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Automated Detection of Marine Glacier Calving
Fronts Using the 2-D Wavelet Transform
Modulus Maxima Segmentation Method

Julia Liu™, Ellyn M. Enderlin, Hans-Peter Marshall, and Andre Khalil

Abstract— Changes in the calving front position of marine-
terminating glaciers strongly influence the mass balance of
glaciers, ice caps, and ice sheets. At present, quantification of
frontal position change primarily relies on time-consuming and
subjective manual mapping techniques, limiting our ability to
understand changes to glacier calving fronts. Here we describe a
newly developed automated method of mapping glacier calving
fronts in satellite imagery using observations from a repre-
sentative sample of Greenland’s peripheral marine-terminating
glaciers. Our method is adapted from the 2-D wavelet transform
modulus maxima (WTMM) segmentation method, which has
been used previously for image segmentation in biomedical and
other applied science fields. The gradient-based method places
edge detection lines along regions with the greatest intensity
gradient in the image, such as the contrast between glacier ice
and water or glacier ice and sea ice. The lines corresponding
to the calving front are identified using thresholds for length,
average gradient value, and orientation that minimize the misfit
with respect to a manual validation data set. We demonstrate that
the method is capable of mapping glacier calving fronts over a
wide range of image conditions (light to intermediate cloud cover,
dim or bright, mélange presence, etc.). With these time series,
we are able to resolve subseasonal to multiyear temporal patterns
as well as regional patterns in glacier frontal position change.

Index Terms— Computational infrastructure, Cryosphere, geo-
graphic information systems (GIS), optical data.

I. INTRODUCTION

LACIER mass loss and thermal expansion are the two

largest contributors to contemporary sea level rise, which
critically impacts the coastal populations [13]. Global sea level
rise is of major concern to the coastal systems, with many
communities focusing on the infrastructure adaptations [13].
Estimates of global sea level rise will be critical to risk assess-
ment and the development of adaptation strategies. In addition,
the fresh water flux associated with glacier mass loss directly
impacts marine ecosystems and regional ocean circulation
patterns [28], [37]. Ice mass loss from Greenland’s glaciers,
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ice caps, and ice sheet contributes ~43% to the contemporary
global sea level rise [30]. The Greenland ice sheet, the largest
contributor to sea level rise in the twenty-first century [18],
was responsible for an average of ~0.47 0.23 mm - yr~! of
sea level rise over 1991-2015 [38].

Changes to the terminus position (i.e., calving front posi-
tion) of marine-terminating glaciers influence glacier mass
balance through the direct loss of mass at the calving front.
In addition, loss of mass at the glacier terminus modulates
the forces governing the glacier ice flow [10], [12]. Loss of
the resistive stress generated at the terminus can result in
acceleration and thinning of the ice, contributing further to
“dynamic” glacier mass loss [3]-[6], [12], [25], [27]. Prior
analyses of glacier terminus position change and its influence
on the dynamics and mass loss relied on manual mapping of
glacier calving fronts (see [5], [21], [27]), which is time inten-
sive and dependent on human interpretation. The accuracy of
these manual delineations may drift over time for each analyst
and may introduce biases when multiple analysts contribute to
data sets. Automated methods for delineating glacier calving
fronts are more efficient, repeatable, and objective.

Previously published automated glacier terminus detection
methods were based on image classification using various mul-
tispectral image bands (see [29], [31], [35]) and simple edge
detection methods (see [34]). The application of multispectral
band ratios for image classification, such as the normalized
difference snow index (NDSI) or normalized difference water
index (NDWI), can be applied with reasonable success to the
satellite images acquired in months of the year when the snow
cover does not extend beyond the glacier margins [31], [35].
However, the seasonal variability in snow cover directly affects
the mapped glacier area and may result in large errors in
delineation of the ice margin when applied at other times of the
year, which limits the temporal resolution of these studies [31].
Furthermore, these image classification techniques require
additional processing (e.g., thresholding and vectorization)
to identify the continuous regions or boundaries within the
image, which can introduce additional errors [32]. The use
of gradient-based edge detection algorithms mitigates this
processing step. Seale er al. [34] developed an automated
method to identify the glacier terminus positions using a sim-
ple Canny edge detector, which identified largest gradients in
image brightness along a glacier flow line. While this method
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was successfully applied to the glaciers in the study, the
method has not been adopted for other glacier terminus change
studies and does not measure positions at other locations along
the width of the glacier terminus (i.e., other than along the
glacier centerline).

