214 

flow-cell at a by-pass of the standpipe was used to ensure exclusion of atmospheric 215 

interference and to improve measurement stability. Two filtered (0.45 µm) samples were 216 

taken at each site in acid-washed, well rinsed low density polyethylene bottles. One sample 217 

for major cation and trace element determination was acidified with high purity HNO 3, 218 

producing a pH of about 2, sufficient to stabilize trace metals. One filtered, un-acidified 219 

sample was collected for anion analysis. Alkalinity was obtained through standard volumetric 220 

Gran titration method using H2SO4 and a digital titration device. All used equipment was 221 

calibrated in situ. Water samples were kept at 4°C before hydrochemical analysis. Chemical 222 

solutions used during field determinations were subject to quality control. All reported values 223 

have ionic balance errors within 5 %, except 5 out of 140 samples which show errors below 224 

10 %. A complete suite of major (HCO3
-, Cl-, SO4

2-, Ca2+, Na+, Mg2+) and minor (NO3
-, K+, F-225 

) ions as well as some trace element (Li, Sr, Fe, Mn) analyses were conducted, although for 226 
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this investigation, only Li (atomic adsorption spectroscopy) and F (ion selective electrode) 227 

were considered for the interpretation of hydrochemical data. Water analyses were carried out 228 

at the Soil and Water Chemical Laboratory of the Engineering Faculty of the UASLP. 229 

 230 

2.2 Rock sampling and analyses 231 

Sampling of the volcanic rocks was done considering the stratigraphic volcanic sequence 232 

determined by Labarthe-Hernández et al. (1982), six out of the eight most representative 233 

volcanic units were sampled (8 samples) in different locations. In addition to own sampling 234 

and analysis, volcanic rock chemical data were taken from previous studies in the area 235 

(Orozco-Esquivel et al. 2002; Rodríguez-Ríos 1997) to extent the geochemical database to a 236 

total of 38 samples (1 andesite, 1 latite, 4 rhyolitic ignimbrite, 32 rhyolite samples) with a 237 

strong focus on rhyolites accounting for the dominance of this rock type in the study area. 238 

Whole rock samples were analyzed for major elements using a Siemens SRS 3000 X-ray 239 

sequential spectrometer. The determination of trace elements was done by ICP-MS (Perkin 240 

Elmer ELAN 9000).  241 

Three thin sections were produced from rhyolite samples (San Miguelito Rhyolite) of 242 

different alteration grades and studied under the microscope (Olympus IX70) using 243 

transmitted light and an ultraviolet lamp for the identification of F-bearing minor mineral 244 

phases. Aliquots of those three rhyolites were ground to powder grain size (McCrone 245 

corundum mill) and analyzed for their mineralogical composition using a Bruker AXS D8 246 

Advance X-ray diffractometer (CuKα radiation; operational adjustments: 40 kV, 40 mA, 2θ = 247 

2-92°). The proportion of amorphous glassy material in the samples was estimated by adding 248 

an internal anatase standard (10 wt. % of total sample size). 249 

 250 

2.3 Processing of analytical information  251 
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Available data on the physical and hydrochemical behavior of groundwater when flowing 252 

through different lithologies of the SLP region were interpreted based on the flow system 253 

theory (Tóth 1998) from where the hierarchy of different flow systems (local, intermediate 254 

and regional) have been defined with the combined use of additional geographical data (i.e., 255 

geomorphology, soil and vegetation) suggesting the existence of recharge, transit or discharge 256 

conditions. The conceptual contrasting biophysical differences, among others, of the different 257 

hierarchical flow systems assembled by Tóth (1998) allow to propose – above basic 258 

groundwater flow – systems that move individually under natural conditions. This 259 

characterization has proved to be applicable in the study area (Carrillo-Rivera et al. 2002, 260 

