
Boise State University Boise State University 

ScholarWorks ScholarWorks 

Mechanical and Biomedical Engineering Faculty 
Publications and Presentations 

Department of Mechanical and Biomedical 
Engineering 

7-2021 

Centralized and Decentralized Optimal Control of Variable Speed Centralized and Decentralized Optimal Control of Variable Speed 

Heat Pumps Heat Pumps 

Ryan S. Montrose 
Boise State University 

John F. Gardner 
Boise State University 

Aykut C. Satici 
Boise State University 

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/mecheng_facpubs
https://scholarworks.boisestate.edu/mecheng_facpubs
https://scholarworks.boisestate.edu/mecheng
https://scholarworks.boisestate.edu/mecheng


energies

Article

Centralized and Decentralized Optimal Control of Variable
Speed Heat Pumps

Ryan S. Montrose, John F. Gardner and Aykut C. Satici *

����������
�������

Citation: Montrose, R.S.; Gardner,

J.F.; Satici, A.C. Centralized and

Decentralized Optimal Control of

Variable Speed Heat Pumps. Energies

2021, 14, 4012. https://doi.org/

10.3390/en14134012

Academic Editor: Antonio Rosato

Received: 14 May 2021

Accepted: 24 June 2021

Published: 3 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mechanical & Biomedical Engineering, Boise State University, Boise, ID 83706, USA;
RyanMontrose@u.boisestate.edu (R.S.M.); jgardner@boisestate.edu (J.F.G.)
* Correspondence: aykutsatici@boisestate.edu

Abstract: Utility service providers are often challenged with the synchronization of thermostatically
controlled loads. Load synchronization, as a result of naturally occurring and demand-response
events, has the potential to damage power distribution equipment. Because thermostatically con-
trolled loads constitute most of the power consumed by the grid at any given time, the proper control
of such devices can lead to significant energy savings and improved grid stability. The contribution of
this paper is the development of an optimal control algorithm for commonly used variable speed heat
pumps. By means of selective peer-to-peer communication, our control architecture allows for the
regulation of home temperatures while simultaneously minimizing aggregate power consumption,
and aggregate load volatility. An optimal centralized controller is also explored and compared
against its decentralized counterpart.

Keywords: optimal control; decentralized control; adaptive control; parameter estimation; demand
response; thermostatically controlled load

1. Introduction

The goal of a 100% renewable electric supply system presents significant challenges
to the organizations responsible for maintaining the reliability and resilience of electric
grids. Although grid-level battery storage is often touted as the solution to integrating high
penetrations of variable generating resources [1,2] (e.g., solar PV and wind generators),
there is a growing body of research pointing to the potential for flexibility and control
of demand to play a significant role in grid operations going forward. In this regard,
thermostatically controlled loads (TCLs) are some of the most sensible areas to explore
because they make up a significant portion of demand on any given electric grid and there
is a great deal of flexibility in when they actually draw power.

To realize the true potential of TCLs as a resource to aid in grid operations, it is widely
understood that numerous loads must be aggregated and controlled in a coordinated
fashion. Many researchers have proposed methods of centralized control of aggregated
TCL’s and the problem of synchronization often arises [3]. The most common example
of synchronization occurs during load-shedding demand-response events. Many utilities
have programs which homeowners agree to allow the grid operators to occasionally turn
off their air conditioning compressor in return for a rebate or reduction in rates. When the
grid operator anticipates that they will have a difficult time meeting load requests, then
many compressors can be shut off, thus shedding that load. The problem arises when the
demand-response event is released. At this point, a large portion of the compressors will
cycle “on” because they have no doubt risen in temperature during the demand-response
event. This often results in an immediate peak that is higher than the peak they were
attempting to avoid. Subsequently, a period of oscillations occurs, during which time the
aggregate load experiences large oscillations.

This paper explores innovative approaches to controlling an aggregation of TCLs by
applying a combination of optimum control theory and localized communication between
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individual TCL’s which serve to prevent inadvertent synchronization while minimizing
peak demand.

The work presented in this paper builds on the body of research dedicated to smart
grid systems. A smart grid system, defined by its ability to efficiently balance various
energy streams, has been shown to increase both stability and efficiency of electric grids.
Due to the vastness of smart grid applications, its often helpful to define a smart grid by
its constitutive subcategories. These categories include, but are not limited to, demand-
response events, agent-based modeling, dynamic price control, and thermostatically
controlled loads (TCLs).

Much of the body of literature in demand response and TCLs stems from Malhamé
and Chong’s seminal paper [4]. This paper introduced a stochastic control framework
designed to aggregate a large population of homogeneous TCLs (electric space heaters)
that are modeled with a pair of coupled Focker Plank equations (CFPEs). Two decades
later, Callaway [5] built upon Malhamé and Chong’s work not only by deriving an exact
solution to the CFPEs, but also devised a method to aggregate TCLs about the variably
produced renewable energy sources.

As the field of smart grid systems matured, so too followed unique control methods
designed to regulate aggregate power consumption. As it pertains to TCLs, two primary
classifications exist: centralized and decentralized control. Various centralized control
approaches are used to aggregate TCLs. For instance, various state-bin transition techniques
are proposed in [6–8]. These binning techniques stochastically characterize the flow of TCLs
between their respective off and on states. Through the systematic transitioning of states,
an aggregate power reference signal is therefore tracked. Among [7,8], including [9,10],
a model predictive control framework is used to optimally schedule a population of
control actions. Machine learning techniques have also been adopted into the control
of smart grid systems. In [11–13], a reinforcement learning control framework is used
to learn the complex action space of a population of TCLs. Other notable approaches
to the aggregation of TCLs are the priority-stack-based controllers presented in [1,14],
and the unique geometric approach proposed in [9]. Lastly, several publications have been
dedicated to the reduction aggregate power consumption via dynamic price control [15,16].