In order to efficiently and objectively quantify changes in
the length of marine-terminating glaciers in a more robust
manner, we adapt an automated image segmentation tech-
nique used previously in a wide variety of applied science
fields called the 2-D wavelet transform modulus maxima
(WTMM) segmentation method [17]. This edge detection
method calculates 2-D gradients in the image brightness and
is applied at a variety of spatial scales. The 2-D WTMM
segmentation method places 1-pixel thick lines representing
contours in intensity change for each spatial scale of analysis.
We apply the method to analyze panchromatic Landsat satellite
images, chosen for their high image acquisition frequency and
radiometric resolutions, of marine-terminating glaciers. This
gradient-based and multiscale automated delineation method
allows for the detailed analysis of glacier terminus position
changes at hundreds to thousands of time points. With the
delineations from this method, we generate time series of ter-
minus positions for several glaciers peripheral to the Greenland
Ice Sheet. The glaciers along Greenland’s periphery are one
of the largest contributors to global glacier ice loss [36], yet
their contributions to sea level rise through terminus position
and associated dynamic changes have not yet been quantified.

II. METHODOLOGY

In order to efficiently analyze hundreds of images for
each marine-terminating glacier, we developed an automated
image processing technique to map the calving front positions.
Images were analyzed over the Landsat 8 record (2013-2020)
available from the US Geological Survey (USGS) on the Ama-
zon Web Services (AWS) cloud. Ten glaciers were chosen to
represent the distribution in size, morphology, fjord geometry,
and sea ice conditions at the terminus for the 641 marine-
terminating glaciers that are peripheral to the Greenland ice
sheet (Fig. 1). The peripheral marine-terminating glaciers were
identified based on their Randolph Glacier Inventory (RGI)
classifications. Although we focus on Greenland, these con-
ditions are broadly representative of conditions across Arctic
glaciers and glaciers along the Antarctic Peninsula.

Aside from the Landsat images, the only inputs required
for our automated workflow are (1) a bounding box for
the glacier terminus; (2) the Landsat scene boundaries avail-
able through the USGS; and (3) an ice velocity map. The
glacier bounding boxes (i.e., terminus boxes) were manually
drawn to span the narrowest portion of the glacier termi-
nus, in line with the traditional box method for mapping
termini [12], [20], [27]. The lengths of the boxes encompass
the glaciers’ recent terminus positions and extend several
kilometers inland in order to account for potential retreat.
The Landsat scene boundaries file was downloaded from
the USGS (https://www.usgs.gov/media/files/Landsat-wrs-2-
scene-boundaries-kml-file). For ice velocities, we used the
MEaSUREs 1995-2015 Greenland Ice Sheet Velocity Mosaic
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Fig. 1. RGI polygons of the 641 marine-terminating glaciers around
Greenland’s periphery. Locations of the ten sample glaciers identified for
method development are indicated in black and labeled with their RGI IDs.

available at 250-m pixel resolution [14], [15]. The use of a
time-averaged velocity data set was preferred over velocities
derived from a single-year or less to minimize the effects
of random errors and data gaps on our processing pipeline,
particularly in regions of slow-flowing ice.

Fig. 2 summarizes the steps used to process these down-
loaded satellite image subsets. The Landsat images available
through AWS are Collection 1 Level-1 Precision and Terrain
Correction (L1TP) and Systematic Terrain Correction (L1GT)
data products from the Landsat 8 Operational Land Imager
(OLI)/Thermal Infrared Sensor (TIRS).