2007). Under natural conditions, local flows have the shortest travel depth and distance, and 261 

contain groundwater with temperature closest to that of the recharge environment; therefore, 262 

this sub-recent water has comparatively low pH and total dissolved solids (TDS); its dissolved 263 

oxygen (DO) concentration is high. In contrast, the regional flow will travel the deepest and 264 

longest paths, achieving a water temperature and TDS as functions of depth and distance of 265 

travel. The pH of the water will increase, and its DO decrease, it represents the oldest water in 266 

the system. An intermediate flow system can be developed between local and regional 267 

systems. In the study area, local flows are ephemeral showing their presence only during the 268 

rainy season; therefore the next flow in the hierarchical position is the one of intermediate 269 

nature. Regional flow has been shown to be characterized by the highest temperature, Li and 270 

F- concentrations, due to its deepest travelling path and nature of the hosting felsic rock units; 271 

whereas intermediate flow has lower temperature as well as lesser Li and F- concentrations 272 

(Carrillo-Rivera et al. 2002). Using the hydrogeochemical modeling software Phreeqc 273 

(Parkhurst et al. 1980) allowed for the evaluation of water-mineral equilibria and mixtures 274 

between the identified flows. 275 
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Statistical analysis of the geochemistry dataset was conducted using the software SPSS 276 

Statistics 17.0. Quantification calculations of mineral phases after XRD determinations were 277 

conducted applying Rietveld analysis with the software BGMN, version 4.2.3.  278 

 279 

3 Results and Discussion 280 

3.1 Geochemical and mineralogical characterisation of the fluoride source  281 

Geochemical data obtained from own analyses and previous studies (Orozco-Esquivel et al. 282 

2002; Rodríguez-Ríos 1997) are presented in Table 1. Separation between Lower and Upper 283 

volcanic sequence was adopted as suggested by Orozco-Esquivel et al. (2002). 284 

 285 

Table 1: Selected geochemical data of volcanic rocks from the study area and its vicinity (own analyses and data 286 

from Orozco-Esquivel et al. 2002 and Rodríguez-Ríos 1997). ACB: Casita Blanca Andesite, LP: Portezuelo 287 

Latite, ISM: Santa María Ignimbrite, IC: Cantera Ignimbrite, IP: Panalillo Ignimbrite, RSM: San Miguelito 288 

Rhyolite, RS: Santana Rhyolite, RC: Carbonera Rhyolite, R: rhyolites from different domes and flows, RL: 289 

Lower sequence rhyolites, RU: Upper sequence rhyolites. 290 

Strati- 

graphy 
Sample 

Si Al Fe Ca Mg Na K  F Rb Sr Zr Nb Ba La Eu Yb Ta Th 

wt. % µg g-1 

Upper 

sequence 
 

 