Another classifier for TCLs, under the umbrella of smart grid systems, is decentralized
control. In terms of large-scale aggregation of TCLs, a centralized command structure is
inherently burdened with the computation and communication complexities associated
with its operation. Both scalability and cyber-security are often cited as the primary
concerns of a centralized network topology when governing the actions of TCLs [17,18].
Of the literature results in decentralized control, such as that of the stochastic framework
proposed in [19], methods of distributing the computational complexity to its participating
patrons is explored. In both [20,21], decentralized controllers have been shown to resist
various cyber-attacks and communication failures caused by network dropout.

The rest of this paper is organized as follows. In Section 2 a second-order equivalent
thermal parameter model of a TCL is presented along with its state space representation.
A parameter estimation method is presented thereafter using the recursive least squares
algorithm. Lastly, justifications for the network architecture and demand response event is
provided. In Section 3 an optimization program is provided for both the decentralized and
centralized control frameworks. Simulation results are presented Section 4 followed by
closing remarks made in Section 5.

2. Background

In the United States, including many other modernized countries, the majority of
generated electricity is therefore consumed by thermostatically controlled loads (TCLs).
These TCLs, defined by their ability to store thermal energy (and are controlled as such),
loosely resemble that of a leaky battery. For instance, water-heaters, a type of TCL, heats
inlet water in an insulated storage tank to within a prescribed temperature range where
it awaits its use. Including water-heaters, other prominent TCLs, defined by their high
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energy consumption, are HVAC systems and refrigerator units. It should be noted these
TCL devices, including many others, operate on a similar premise. Typically, TCLs are
governed by simplistic toggle condition, like that of an on/off controller, also referred to
as a Bang-Bang control. Because thermal energy is stored within a medium, there exists
a level flexibility as to when such energy is consumed/replenished. Through the proper
control of such devices, as will be demonstrated in this work, certain beneficial aggregate
characteristics may be achieved for instance the reduction in aggregate power consumption
and its associated volatility. In the following sections a mathematical model for a particular
TCL, that being a variable speed heat pump (VSHP) is developed. This mathematical
model provides a causal relationship between the control action of a population of VSHPs
and the aggregate effects of power consumption. Although this research focuses on a
particular TCL, its application may be expanded other similarly governed devices.

2.1. Dynamics

This paper uses the well-established second-order equivalent thermal parameter (EPT)
model to describe the temperature dynamics of a residential home. By means of the thermal
circuit shown in Figure 1, two coupled first order differential Equations are formed.

CAṪA = QA −
1

R1
(TA − To)−

1
R2

(TA − TM), (1)

and,

CMṪM = QM +
1

R2
(TA − TM), (2)

where TA and TM denote the interior air and lumped mass temperatures of a residential
home. Adjacent to the residential control volume is the surrounding outside air temperature
To. With regard to control theory, both the outside temperature To and the internal heat
generating elements, denoted QM, represent disturbances to this thermal system. Rejection
of such disturbances is accomplished via the home’s HVAC system, denoted QA. In
particular, QA represents heat being removed from the interior air. The elegance of this
ETP model is that it is fully defined by four measurable parameters, that being the thermal
capacities CA, CM and the conductive properties R1, R2. As will be further discussed in
Section 2.4, a parameter estimation model will be presented, which provides systematic
method to estimate these thermal parameters.

Through the manipulation of Equations (1) and (2) a second-order differential equation
is formed in terms of TA and its derivatives ṪA and T̈A,

CMCAR2T̈A +

(
CM

(
R2

R1
+ 1
)
+ CA

)
ṪA +

1
R1

TA

=
CMR2

R1
Ṫo +

1
R1

To + CMR2ηṁ + ηm.
(3)

Within Equation (3), the terms QA and Q̇A are replaced with ηm and ηṁ respectively.
The negative constant term η < 0 represents the heat removal capacity of the homes
HVAC system and m, a controllable parameter, scales η according to the governing control
algorithm. QM, similar to that of QA, represents alternative heat sources/sinks. In a typical
residential setting, QM includes, but is not limited to, heat generated by home appliances,
solar radiation, and the dissipation of heat between the home’s lumped mass and ground.
Based on the minimal effects of QM, especially with regard to QA := ηm, its inclusion will
be neglected in this study.
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Figure 1. Second-order equivalent thermal parameter circuit diagram.

Equation (3) is further abbreviated by replacing each constant term with elements of a
parameter vector θ ∈ R5.