To reduce the computational effort, the Landsat images are
subset using buffered terminus boxes. The use of the buffer
ensures that the automated delineations are not influenced
by edge effects from the 2-D WTMM analysis. The buffer
size corresponds to the maximum dimension (either length
or width) of the terminus box. The subset 15-m resolution
panchromatic Landsat images that fully overlap each terminus
box, excluding images with >20% cloud cover in the terminus
box, are automatically downloaded from AWS [Fig. 2(a)]. The
cloud confidence classification provided in the Landsat Quality



LIU et al.: AUTOMATED DETECTION OF MARINE GLACIER CALVING FRONTS USING THE 2-D WTMM SEGMENTATION METHOD

Fig. 2. Image processing steps shown for a Landsat 8 image acquired
on August 25, 2018, of peripheral glacier RGIS0-05.08054 (76.8639° N,
67.5921° W). (a) Download subset Landsat 8 panchromatic image using a
buffer around the terminus box (white). (b) Calculate average glacier flow
direction (white arrow) using a velocity map. (c) Rotate image so that
flow direction is due right. (d) Generate maxima chains along regions of
the greatest intensity gradients using the 2-D WTMM. (e) Examine chains
within terminus box extent only (chain’s brightness corresponds to gradient
value). (f) Eliminate other chains based on length, average gradient value,
and orientation. (g) Final terminus delineation. Steps (d)—(g) performed at 50
spatial scales (7-209 pixels).

Assessment (QA) band is automatically used to determine the
fraction of pixels within the terminus box that correspond to
high cloud confidence. If greater than 20% of the pixels are
high cloud confidence pixels, the image is not downloaded.
For each terminus box [Fig. 2(a)], we calculate each glacier’s
average flow direction [Fig. 2(b)] weighted by flow speed.
These weighted average flow directions are calculated using
the velocity values from the ice velocity raster cropped to
the glaciers’ RGI outlines. The glaciers’ weighted average
flow directions are then used to rotate the images so that ice
flow is primarily to the right [Fig. 2(c)], as done in [34].
This rotation establishes a common frame of reference for
examining terminus changes in which increased distance from
the left margin of the box corresponds to terminus advance
and decreased distance corresponds with retreat.

The rotated image subsets are then analyzed using the
2-D WTMM segmentation method described in detail in
Section II-A. Briefly, the WTMM method identifies points in
the image that represent the maximum intensity gradients at
the size scale of analysis. These points, named maxima points,
are connected in lines called maxima chains that correspond
to the regions with greatest intensity gradients throughout
the image [Fig. 2(d)]. The maxima chains are generated
across 50 size scales (~100 m-3 km) and then the chain
properties (connected or open, length, average gradient value,
and orientation) are used to eliminate chains that do not cor-
respond to the glacier terminus [Fig. 2(e)]. From the remain-
ing lines, we choose the most likely terminus delineation
[Fig. 2(f) and (g)]. Section II-A describes this method in fur-
ther detail, Section II-B describes the filtering of the maxima
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chains, and Section II-C describes the construction of terminus
position time series.

A. Adaptation of 2-D WTMM Segmentation Method

The satellite images over the glaciers are analyzed using
the 2-D WTMM segmentation method developed to per-
form automatic image segmentation for a variety of images
across scientific fields including biomedicine, solar physics,
astrobiology, etc. [2], [9], [16], [17], [22], [23], [33]. The
2-D WTMM segmentation method is a multiscale, gradient-
based method that identifies contours representing the locally
maximal changes in the intensity of an image. This is
achieved by using the first-order (Gaussian) derivative of the
2-D smoothing function [17]

- |x|?
$(x)=exp| ——- (1)

where x represents the point (x|, x;) in the image and |x| =
(x? + x3)!/2. The continuous wavelet transform of the image
f is calculated with respect to the partial derivatives of the
smoothing function ¢ with respect to x; and x;

0 (x) o _ 09p(x)
and y,(x) =
0x] 0x2
which amounts to taking the gradient of the convolution of the

image with ¢

T,[f1(b,a) = (T,,,T,,) = V(g * f) 3)

pi(x) = )

where * represents convolution, b represents the parameter of
position, a represents a scale parameter, and T, T, are the
two components of the wavelet transform

1 ~ (x=b\ _
Talf1= - / @i (20 r

and
1 o (x=b\ _
T = - / @iy (0 . @

The wavelet transform (7)) is a gradient vector which
has a magnitude (i.e., wavelet transform modulus, M)
corresponding to the gradient in intensity and a direction
(i.e., argument, A,,) that points to the highest intensity regions,
which are expressed in polar coordinates as