IC 
M-5 35.7 6.6 0.8 0.0 0.1 2.0 4.4  608 272 32 147 30 203 27.6 0.5 7.3 2.0 25 

M-6 35.5 6.7 0.9 0.3 0.0 2.4 4.2  595 269 46 166 29 318 57.6 0.5 5.3 1.9 39 

IP M-8 35.5 6.9 1.1 0.1 0.0 2.5 4.1  116 251 9 300 53 62 61.9 0.3 8.0 3.1 40 

SSM 

M-7 35.9 6.5 1.2 0.2 0.0 2.2 4.1  2651 594 7 139 44 64 25.5 0.1 8.5 4.2 79 

M-9 35.3 6.8 1.1 0.1 0.0 2.4 4.0  1032 375 18 151 32 258 32.3 0.2 6.3 2.8 46 

CG/95/3 31.9 7.4 2.4 0.7 0.0 1.2 4.8  2100 484 6 137 34 17 37.1 0.1 4.5 5.1 55 

CG/95/4 31.8 7.3 2.8 0.6 0.1 1.1 4.6  1900 499 8 135 36 43 24.7 0.1 5.4 5.3 37 

CG/95/5 32.1 7.2 2.8 0.6 0.1 1.1 4.4  3500 479 7 134 32 22 67.9 0.1 13.2 4.8 62 

CG/95/7 36.4 6.1 1.0 0.3 0.0 1.7 4.7  1700 399 9 141 25 34 20.8 0.1 3.6 3.4 38 

CG/95/9 34.5 6.8 1.8 0.2 0.0 1.5 4.8  2400 75 10 127 33 62 11.7 0.1 5.7 5.0 46 

CG/95/49 34.2 6.4 2.4 0.2 0.0 1.2 5.6  2500 471 12 130 34 62 13.3 0.1 3.3 5.0 45 

CS/95/10 34.7 6.5 1.6 0.6 0.0 1.4 4.8  600 262 27 160 19 276 68.4 0.3 5.1 2.2 34 

CS/95/11 35.1 6.9 1.8 0.5 0.0 1.9 4.6  1000 265 17 124 20 101 50.2 0.2 5.6 2.5 33 

CS/95/12 35.3 6.7 1.4 0.5 0.0 1.9 4.0  800 275 27 125 21 625 46.5 0.2 4.9 2.5 33 

CS/95/14 35.6 6.2 1.6 0.6 0.0 1.9 4.2  2500 432 8 131 29 77 13.3 0. 1 6.0 4.2 36 

RS 

DS/96/2 36.4 6.0 1.0 0.2 0.4 1.4 4.1  540 316 100 248 17 705 41.0 0.8 2.0 2.1 20 

DS/96/3 36.2 6.0 1.0 0.3 0.5 2.0 4.0  1600 317 100 266 19 747 58.8 1.1 3.3 2.3 21 

DS/95/28 36.2 5.9 0.9 0.2 0.4 1.9 4.0  1200 248 100 228 17 611 47.6 1.1 3.5 1.8 21 

RC 

DS/95/22 35.6 6.4 1.3 0.1 0.0 2.1 3.9  410 290 32 213 21 283 53.6 0.5 5.9 2.7 28 

DS/95/45 33.3 7.1 3.3 1.2 0.0 2.1 4.2  170 221 24 387 37 341 100 1.0 7.3 3.0 24 

DS/96/1 33.6 7.0 2.5 1.6 0.1 2.2 4.2  340 254 112 275 20 851 74.0 1.1 3.0 2.1 22 

R 

RIO-16 35.5 6.9 1.0 0.4 0.1 2.5 4.5  7603 581 6 125 42 50 75.8 0.2 19.2 6.2 85 

RIO-12 35.6 7.0 1.0 0.3 0.1 2.1 4.6  1463 407 9 113 19 28 17.9 0.1 5.5 3.9 36 

RIO-9 35.9 6.8 1.1 0.2 0.1 2.0 4.1  1289 307 9 86 24 49 10.0 0.1 6.2 3.2 30 
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RIO-44 35.9 6.7 1.0 0.2 0.1 2.5 4.0  2840 601 7 143 30 89 24.3 0.1 5.0 5.5 57 

RIO-41 36.3 6.5 0.9 0.3 0.1 1.9 4.2  1296 359 8 144 23 20 21.7 0.1 5.2 3.3 33 

RIO-46 36.5 6.2 0.8 0.4 0.1 1.9 4.2  1149 330 9 112 18 49 35.3 0.1 7.2 2.9 28 

RIO-43 36.6 6.2 0.9 0.4 0.1 1.9 4.2  1039 322 13 145 17 70 28.7 0.2 6.0 2.7 32 

RIO-7 36.3 6.6 1.0 0.1 0.1 1.5 4.0  356 186 20 113 16 137 19.6 0.3 3.9 1.7 16 

Ø RU  35.1 6.6 1.5 0.4 0.1 1.8 4.3  1691 359 27 162 26 218 39.3 0.3 6.0 3.5 38 

Ø RSM  34.4 6.7 1.8 0.4 0.0 1.6 4.6  1890 384 12 136 29 136 34.3 0.1 6.0 3.9 45 

 