θ1T̈A + θ2ṪA + θ3TA = θ4Ṫo + θ3To + θ5ηṁ + ηm (4)

For the sake of clarity, a VSHP regulates the indoor air temperature, TA, by adjusting
its cooling capacity, m, between being fully on or completely off. This range of values may
be mathematically defined as the continuous set m ∈ [0, 1]. A goal of this research is the
development of a controller which provides certain beneficial characteristics to an electric
utility service provider. These characteristics are the minimization of aggregate power
consumption, defined as

Pagg =
N

∑
p=1

ηpmp, (5)

and the instantaneous rate of change of aggregate power consumption, Ṗagg. Along with
the aggregate power design constraints, this controller must also maintain indoor air
temperatures at, or near, its associated set-point temperature Tsp. To satisfy the combi-
nation of these three control requirements, a novel approach is taken. Instead of directly
controlling the cooling capacity of a VSHP by means of its control variable m, this study
opts to additionally control its derivative ṁ. To distinguish ṁ as a controllable parameter,
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moving forward we redefine it as σ. A faithful state space representation of Equation (4),
incorporating this novel control approach, is defined as follows,

ẋ = Ax + B
(
η(m + θ5σ) + θ4Ṫo + θ3To

)
(6)

where x =
[
TA ṪA

]> and,

A =

[
0 1
− θ3

θ1
− θ2

θ1

]
, B =

[
0
1
θ1

]
.

Through the application of backward Euler method, Equation (6) is therefore rewritten
in a discrete format as,

xk+1 = (I + ∆tA)xk + ∆tB
(

η
(

mk + θ5σk
)
+ θ4Ṫk

o + θ3Tk
o

)
,

σk =
mk+1 −mk

∆t
,

(7)

where ∆t and k denote the step-length and simulation time-step respectively.

2.2. Decentralized Network Communication

Much of the proposed literature in smart grid systems, particularly TCLs, are con-
structed using a centralized framework. In such a framework, a utility service provider
determines the control action of a population of TCLs, typically by means of tracking an
aggregate reference signal. This methodology, including other centralized controllers, have
shown great performance benefits. However, there are several glaring drawbacks to a
centralized framework. Some of the more prominent challenges include its scalability,
vulnerability to cyber-attack, and inherent lack of consumer privacy. To address these chal-
lenges, a decentralized framework is introduced in this paper. A decentralized framework
relies on the autonomy of participating agent/device to calculate their own control action.
As will be demonstrated, the performance of a decentralized controller is further improved
through the localized communication between neighboring TCLs.

To address the privacy concerns of participating end-users, communication between
VSHPs is limited to what might be ascertained if one were to open their window and
listen to when a neighbor’s compressor is cycled off/on. For this reason, each VSHP can
only communicate with four other neighboring VSHPs. As a result of this communication,
a VSHP’s control action m is partially influenced by the previous control actions of its
neighbor set Np, where Np is the set of all VSHPs connected to the pth agent. The entire
population set is similarly defined as N = {1, · · · , N}, which is the set all homes in the
given population, Np ⊆ N .

Conventionally, communication is modeled via the elements of an adjacency matrix,
A ∈ {0, 1}N×N . The (i, j)th entry of A is nonzero if node i can communicate with node j.
Based on the communication constraints proposed above, a random regular graph with
a connection degree Ncd = 4, such as the one shown in Figure 2, is used to simulate a
population of VSHPs.
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Figure 2. Unweighted random regular graph (N = 50, Ncd = 4).

2.3. Demand Response

In addition to the implementation of structured communication, this study also
observes the effects of a demand-response event on the proposed controller(s) defined
Section 3. A demand-response event, also referred to as a conservation event, is a circum-
stance where power consumption is systematically controlled by the electric utility to
maintain both power generating equipment and the means of distribution within safe op-
erating conditions. Many types of demand-response events exist ranging from emergency
protocol to adaptive price control and other related ancillary services. Correspondingly,
this study implements the following demand-response event in an effort to test the gov-
erning controller with strenuous and unpredictable conditions. Over the time-span ∆tDR,
centered about the warmest outside temperature peak To,max, all VSHPs are prevented from
conditioning their associated home. This demand-response event, aside from long-term
power outages, represents a worst-case scenario regarding aggregate power consumption.
During this demand-response event indoor air temperatures will no doubt rise. Upon rein-
statement of power, all VSHPs will independently begin cooling their respective homes
resulting in a characteristically large spikes in aggregate power consumption.

To prime the readers of the challenges associated with this demand-response event,
a population of VSHP’s are simulated, whose control action, m, is governed by a typical
proportional-integral-derivative (PID) controller. This PID controller represents what
would likely be used to regulate a population of independently operated VSHP de-
vices. With the system diagram of Figure 3, in conjunction with the controller defined by
Equation (8), a sample population of VSHPs are simulated. The results of this simulation
are graphically presented as the subplots of Figure 4. As previously mentioned, a spike in
aggregate power consumption is observed. This spike in aggregate power consumption
is further reduced at the expense of a larger temperature deviation from the customers
set-point preference. The gains of the PID controller in Equation (8) are judicially selected
to balance each home’s indoor temperature and the aggregate power of the population.
This means that we performed an empirical optimization of the PID gains such that the
temperature and power response of the system is the best that we could achieve. This study
aims to find a more optimal solution which minimizes spikes in aggregate power con-
sumption while simultaneously maintaining home temperatures at or near their associated
temperature set-point, Tsp.
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Figure 3. Closed-loop controller for variable speed heat pump.

u(t) = KPe(t) + KI

∫ t

0
e(τ) dτ + KD

d
dt

e(t) (8)

As depicted in Figure 3, a control action u(t), is determined based on the closed loop
error signal e(t) prior to being constrained via the saturation limits of the maximum cooling
capacity, m ∈ [0, 1].
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Figure 4. Population of VSHPs simulated via the PID control framework of Figure 3 (N = 1000, KP = −0.4, KI = −0.001, and
KD = −0.01).