My L) =\ (Tl f P+ Tyl fP)

and

Ayl f1=Arg(T, [f1+iT,,[f]). 5)

Maxima points represent the regions in the image where the
intensity gradients (i.e., moduli) are maximal. WTMM are
automatically connected along the maxima chains that act
as the edge detection lines for the change in the intensity
[Fig. 3(d)]. The algorithmic procedure leading to the cal-
culation of these one-pixel thick maxima chains is outlined
in [23, Appendix]. These maxima chains are generated at
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Fig. 3.
(76.8639° N, 67.5921° W). (b) Wavelet transform calculates derivative of a 2-D Gaussian smoothing function and produces gradient vectors throughout the
image. (c) Gradient vectors (arrows) and maxima points (dark gray) corresponding to maximal brightness gradients throughout the image at one size scale of
analysis. (d) Final brightness gradient contours (i.e., maxima chains) shown over smoothed image.
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Fig. 4. 3-D skeleton plot showing maxima chains generated from 2-D
WTMM analysis of the underlying cloudy image of a glacier terminus at
50 spatial scales, with scale parameter a on the vertical axis. Panels show
maxima chains at scales O and 12. Chains capture more detail at smaller
scales while smaller scale features, such as noise, are smoothed at larger
scales.

50 spatial scales (a =0, 1, 2, 3, ..., 49) that range from the
minimum scale required to resolve the wavelet, 7%20/10 — 7
pixels, to 7°2%/19 = 209 pixels, corresponding to a range
of 105-3135 m in the 15-m resolution Landsat 8 panchromatic
images. For the best results, glaciers wider than 105 m should
be analyzed with this method.

In the satellite images of the glaciers, the 2-D WTMM
calculates intensity gradients using the raw digital number in
the pixels and generates maxima chains along the regions with
high-intensity contrasts, such as the contrast between glacier
ice and sea ice, open water, and land. The multiscale analysis
allows for delineation of small-scale and large-scale features
(Fig. 4) that allow the algorithm to adaptively delineate
glacier termini of variable sizes, geometries, and environ-
mental conditions without a priori knowledge of the image
conditions [17].

B. Maxima Chain Filtering

Once all the maxima chains outside of the terminus box
are removed, we objectively select the final maxima chain
corresponding to the glacier terminus using the maxima
chains’ attributes. The properties for each chain include shape

2-D WTMM segmentation method on a (a) panchromatic Landsat 8 image acquired on September 14, 2013, of peripheral glacier RGI50-05.08054

(closed or open), length (L), average modulus value of all
maxima points (m), and arguments of the maxima points,
which represent the chain’s orientation. The closed loops are
eliminated immediately, since the glacier termini are open
linear features in the terminus box. The remaining attributes
are extracted at each scale and objective thresholds are applied
sequentially to filter the maxima chains. Generally, the maxima
chain delineating the glacier terminus will have a high average
modulus value (i.e., large-intensity contrast) and will be longer
than most other chains, especially those corresponding to noise
but also including features such as crevasses. Orientation is
also used to filter the maxima chains because the glacier
terminus should be primarily oriented vertically in the rotated
reference frame, such that maxima points will mostly have
arguments pointing left or right. The threshold for argument
is applied to the fraction of arguments that make up each chain
and the threshold for length is normalized by the maximum
chain length determined for the image, so that the same
thresholds can be applied to wide or narrow glaciers. Similarly,
the threshold for average modulus value is normalized by the
maximum average modulus value determined for the image,
so that the same threshold can be applied to images with high-
or low-intensity contrasts.