Lower  

sequence 
 

ACB M-1 25.5 8.7 6.2 5.4 2.5 2.5 1.5  1005 47 572 322 14 684 39.0 1.9 2.4 0.7 6 

LP M-4 31.4 6.7 3.8 2.9 0.2 2.0 3.7  592 199 205 380 24 2371 77.7 1.9 6.3 1.9 18 

ISM M-2 35.4 5.9 2.4 0.7 0.1 1.8 4.2  358 189 98 234 22 1346 50.7 1.1 3.5 1.3 24 

R 

RIO-45 33.3 7.1 3.3 1.2 0.2 2.1 4.2  1082 189 141 501 18 1340 53.6 1.7 4.5 1.8 17 

RIO-29 33.6 7.0 2.5 1.6 0.2 2.2 4.2  1336 159 129 457 16 1630 59.0 1.6 4.8 1.9 16 

RIO-22 34.7 6.5 1.6 0.6 0.3 1.4 4.8  322 193 62 278 13 1300 61.2 1.1 4.6 1.8 18 

RIO-18 35.1 6.9 1.8 0.5 0.2 1.9 4.6  250 170 91 277 13 1480 61.6 1.3 4.4 1.7 16 

RIO-47 35.3 6.7 1.4 0.5 0.1 1.9 4.0  207 181 78 304 14 1410 77.8 1.4 5.7 1.5 18 

RIO-24 35.6 6.2 1.6 0.6 0.1 1.9 4.2  489 155 90 250 15 1360 53.5 1.2 3.9 1.8 19 

Ø RL  34.6 6.7 2.0 0.8 0.4 1.9 4.3  614 174 98 344 14 1420 61.1 1.4 4.7 1.8 17 

 

Ø RU/ 

Ø RL 
 1.01 0.98 0.75 0.51 0.25 0.95 1.00  2.75 2.06 0.27 0.47 1.76 0.15 0.64 0.23 1.28 1.99 2.21 

Ø RSM/ 

Ø RL 
 0.99 1.00 0.90 0.50 0.00 0.85 1.05  3.08 2.20 0.13 0.40 2.01 0.10 0.56 0.10 1.29 2.24 2.62 

 291 

 292 

Major ion contents in rhyolites from both sequences are relatively stable, average values are 293 

very similar (Table 1) with the exception of calcium which is depleted in the Upper sequence, 294 

compared to the Lower one. With an average content of nearly 1,700 µg g-1, F in Upper 295 

sequence rhyolites is enriched by a factor of 2.75 compared to Lower sequence rhyolites. This 296 

trend is even more pronounced in rhyolites from the Sierra San Miguelito (Ø nearly 1,900 µg 297 

g-1 F; enrichment factor 3.08). For comparison, average F content in acid igneous rocks is 298 

800-1,000 µg g-1 (Lucas 1988). Fluorine enrichment in the Upper sequence occurs together 299 

with some incompatible large ion lithophile elements (LILE: Rb, Cs, Heavy REE, U, Th, Pb) 300 

and high field strength elements (HFSE: Nb, Ta) as shown by enrichment factors in Table 1 301 

and correlation coefficients with F in Fig. 2d. In contrary, feldspar-compatible elements (Ba, 302 

Sr, Eu), Zr and Light REE are depleted in the Upper sequence. Both observations suggest F 303 

being hosted in late magmatic mineral phases or the matrix. These findings are in good 304 

agreement with the results of Orozco-Esquivel et al. (2002) indicating the regional rhyolites´ 305 

geochemical similarity to rhyolites from the western U.S.A. (Christiansen et al. 1983). This 306 
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underlines the incompatible behavior of F and thus its tendency to be concentrated in the melt 307 

fraction during magmatic differentiation (e.g. Stecher 1998). Similar to F behavior, all 308 

mentioned enrichment and depletion trends of other elements are even more distinct when 309 

only Sierra San Miguelito rhyolites are taken into account (Table 1). Figures 2a-c illustrate F 310 

scatter plots versus different elements, with samples being differentiated between Upper and 311 

Lower volcanic sequence.  312 

 313 

 314 

Fig. 2: Fluorine correlation with other elements in studied volcanic rocks; a: F-Th scatter plot, b: F-Ca scatter 315 

plot, c: F-Al scatter plot, d: Pearson correlation coefficients F-[element] for all rhyolite samples, lines indicating 316 

distinct positive (R2≥0.3) and negative (R2≤-0.3) correlation.  317 

 318 

As an example for flourine enrichment and occurrence together with incompatible elements, 319 