2.4. Parameter Estimation

With regard to a physical setting, the thermal parameters CA, CM, R1, and R2, which
define the ETP model, are likely to be measured with some statistical error. Given the
proposed ETP model is capable of accurately predicting the dynamics of a residential home,
these measurement errors will, by deduction, result in suboptimal controller performance.
To account for these initial measurement errors, including other errors that might arise,
a recursive least squares (RLS) algorithm is employed to systematically update the thermal
parameter vector θ ∈ R5. Using similar notation presented in [22], an RLS algorithm is
constructed by first redefining Equation (4) as,

yk = ϕ>k θ0, (9)

where the control input, yk, and regressor, ϕk, terms are respectively defined as,

yk = ηmk,

ϕ>k =
[
T̈k

A Ṫk
A (Tk

A − Tk
o ) −Ṫk

o −ησk]. (10)

Whether physically measured, or in the case of this simulation, generated about a
known statistical distribution, all elements within the parameter vector θ0 must be known
prior to running the RLS algorithm.

θ0 =
[
θ0

1 θ0
2 θ0

3 θ0
4 θ0

5
]> ∈ R5, (11)
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Before the RLS algorithm can predict thermal parameters with sufficient accuracy,
both control input and regressor terms are to be collected over the set of initial time-steps
k ∈ {1, · · · , ks} to form the following control input and regressor matrices,

Yks =

 y1
...

yks

, Φks =

ϕ>1
...

ϕ>ks

. (12)

The last time-step, ks ∈ N, is chosen such that Φ>ks
Φks is non-singular. Given the

starting value θ0 and the adequately populated control input and regressor matrices,
which are used to form the inverse covariance matrix, Pks = (Φ>ks

Φks)
−1, the RLS algorithm

has the following sequence of events,
Within Algorithm 1, λ ∈ R denotes the exponential forgetting factor. Unlike the

sustained plant dynamics of this study, the thermal properties of a residential home are
expected to change over time. The inclusion of this forgetting factor allows for long-term
adaptation to the present dynamics. It should be noted, as λ → 1 the RLS algorithm
with exponential forgetting becomes the vanilla RLS algorithm. Like many other feedback
systems, rejection of system level noise is an important step to achieve stable and robust
performance. A low-pass filter is applied, via software, to the newly estimated thermal
parameters therefore damping system level noise.

Algorithm 1 RLS with Exponential Forgetting.

1: Initialize Pks = (Φ>ks
Φks)

−1

2: while ks < k ≤ K do
3: Sk = Pk−1 ϕk(λ + ϕ>k Pk−1 ϕk)

−1

4: Pk = (I − Sk ϕ>k )Pk−1/λ

5: θk = θk−1 + Sk(yk − ϕ>k θk−1).
6: end while

3. Controller

The culmination of this research is the development of a decentralized controller,
and to a lesser extent, centralized controller for a population of VSHPs. In brief, two
frameworks are presented in Sections 3.1 and 3.2, which optimally schedule the control
actions of a population of VSHPs by means of model predictive control (MPC). As shown
in Figure 5, an MPC solves for the control action(s) mi ∀i ∈ H such that the model dynamics
are satisfied and the objective penalty is minimized. Next, the first control action mi1 :=k

is therefore sent to the VSHP device. Assuming the system’s response is observable,
the measured/predicted states are returned to the controller serving as the initial conditions
for the following iteration. This sequence is then repeated until a termination condition
is met.

Two indices are used in Sections 3.1 and 3.2 to denote time, that being k and ik. Of the
two indices, k denotes the current time-step of the simulation, while ik represents the step(s)
of the controllers predicted horizon which symbolically begins at the kth index.
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Figure 5. MPC architecture with parameter estimation.

3.1. Decentralized Controller (Dc)

In this section, a decentralized controller is developed, whose control action, m, is
partially influenced by control actions of its neighbor set Np. The controller depicted in
Figure 5 is mathematically defined as the following quadratic optimization program,

min
x, m, σ

J(k,Xo) = ∑
ik∈H

`DC

(
ik, xik , mik , σik

)
s.t. xik=1 = Xo,

mik ∈ [0, 1],

mik+1 = mik + ∆tσik ,

xik+1 = fDC

(
ik, xik , mik , σik , θk

)
,

∀ik ∈ H.

(13)

This optimization program minimizes the objective function, J(·), with respect to
the state, x, and control, m and σ, decision variables. Through the manipulation of these
decision variables, a horizon of control actions are calculated such that the model dynam-
ics, initial conditions, and saturation limits are upheld. To ensure continuity between
time-steps, an equality constraint is placed between the initial state values, xik=1, and the
measured/predicted response of the plant, Xo. Likewise, m is constrained between zero
and one, therefore preserving its associated VSHP devices within safe operating condi-
tions. Lastly, the model dynamics of Equation (7), is expressed as a set of linear equality
constraints, where the function fCD(·) is defined as,

fDC

(
ik, xik , mik , σik , θk

)
= (I + ∆tA)xik

+∆tB
(

η
(

mik + θ5σik
)
+ θ4Ṫik

o + θ3Tik
o

)
.

(14)



Energies 2021, 14, 4012 10 of 18

As shown in Equation (13), the objective function, J(·), is the summation of each
time-step’s cumulative objective penalty, `DC(·), defined as,

`DC

(
ik, xik , mik , σik

)
= α

mik −
∑j∈Np mik

j

|Np|

2

−βηmik + γT̃ik + ζ(Ṫik
A )

2 + τ(σik )2.