In order to objectively determine the filtering sequence
and thresholds used for filtering, we constructed a data set
consisting of 512 manual terminus delineations for 5 of the
10 sample glaciers chosen for their diverse morphologies (see
Fig. 1 for additional information). For threshold optimization,
we randomly allocate 90% of the manual delineations to a
training data set and the remaining 10% to a test data set for
cross validation. We perform the cross validation four times
and report the average errors from the four iterations. Using
the training data set, we constrain the length, modulus, and
argument thresholds (Cr, Cy, and Ca, respectively) using
an optimization technique that minimizes a cost function
(®) that represents the misfit between the automated delin-
eations and the manual delineations. The misfit for each
image (i.e., timepoint) of analysis is the average difference
between the automatically and manually delineated terminus
positions along three glacier flow lines at one-quarter, one-
half, and three-quarters of the width of the glacier terminus



LIU et al.: AUTOMATED DETECTION OF MARINE GLACIER CALVING FRONTS USING THE 2-D WTMM SEGMENTATION METHOD

box [Fig. 5(a)] expressed as the variable Xgif

3 . .
Zi=1 |Xaulo_Xmanua1 |
3

Xaifr = (6)
where |Xuuo — Xmanual represents the Euclidean distance
between the automatically and manually delineated terminus
positions for a given flow line. These flow lines are extrap-
olated from the quarter points of the left and right sides of
the glacier terminus boxes, which are determined from the
box vertices using several midpoint calculations [Fig. 5(a)].
The use of three flow lines at varying distances across the
glacier’s width allows the method to extract terminus positions
from delineations that do not span the entire width of the
terminus. In addition, patterns in terminus position change are
likely to vary closer to the fjord walls versus the middle of
the glacier width as the terminus position tends to be more
stable along the margins [12]. This strategy could be expanded
by calculating the terminus positions along the additional
flow lines. Calculating terminus position along three flow
lines allows our method to resolve the variability in terminus
position change along distinct longitudinal profiles, which is
useful for analysis of differences in terminus dynamics due to
glacier geometry, velocities, and other factors that vary along
the glacier width. In contrast, the box method would evaluate
terminus change in terms of a single area-averaged change
value [20], [24], [27].

The misfit for each image Xgi is averaged for a total of
N = 460 images in the training data set and divided by F3,
where F is defined as the ratio of the number of intersections
with the glacier flow lines (i.e., terminus positions calculated)
to the total possible number of intersections (3N), in the final
cost function

Z,N:o Xaitt

G‘)(C‘L, Cm)CA) = F3N

(N

The filtering sequence using the thresholds Cp, Cr, and
Cx affects the automated delineations of terminus position
and thus the misfit. To identify the optimal sequence, we cal-
culated the cost ® using a range of 0O—1 for each of these
normalized thresholds, for each combination of filtering order.
The sequence that yielded the lowest median cost value was
chosen as the optimal order for filtering: average modulus
value, length, and then argument. Using this optimal filtering
sequence, we computed the costs for combinations of the
thresholds Cp,, Cr, and Cx. For Cy,, the cost was minimal
at C, = 0.7 for all combinations of C and Cx. Therefore,
we set Cp, to 0.7 and computed costs for a grid of C and
Cpvalues. With C,, set to 0.7, cost value was minimal for
Cx = 0.1 and Cp, = 0.4 (Fig. 6).

The WTMM chains that do not satisfy the thresholds set
above are eliminated. Chains that do not correspond to the
glacier terminus (e.g., delineations of long, high-contrast,
and vertical features such as shadow boundaries and sea ice
margins) may still remain but may be removed when the
time series is filtered (see Section II-C). These remaining
chains across the 50 scales of analysis are aggregated and
the five chains that are most likely to delineate the terminus
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Fig. 5. (a) Three flow lines pulled from points one-quarter, one-half, and

three-quarters of the way across the width of the glacier’s terminus box (faint
yellow). Terminus position is measured along each flow line as the distance
between the intersection of the delineation with the flow line (black Xs) and
the point on the left side of the box (squares). Landsat 8 image of periph-
eral glacier RGI50-05.03806 (60.9779° N, 43.3386° W) was acquired on
June 16, 2019. (b) Time series of terminus position along the three flow lines
over the Landsat 8 record. Slight differences in terminus position change
between flow lines are resolved.

are identified based on the metric
m
Lx2 ®)
where m is the average modulus value and L is the length,
as defined earlier. Average modulus values of the maxima
chains increase with scale (2¢) of WTMM analysis [2] so the
average modulus value is normalized by the scale. The length
of the chain and the scale normalized average modulus value
in (8) will both be large for a delineation of the terminus.
We choose up to five chains from each image with the highest
metric values. If fewer than five chains remain after the
thresholding, then all the remaining chains will be identified
as the top chains, which will be allowed to pass on to the time
series filtering.