Figure 2a shows a positive correlation (R2=0.69) between F and Th in the Upper sequence 320 

while no relation is observable in Lower sequence rhyolites. Figure 2b contains the 321 

stoichiometric F/Ca ratio of fluorapatite Ca5(PO4)3F with Lower sequence rhyolites closely 322 

(R2=0.98) following this line (andesite and latite represent outliers with substantial excess 323 
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Ca), while Upper sequence rhyolites developed differently, acquiring excess F. This suggests 324 

that fluorapatite controls the F budget of the Lower sequence rhyolites while it is of lesser 325 

importance for the Upper sequence. The stoichiometric F-Al ratio of topaz 326 

Al2(SiO4)F1.1(OH)0.9 was implemented in Fig. 2c to evaluate the importance of this mineral 327 

phase for F distribution. In this diagram, Upper sequence rhyolites scatter subparallely to the 328 

topaz line (with large excess of Al caused by feldspar presence). This indicates F being at 329 

least partly bound in topaz, especially in the Upper sequence as reported by Orozco-Esquivel 330 

et al. (2002).  331 

Quantitative X-ray diffraction results obtained by Rietveld analysis are presented in Fig. 3. 332 

Sample (a) represents an unweathered rhyolite while (c) is a more altered sample (with (b) 333 

being intermediate between (a) and (c)) as concluded from observation of rather grayish 334 

colour and decreasing consolidation of the latter. This is supported by mineralogical results 335 

showing a decrease of comparatively well weatherable plagioclase and biotite and an increase 336 

of the weathering product kaolinite (Fig. 3).  337 

 338 

 339 

Fig. 3: Microscopic images and mineralogical composition of rhyolites, and F contents calculated for identified 340 

F-bearing mineral phases (in wt. %) in samples (a), (b) and (c) from Sierra San Miguelito (SSM). 341 

  342 
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The anatase standard material was not overestimated in the Rietveld quantification, indicating 343 

that there is no significant proportion of X-ray amorphous material in the samples. 344 

Nevertheless, it cannot be excluded that background intensity is partly taken by fitted 345 

minerals, as indicated by broadened reflexes of some phases, which may lead to 346 

underestimation of the standard and thus represents a potential source of quantification 347 

uncertainty. The proportional scale and trends between the samples are, however, considered 348 

trustworthy. Topaz and F-apatite were identified as F-bearing mineral phases while fluorite 349 

has not been detected. Stoichiometric bulk rock F contents were calculated from the Rietveld 350 

data (Fig. 3). The values plot in the range of the typical F content of San Miguelito rhyolites 351 

(Table 1). As suggested by element correlation analysis (Fig. 2c), topaz is the main F host 352 

mineral in these rocks. Nevertheless, the availability of topaz-F to be desintigrated into its 353 

sorrounding environment is rather limited due to the high resistance to weathering of this 354 

mineral. This is supported by topaz content being highest in the most altered rhyolite sample 355 

(Fig. 3). In contrast, F-apatite successively decreases with increasing alteration indicating that 356 

this mineral, despite its lower abundance, may be the more important F- source in terms of 357 

remobilization and release into groundwater. Apatite weathering is heavily temperature-358 

dependent (Guidry and Mackenzie 2000) and may be triggered under the given warm and 359 

semiarid climate of the study area, and especially under thermal water conditions. These 360 

findings also suggest that rhyolites of the Lower volcanic sequence are potentially effective F- 361 

sources, despite their lower bulk F contents (Table 1, Fig. 2b). 362 

 363 

3.2 Dissolved fluoride development and hydrochemistry 364 

Figure 1 shows the region with F- concentrations >2 mg/L in extraction boreholes for 1987 365 

and 2007 data. A comparison of these two datasets suggests that the new boreholes 366 

constructed to the NW and S of SLP City are under the influence of high F- water. These 367 
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boreholes are located directly on the felsic volcanic material, they tap the regional flow 368 

without any further possible control. However, F- concentrations in other parts of the city area 369 

remained similar to values reported for 1987 (Carrillo-Rivera et al. 2002). 370 

The relation between groundwater temperature and its F- concentration for 1987 and 2007 371 

data (Fig. 4) suggests that an acceptable water quality (in terms of F- < 1.5 mg/L) may be 372 

obtained by keeping the extracted raw water mixture below a temperature of ~30°C. 373 