(15)

Each penalty term of Equation (15) is dedicated to a certain attribute of the desired
response. Based the preferences of an electric utility service provider and its end-users alike,
this controller must maintain indoor air temperatures while simultaneously minimizing
the aggregate power consumption signal and its associated volatility.

The first objective penalty term,

α

mik −
∑j∈Np mik

j

|Np|

2

(16)

provides a means for optimizer to group aggregate effects via peer-to-peer (P2P) commu-
nication. This is done so by minimizing the difference in control action, m, between the
pth agent and its neighbor set Np. In an effort to reduce aggregate power consumption,
defined by Equation (5), individual power consumption is minimized with the penalty
term −βηmik . In addition, a home’s indoor air temperature, TA, is maintained at or near its
set-point temperature, Tsp, via the soft constraint γT̃ik . As depicted in Figure 6, the double
hinge function, T̃ik , is mathematically expressed as,

T̃ik = max
(

δ− − Tik
A , 0, Tik

A − δ+
)

If the indoor air temperature, TA, deviates above δ+ or below δ−, a proportional cost
will be accrued. Similarly, the minimization of the penalty term, ζ(Ṫik

A )
2, reduces the rate at

which temperature changes in the resulting simulation. Lastly, to ensure the ramp-rate of
aggregate power consumption is maintained, the penalty term, τ(σik )2, is minimized. This
term results in a smoothing effect in aggregate power consumption.

66 68 70 72 74
Temperature [ F]

−1

0

1

2

3

4

5

m
ax

(δ
−
−
T A

,0
,T

A
−
δ

+
)

δ
−

δ
+

̃T(TA, δ + , δ − )
Dead-band Range

Figure 6. Objective soft constraint T̃ calculated using double hinge function.

Each of the five objective penalty terms are accompanied by a real numbered ob-
jective constant, that being α, β, γ, ζ, and τ. Much like knobs on a dial, these objective
constants scale their respective objective penalty term. The qualitative performance of the
controller is determined by the relative scale of each objective parameter regarding one
another. By deduction, said performance may be tuned in accordance to the attributes
described above.



Energies 2021, 14, 4012 11 of 18

3.2. Centralized Controller (Cc)

Much like the decentralized controller defined above, the preceding centralized con-
troller uses a similarly structured optimization program to determine the control actions
of a population of VSHPs. However, unlike the decentralized controller, this centralized
controller has omniscient knowledge of the states and control actions of its population.
Furthermore, during simulation, this optimization program simultaneously solves for the
control actions for an entire population set. In this formulation, the notion of network
communication is less meaningful as all information is distributed to and from the electric
utility service provider, much like a star graph. This quadratic optimization program has
the form,

min
X, M, œ

J(k,Xo) = ∑
ik∈H

`CC

(
ik, Xik , Mik , œik

)
s.t. xik=1

p = Xo,p,

mik
p ∈ [0, 1],

mik+1
p = mik

p + ∆tσik
p ,

xik+1
p = fCC

(
p, ik, xik

p , mik
p , σ

ik
p , θk

p

)
,

∀p ∈ N , ∀ik ∈ H,

(17)

where Xik = [xik
1 , . . . , xik

N ]
> and Mik = [mik

1 , . . . , mik
N ]
> are defined as the collection of all state

and control decision variables at the ith
k time-step. As may become apparent, the number

of decision variables is now directly proportional to the size of the population being
simulated. Due to this increased number of decision variables, the associated complexity
of the controller so to rises.

The dynamic model is simulated with a set of equality constraints between the incre-
mented state values and the function fCC(·). Similar to fDC(·) of Equation (14), fCC(·) is
now an expressed function of the pth home, for brevity, its redefinition is omitted. Further-
more, the objective penalty function, `CC(·), which is summed over each time-step ik, has
the form,

`CC

(
ik, Xik , Mik , œik

)
= α

∣∣∣∣∣ ∑
p∈N

(
mik+1

p + mik
p

)∣∣∣∣∣
+ ∑

p∈N

(
−βηpmik

p + γT̃ik
p + ζ(Ṫik

A,p)
2 + τ(σ

ik
p )

2
)

.
(18)

The last four objective penalty terms of Equation (18), are similar to that of Equation (15).
However, the penalty term,

α

∣∣∣∣∣ ∑
p∈N

(
mik+1

p + mik
p

)∣∣∣∣∣ (19)

is used to minimize the difference in aggregate control effort between adjacent time-step.
Observably, this penalty term smooths aggregate power consumption among VSHP devices.
Because Equations (16) and (19) focus on the grouping of control actions, they both are
scaled the objective constant α. The other objective constants β, γ, ζ, and τ scale their
associated objective penalty term.

4. Case Study

HVAC units are typically sold in half ton increments, where one ton of cooling is
defined as the amount of heat required to freeze/melt 2000 pounds of water in a 24-h period.
Prior to installing a VSHP, the discrete tonnage is chosen according to thermodynamic
properties of the space required to condition. Similar to how a residential HVAC system is
chosen, in this study a VSHP’s cooling capacity, η ≤ 0, is determined based on the time
required to cool that home’s indoor air temperature, TA, from the upper dead-band, δ+,
to the lower dead-band, δ−. To assure population heterogeneity, the thermal parameters
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CA, CM, R1, and R2 are generated about a known statistical distribution. This Gaussian
distribution is defined by the mean and standard deviation values listed in Table A1. All
other simulation parameters, including objective constants, are therefore listed in Table A2.