Exceptions from this approach are represented by those boreholes with groundwater 374 

extraction inducing intermediate flow water travel through the volcanic material which 375 

produces an excess in F- in extracted water (data above the R2=0.8 trendline, i.e. boreholes 376 

located in the framed fields in Fig. 4 with >1.5 mg/L F-). Usage of these waters for drinking 377 

purposes requires an individual F- management. Nevertheless, should other influences be 378 

absent in extraction boreholes, the control of discharge temperature at ~30 °C or lower may 379 

keep F- concentrations within satisfactory limits. 380 

 381 

 382 
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Fig. 4: Water discharge temperature vs. fluoride concentration for 1987 and 2007 samples. Framed fields mark 383 

sample groups with F- concentrations significantly in excess of the displayed F-/temperature relation. 384 

 385 

Figure 5 indicates the relation between borehole discharge water temperature and F- 386 

concentration in selected extraction boreholes, comparing 1987 and 2007 data (Table 2). 387 

Reduced extracted water temperature (solid line) for measurements made at boreholes A, B 388 

and C imply that inflow water changed along the mixture path resulting in a decreased F- 389 

concentration. Other boreholes show a slight decrease in F- but some increase in temperature 390 

(boreholes D, E, F, G, H, and I). Groundwater relative age, i.e. residence time, in terms of Li 391 

concentration appears to be similar in most of these cases (Table 2). Lithium concentrations in 392 

groundwater are controlled by water/rock interaction processes, mainly via release of Li 393 

during silicate weathering (Négrel et al. 2012). This metal is typically associated to felsic 394 

rocks like rhyolites and pegmatites due to its incompatibility during magmatic differentiation 395 

(e.g., Benson et al. 2017). Edmunds and Smedley (2000) observed positive correlation of Li 396 

with groundwater temperature as well as with 14C age, and used the element as an indicator of 397 

groundwater residence time. It was also successfully used to discriminate between thermal 398 

and shallow groundwater (Carrillo-Rivera et al. 1996; Lambrakis et al. 2013). 399 

New boreholes (I, J, K, L) have been constructed close to sites where old boreholes were 400 

removed due to a deteriorating extraction regime. Data for the old borehole (1987) as 401 

compared to the new site (2007) put forward that the proposed mixture line for the 1987 data 402 

(cf. Carrillo-Rivera et al. 2002) is still valid (Table 2, Fig. 5).  403 

 404 

Table 2: Temperature, lithium and fluoride results for groundwater samples from 1987 and 2007 (T given in °C, 405 

Li and F concentrations in mg/L). 406 

Borehole 
T  

(1987) 

T  

(2007) 

ΔT  

(2007-1987) 

Li   

(1987) 

Li  

(2007) 

ΔLi  

(2007-1987) 

F  

(1987) 

F  

(2007) 

ΔF  

(2007-1987) 

A 37.4 29.1 -8.3 0.17 0.08 -0.09 2.55 0.49 -2.06 

B 29.0 24.1 -4.9 0.12 0.01 -0.11 0.96 0.36 -0.60 

C 28.7 28.3 -0.4 0.10 0.11 0.01 1.55 1.40 -0.15 
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D 26.7 27.4 0.7 0.07 0.07 0.00 2.85 2.65 -0.20 

E 35.1 36.5 1.4 0.18 0.20 0.02 3.65 3.10 -0.55 

F 36.0 36.8 0.8 0.18 0.18 0.00 2.90 2.82 -0.08 

G 24.2 24.9 0.7 0.04 0.03 -0.01 0.58 0.51 -0.07 

H 34.8 35.2 0.4 0.15 0.15 0.00 2.10 1.48 -0.62 

I* 33.8 35.6 1.8 0.17 0.17 0.00 2.45 2.16 -0.29 

J* 40.4 29.0 -11.4 0.22 0.05 -0.17 3.40 0.62 -2.78 

K* 27.0 35.9 8.9 0.03 0.19 0.16 0.32 2.18 1.86 

L* 25.2 30.6 5.4 0.04 0.13 0.09 1.10 2.80 1.70 

M 25.4 24.6 -0.8 0.01 0.01 0.00 0.20 0.36 0.16 

N 38.5 36.2 -2.3 0.18 0.18 0.00 3.10 3.22 0.12 

O 29.7 29.5 -0.2 0.05 0.02 -0.03 0.55 0.67 0.12 

P 28.2 29.6 1.4 0.04 0.05 0.01 0.90 1.02 0.12 

* New boreholes (2007 data) constructed near the old borehole sites (1987 data)   

 

 
    

 407 

Fig. 5: Comparison of water discharge temperature vs. fluoride concentration for selected boreholes for 1987 and 408 

2007 data. 409 

 410 

Figure 6 directly visualizes the impact of temperature changes on the variations of F- (Fig. 6a) 411 

and Li (Fig. 6b) concentrations in groundwater, emphasising that both parameters can be 412 

regarded as functions of groundwater temperature with R2=0.84 for F- and 0.91 for Li. 413 

 414 
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 415 

Fig. 6: Relation of groundwater temperature changes from 1987 to 2007 vs. changes in F- (a) and Li (b) 416 

groundwater concentrations in the same period of time. 417 

 418 

Natural F- controls derived from 1987 data (Carrillo-Rivera et al. 2002) seem applicable to 419 

previous as well as new boreholes. As Li is expected to behave in a conservative manner, this 420 

property might be used to propose possible reactions relating F- along the groundwater flow 421 

path to the extraction borehole. Figure 7 was constructed with boundaries for different cases 422 

that could be anticipated based on the nature of Li as water age indicator (Edmunds and 423 
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Smedley 2000) as well as with further support by the discharge temperature of the regional 424 

flow (33.8 to 40.4 °C), and that of intermediate flow (25.5 ± 1 °C), respectively. Assuming 425 

that the relationship between temperature values and F- concentration has prevailed, from Fig. 426 

4 and/or from the equation relating groundwater temperature (T) to its F- concentration [F = 427 

(T-25.005)/3.562], samples depict the mixing end-members of cases (d) and (e) (Carrillo-428 

Rivera et al. 2002). Figure 7 suggests that also more recent extraction induces water from the 429 

regional flow system, often with higher Li concentration implying longer residence time 430 

(Edmunds and Smedley 2000), and higher temperature than in the 1987 situation (case d).  431 

Case a represents the mechanical mixture between thermal and cold water end members  432 

(regional (case d) and intermediate (case e) flows). Data presented in Figure 7 suggests that a 433 

large number of boreholes is affected by mixed waters of different Tóthian groundwater flow 434 

system origin represented by case a. Fluoride increase (from 1987 to 2007) of borehole K 435 

(Fig. 5) is explained by the increase of the regional flow portion in the mixture with 436 

intermediate flow. Conversely, F- reduction of borehole J is explained by an additional input 437 

of the intermediate flow end member with lower F- and Li concentrations (Table 2). 438 

 439 

 440 
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 441 

Fig. 7: Relation of Li (residence time indicator) vs. F- for 1987-2007 data, showing F- control cases (a) by 442 

mixture, (b) reduction by precipitation, (c) F- increase from sources in addition to regional flow, (d) high F- 443 

source (regional flow) and (e) low F- source (intermediate flow). 444 

 445 

Case b shows the effect of fluorite precipitation accompanied by reduced F- concentrations in 446 

the aqueous phase, as these samples, concluding from their 1987 position, would be expected 447 

to belong to case a if only pure conservative mixing occurred. The solubility control by CaF2 448 

and associated loss of dissolved F- in the water mixture when it travels through the Ca-rich 449 

granular material (CaCO3 containing sediments in the SLP graben basin) are plausible 450 