As previously stated, To and its derivative Ṫo represent a disturbance to the thermal
system. The proposed controllers, shown in Section 3, use a receding horizon approach
to determine control action, m, for a corresponding VSHP. This receding horizon con-
troller necessarily requires that To and Ṫo be known prior to simulation. Based on modern
metrological forecasting techniques, it is reasonable to assume this outside temperature
data are known over the current finite simulation horizon H. Conversely, in a simulated
environment, like the one presented in this paper, outside temperature data are queued
from the National Solar Radiation Database (NSRDB) in the form of a Typical Meteoro-
logical Year (TMY) [23]. This TMY dataset, among other qualitative properties, provides
hourly ambient outside temperature data. As the name suggests, this dataset represents
the most usual weather conditions for a given region and is well suited for the application
of weather prediction.

The simulation results generated via Algorithms 2 and 3 are compared using several
quantitative metrics. These performance metrics provide a key insight into the load-
shedding capability of each control framework. The first two metric, denoted Pi and Pf ,
describe the peak power drawn before and after the simulated demand response event.
Each term is expressed as a ratio between the peak power demand and the total consumable
power within the system. For clarity, the total consumable power is the amount of power
demanded, assuming all VSHPs operate at full capacity, i.e., mk

p = 1 ∀k, p ∈ K,N . The next
performance metric is a measurement of the total energy associated with the aggregate
power consumption signals observed in Figures 7b and 8b. In the context of this paper the
energy consumed is defined as,

ET =
∫ t f

ti

Paggdt. (20)

To ensure this consumed energy is intrinsically represented, it too is expressed, in
Table 1, as a ratio by dividing it with the total consumable energy within the system. As a
point of reference, the standard PID controller, shown in Figure 4, is also compared using
the three performance metrics described above.

Algorithm 2 Decentralized MPC Sequence.

Initialize P ← ∅,D ← ∅
P ← Generate θ0
D ← Set Initial Conditions
for k = 1 to K do

for p = 1 to N do
mik∈H

p ← Controller(D, P , k, p)
xk

p ← Plant(D, P , k, p, mk
p)

D ← xk
p, mik∈H

p
end for
if k ≥ 2 then
P ← Algorithm 1

end if
end for
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Algorithm 3 Centralized MPC Sequence.

Initialize P ← ∅,D ← ∅
P ← Generate θ0
D ← Set Initial Conditions
for k = 1 to K do

Mik∈H ← Controller(D, P , k, p)
Xk ← Plant(D, P , k, p, Mk)
D ← Xk, Mik∈H

if k ≥ 2 then
P ← Algorithm 1

end if
end for
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Figure 7. Decentralized framework simulated via Algorithm 2, (N = 50).
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Figure 8. Centralized framework simulated via Algorithm 3, (N = 50).

Table 1. Simulation results.

Metric (DC) (CC) (PID)

Pi 35.6% 35.3% 34.7%

Pf 30.7% 31.3% 61.2%

ET 14.25% 14.48% 14.44%

Based on the simulation results of Figures 7 and 8, in addition the quantitative metrics
listed in Table 1, both control frameworks are observed to similar performance attributes.
Unlike the PID controller defined in Section 2.3, both optimal control frameworks reduce
the load synchronization effects caused by the demand-response event. Furthermore,
Figures 7b and 8b show a smooth gradual increase in aggregate power consumption. This
reduction in Pf is partially attributed to the scheduling of control actions accomplished
via the minimization the objective penalty terms (16) and (19). For the other quantitative
metrics, Pi and ET , little change is observed between control frameworks.
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A key difference between the centralized and decentralized controllers defined in
Section 3, is the computational complexity associated with each framework. For the cen-
tralized controller, the number of decision variables within the optimization program of
Equation (17) is directly proportional to the number of homes being simulated, N. As the
number of simulated homes increases, so too increases the time required to compute the
population of control actions, assuming all auxiliary features remain constant. An advanta-
geous feature of the decentralized framework is that the computational complexity required
to solve a control action for a VSHP remains constant. This assertion is exemplified by the
simulation runtimes listed in Table 2. The proposed decentralized controller necessarily
requires that each VSHP compute its own control action.

Table 2. Resultant Simulation times.

Simulation Time (DC) (CC) (PID)

Single VSHP [s] 5.4× 10−3 - 1.8× 10−5

Population [s] - 1.9× 10−2 -

Algorithm Runtime [s] 1022 747 18

By way of Algorithm 1, elements of the thermal parameter vector, θ ∈ R5, are system-
atically updated to improve the accuracy and resilience of the predictive model. These
incremental updates provide an ETP model the wherewithal to accurately mimic the dy-
namics of its respective plant. To show convergence between the model and plant dynamics
an error signal is generated for each element of the thermal parameter vector. This error sig-
nal is defined as the difference between the plant and model parameter values, i.e., θp − θm.
Each error signal is graphically depicted by the subplots of Figures 9 and 10. Due to its
initialization process, these thermal parameters show a tendency to deviate from the plant
values during early time-steps of the simulation. We also observe that before the demand-
response event, these thermal parameters tend not to converge upon their respective plant
value. This failure to converge is partially attributed to the lack of persistence of excitation.
After the demand-response event, parameters then converge upon their desired plant value.
In a real setting, the true thermal parameters of the proposed ETP model, which defines
the plant dynamics, are likely uncharacterizable by a linear approximation. Moreover, it is
reasonable to assume the thermal characteristics of a home are capable of change by way of
renovation or degradation. For these reasons, two update condition are employed to help
determine periods of stable prediction. The first update condition is κ(Pk) ≤ c1, where
κ(·) is the condition number of Pk, as defined in Algorithm 1, and c1 is an empirically
determined constant. In Figures 9 and 10, it may be observed that the system parameters
change rapidly during the initial stages of the system response. This may be attributed to
the condition number κ(Pk) being relatively large. The second indicator used to predict
convergence is the rate at which each thermal parameter varies. Thermal parameters are
therefore updated when the condition, θ̇k ≤ c2, holds. similar to the value of c1, the value of
c2 is empirically determined. The combination of these two conditions attempts to predict
when the thermal parameters are capable of being updated. Each thermal parameter must
be initialized within an approximate region of the true parameter characteristics.

Remark 1. It is a standard result of adaptive control theory that when the inputs to a control
system do not excite sufficient modes of the system, parameter estimation does not converge to their
correct values. For a detailed exposure, the reader is invited to see Chapter 2.4 (page 63) of [22].
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Figure 9. Thermal parameters of the decentralized framework updated via Algorithm 1, (N = 50).
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Figure 10. Thermal parameters of the centralized framework updated via Algorithm 1, (N = 50).

5. Conclusions

In this paper, we develop a decentralized control framework to optimally schedule the
control actions of a population of VSHPs. Albeit contradictory, this control framework bal-
ances end-user temperature requirements with an electric utility service provider’s desire to
supply smooth predictable power. We show through minimal network communication that
our decentralized control framework performs on par with a similarly structured central-
ized controller with omniscient knowledge of the state and control actions of its population.
Based on the quantitative metrics presented in Section 4, we also show this decentralized
control framework alleviates the load aggregations experienced by more traditional PID
controllers. In an effort to improve the accuracy of our controller, we implement a recursive
least squares algorithm to adaptively update the parameters defining the second-order
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ETP model. Although failing to converge under certain simulated conditions, this RLS
algorithm proved useful in the convergence of parameters when stimulated with a demand
response event. Over longer simulated time periods, by means of persistence of excitation,
we conclude that thermal parameters will eventually approach a desired value such that
the dynamic model mimics the response of the plant. Further experimental validation is
needed to show the efficacy of our simulation. Such experiments will be the focus of future
research. Due to the approvals needed by local utilities, regulators, and participants alike,
significant planning is required to perform the necessary experiments. This research serves
as an important precursor to future experimental studies.

Author Contributions: R.S.M.: Formal analysis, Investigation, Data curation, Software, Writing—
original draft; J.F.G.: Supervision, Project administration, Investigation, Writing—review & editing;
A.C.S.: Supervision, Project administration, Investigation, Formal analysis, Software, Writing—review
& editing. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the US Department of Energy, DOE-EE0007726 and
the Center for Advanced Energy Studies at Boise State University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Gaussian distribution of thermal parameters.

Thermal Parameter Mean Std.

CA

[
Btu
◦F

]
1080 54

CM

[
Btu
◦F

]
4280 214

1
R1

[
Btu
◦F·hr

]
520 26

1
R2

[
Btu
◦F·hr

]
7050 353

Table A2. Simulation parameters of decentralized (DC) and centralized (CC) controllers.

(DC) (CC)

O
bj

ec
ti

ve
C

on
st

an
ts

α 200 300

β 10−3 10−3

γ 5000 8000

ζ 100 100

τ 1000 1500

Si
m

ul
at

io
n

Pa
ra

m
et

er
s

Homes (N) 50

Time-step (K) 4000

Horizon (H) 20

Step-length (∆t) 23.4 [s]

D.R. length 20 [min]



Energies 2021, 14, 4012 18 of 18

References
1. Hao, H.; Sanandaji, B.M.; Poolla, K.; Vincent, T.L. A generalized battery model of a collection of thermostatically controlled loads

for providing ancillary service. In Proceedings of the 2013 51st Annual Allerton Conference on Communication, Control, and
Computing (Allerton), Monticello, IL, USA, 2–4 October 2013; pp. 551–558.

2. Bacciotti, A. Stability and Control of Linear Systems; Springer: Berlin/Heidelberg, Germany, 2019.
3. Kuwada, J.; Schwartz, R.; Gardner, J.F. Local communication in populations of thermostatically controlled loads. ASME J. Eng.

Sustain. Build. Cit. 2020, 1, 030901. [CrossRef]
4. Malhame, R.; Chong, C.-Y. Electric load model synthesis by diffusion approximation of a high-order hybrid-state stochastic

system. IEEE Trans. Autom. Control 1985, 30, 854–860. [CrossRef]
5. Callaway, D.S. Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to

wind energy. Energy Convers. Manag. 2009, 50, 1389–1400. [CrossRef]
6. Zhang, W.; Lian, J.; Chang, C.-Y.; Kalsi, K. Aggregated modeling and control of air conditioning loads for demand response. IEEE

Trans. Power Syst. 2013, 28, 4655–4664. [CrossRef]
7. Koch, S.; Mathieu, J.L.; Callaway, D.S. Modeling and control of aggregated heterogeneous thermostatically controlled loads for

ancillary services. In Proceedings of the 17th Power Systems Computation Conference, PSCC, Stockholm, Sweden, 22–26 August
2011; pp. 1–7.