possibilities to explain F- reduction suggested by case b. Fewer samples represent case c; they 451 

indicate fluoride input to groundwater from other sources in addition to the regional flow end 452 

member.  453 
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Phreeqc calculations of saturation indices (Carrillo-Rivera et al. 2002) suggest that F- 454 

concentration in the water of the regional flow system is controlled by fluorite solubility 455 

irrespective of extraction groundwater temperature. Calculations made using geothermometry 456 

proposed that this water attains a temperature of about 75°C at depth (at about 1,000-1,500 m) 457 

and that it is about in equilibrium with respect to fluorite (and calcite). Extracted groundwater (at 458 

discharge temperature) is under-saturated with respect to fluorite. Such results are interpreted as 459 

a F- loss occurring in the ascent of regional flow water to borehole discharge. A natural F- 460 

concentration control may be postulated by increasing calcium and lowering water temperature, 461 

which is feasible as the thermal water at borehole head is calcite under-saturated (or near 462 

equilibrium). Since fluorite over-saturation is not anticipated, the application of this solubility 463 

control is recommended for natural F- reduction in future groundwater extraction schemes. 464 

Specific borehole design taking the geological and hydrogeological conditions into consideration 465 

may allow groundwater from the regional flow system to circulate through the Ca-rich granular 466 

material to trap dissolved F- prior to extraction. Consequently, the application of the proposed in 467 

situ controls of F- attenuation by the hydrogeological environment through response and 468 

travelling path of the groundwater flow systems may be favored over conventional treatment 469 

plants which would result in higher costs due to the substantial initial capital investment of such 470 

plants. Furthermore, their dimensioning and performance are unclear, they might be inefficient 471 

due to the observed evolution in water quality with extraction time as a function of variation in 472 

the extraction rate of intermediate/regional inflow to the borehole. Dependent on the selected 473 

water treatment approach, an additional environmental and financial concern would be the 474 

management of accumulating sludge.  475 

There is a need for a better understanding regional flow systems by borehole drillers and 476 

borehole operators. Screens and discharge yield through step drawdown tests should be designed 477 

to tap more raw water from vertical flow, i.e. groundwater which reacted with Ca-rich aquifer 478 
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sediments to precipate F- as CaF2 before extraction. Raw waters with temperatures above the 479 

derived temperature control (30 °C) should be avoided or cooled down – ideally in the borehole 480 

– by appropriately controlling pumped water velocity for extra cooling time. These measures 481 

possibly come at the expense of higher capital expenditures (CapEx) but will be much cheaper 482 

than treatment of raw water for F- removal. The latter should not be first choice due to (i) 483 

substantial operational expenditures (OpEx) adding to the CapEx, (ii) the need for trained people 484 

to run the plants adapting to changing raw water composition as discussed before, and (iii) the 485 

disperse water supply infrastructure which will require numerous treatment plants or a wide 486 

transport pipe network, both of which are hardly feasible. 487 

 488 

4 Conclusions  489 

Elevated F- concentrations in groundwater around San Luis Potosí City were shown to primarily 490 

derive from geogenic mobilization of F-bearing mineral phases present in the surrounding felsic 491 

volcanic rocks. The natural F- control mechanisms in the different Tóthian flow systems 492 

proposed in this study appear to be managing the presence and distribution of F- in extracted 493 

groundwater in the SLP catchment. Data for 1987 and 2007 further suggests that the previously 494 

proposed counteractive measures (Carrillo-Rivera et al. 2002) before water is extracted are 495 

applicable and that it is advisable to fully consider them when new boreholes are constructed as 496 

well as in the management of existing ones as the efforts to remove F- once it reaches the surface 497 

are costly and environmentally critical.  498 

The proposed model and F- controls could have wider applicability in similar hydrogeological 499 

frameworks in other parts of Mexico, the U.S.A. and the world, where groundwater derived from 500 

different Tóthian flow systems in a particular mixture is obtained for consumption in the growing 501 

number of recognized areas affected by elevated F- concentrations.  502 

 503 
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