8. Liu, M.; Shi, Y. Model predictive control of aggregated heterogeneous second-order thermostatically controlled loads for ancillary
services. IEEE Trans. Power Syst. 2015, 31, 1963–1971. [CrossRef]

9. Zhou, Y.; Wang, C.; Wu, J.; Wang, J.; Cheng, M.; Li, G. Optimal scheduling of aggregated thermostatically controlled loads with
renewable generation in the intraday electricity market. Appl. Energy 2017, 188, 456–465. [CrossRef]

10. Chen, B.; Yao, W.; Francis, J.; Berges, M. Learning a distributed control scheme for demand flexibility in thermostatically controlled
loads. arXiv 2020, arXiv:2007.00791.

11. Ruelens, F.; Claessens, B.J.; Vandael, S.; Schutter, B.D.; Babuška, R.; Belmans, R. Residential demand response of thermostatically
controlled loads using batch reinforcement learning. IEEE Trans. Smart Grid 2016, 8, 2149–2159. [CrossRef]

12. Ruelens, F.; Claessens, B.J.; Vrancx, P.; Spiessens, F.; Deconinck, G. Direct load control of thermostatically controlled loads based
on sparse observations using deep reinforcement learning. Csee J. Power Energy Syst. 2019, 5, 423–432.

13. Kazmi, H.; Suykens, J.; Balint, A.; Driesen, J. Multi-agent reinforcement learning for modeling and control of thermostatically
controlled loads. Appl. Energy 2019, 238, 1022–1035. [CrossRef]

14. Hao, H.; Sanandaji, B.M.; Poolla, K.; Vincent, T.L. Aggregate flexibility of thermostatically controlled loads. IEEE Trans. Power
Syst. 2014, 30, 189–198. [CrossRef]

15. Chassin, D.P.; Stoustrup, J.; Agathoklis, P.; Djilali, N. A new thermostat for real-time price demand response: Cost, comfort and
energy impacts of discrete-time control without deadband. Appl. Energy 2015, 155, 816–825. [CrossRef]

16. Ruth, M.; Pratt, A.; Lunacek, M.; Mittal, S.; Wu, H.; Jones, W. Effects of Home Energy Management Systems on Distribution Utilities
and Feeders under Various Market Structures; Technol Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2015.

17. Hull, J.; Khurana, H.; Markham, T.; Staggs, K. Staying in control: Cybersecurity and the modern electric grid. IEEE Power Energy
Mag. 2011, 10, 41–48. [CrossRef]

18. Kimani, K.; Oduol, V.; Langat, K. Cyber security challenges for iot-based smart grid networks. Int. J. Crit. Infrastruct. Prot. 2019,
25, 36–49. [CrossRef]

19. Tindemans, S.H.; Trovato, V.; Strbac, G. Decentralized control of thermostatic loads for flexible demand response. IEEE Trans.
Control. Syst. Technol. 2015, 23, 1685–1700. [CrossRef]

20. Wan, Y.; Long, C.; Deng, R.; Wen, G.; Yu, X.; Huang, T. Distributed event-based control for thermostatically controlled loads
under hybrid cyber attacks. IEEE Trans. Cybern. 2020. [CrossRef] [PubMed]

21. Kuwada, J.; Mehrpouyan, H.; Gardner, J.F. Design resilience of demand response systems utilizing locally communicating
thermostatically controlled loads, In ASME International Mechanical Engineering Congress and Exposition; American Society of
Mechanical Engineers: New York, NY, USA, 2019; Volume 59438, p. V006T06A045.

22. Aström, K.J.; Wittenmark, B. Adaptive Control; Courier Corporation: Chelmsford, MA, USA, 2013.
23. Sengupta, M.; Xie, Y.; Lopez, A.; Habte, A.; Maclaurin, G.; Shelby, J. The national solar radiation data base (nsrdb). Renew. Sustain.

Energy Rev. 2018, 89, 51–60. [CrossRef]

http://doi.org/10.1115/1.4047959
http://dx.doi.org/10.1109/TAC.1985.1104071
http://dx.doi.org/10.1016/j.enconman.2008.12.012
http://dx.doi.org/10.1109/TPWRS.2013.2266121
http://dx.doi.org/10.1109/TPWRS.2015.2457428
http://dx.doi.org/10.1016/j.apenergy.2016.12.008
http://dx.doi.org/10.1109/TSG.2016.2517211
http://dx.doi.org/10.1016/j.apenergy.2019.01.140
http://dx.doi.org/10.1109/TPWRS.2014.2328865
http://dx.doi.org/10.1016/j.apenergy.2015.06.048
http://dx.doi.org/10.1109/MPE.2011.943251
http://dx.doi.org/10.1016/j.ijcip.2019.01.001
http://dx.doi.org/10.1109/TCST.2014.2381163
http://dx.doi.org/10.1109/TCYB.2020.2978274
http://www.ncbi.nlm.nih.gov/pubmed/32203050
http://dx.doi.org/10.1016/j.rser.2018.03.003

	Centralized and Decentralized Optimal Control of Variable Speed Heat Pumps
	Introduction
	Background
	Dynamics
	Decentralized Network Communication
	Demand Response
	Parameter Estimation

	Controller
	Decentralized Controller (Dc)
	Centralized Controller (Cc)

	Case Study
	Conclusions
	
	References