C. Constructing Terminus Position Time Series

Using the procedures described above, there are up to five
maxima chains that delineate the terminus position in each
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CL

Fig. 6. Contour plot of the cost as a function of length and argument
thresholds, C1, and Ca, respectively. Cp, is set as 0.7. The white contour is
the contour boundary separating the lowest cost interval, located at C;, = 0.4
and Cp = 0.1.

available satellite image. For each maxima chain, we extract
the points of intersection with the three glacier flow lines.
These points are then filtered iteratively using terminus change
rates calculated as a forward difference using the terminus
position of the current time point and the subsequent time
point. If the rate of terminus advance calculated from the
delineation is three times greater than the maximum glacier
speed, this delineation is considered inaccurate and the point
is eliminated. Although the glacier terminus cannot advance
faster than the rate at which the ice is flowing, we use
a conservative threshold of three times the maximum flow
speed within the glacier terminus box in order to account for
temporal variations in glacier velocities. The same threshold
is applied to points that yield a high rate of terminus retreat
if followed by the rate of advance that violates the flow
speed condition. The filtering is repeated three times; and at
each time, the terminus change rates between time points are
recalculated. If multiple terminus position points remain for
one time point, the point associated with the highest metric
value defined in (8) is chosen to represent the terminus position
at that time point. Terminus positions along each flow line are
filtered separately.

The resulting filtered time series are dense, showing changes
in terminus position at subseasonal timescales (Fig. 7).
The time series shown in Fig. 7 allow for observation of sea-
sonal glacier retreat from ~April through ~October, which is
the typical timing of retreat for glaciers in Greenland [11], [26]
as well as the overall trend in retreat from 2013 to 2020.

III. EVALUATION OF THE METHOD’S PERFORMANCE

We evaluate our automated method’s accuracy in compari-
son to the data set of manual delineations, with consideration
of the various environmental and image conditions shown
in Fig. 8 (clear, bright and dim lighting, thin cloud presence,
sea ice presence, shadow presence, etc.). We compare the
automated-manual differences to manual-manual differences
in delineation. The manual-manual differences in terminus
positions were determined experimentally from two human
analysts delineating the same n = 50 images over the five
sample glaciers (see Section II-B), including images with each
of the conditions listed above. Experiments yielded a standard
deviation in the manual delineation of +31.0 m or ~2 pixels.
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Fig. 7. Time series of terminus position along the center flow line for four
of the sample glaciers from automated analysis over the Landsat 8 record
(2013-2020). RGI ID and center latitude and longitude for four glaciers
shown. (a) RGI50-05.08015 (77.1825° N, 69.9648° W). (b) RGI50-05.08054
(76.8639° N, 67.5921° W). (c) RGI50-05.03806 (60.9779° N, 43.3386° W).
(d) RGI50-05.05257 (61.6578° N, 42.7686° W).

TABLE I

MEDIAN MISFIT VALUES (Xgiff) £ ONE MEDIAN OF ABSOLUTE
DIFFERENCE (MAD) BY IMAGE CONDITION FOR THE
CROSS-VALIDATION DATA SET (N = 51) AND THE FULL
DATA SET (N = 512). MISFITS ARE AVERAGED
FROM FOUR ITERATIONS OF CROSS-VALIDATION

Xaygr (m)
CL 149+ 7.8 (n=19) 145+ 10.3 (n=217)
BD 11.3£9.8(n=06) 10.9+ 9.8 (n =28)
TC 3.5+ 1.9 (n=4) 17.2+ 163 (n = 30)
ST 725+ 612 (n=18) 75.9 + 34.0 (n = 206)
SH 93.9+71.2(n=4) 259+ 152 (n=31)

* Image condition: CL=clear (no cloud cover or sea ice, typical lighting
conditions, snow may be present), BD = uniformly bright or dim lighting, TC
= thin clouds present, SI = sea ice present, and SH = shadows.

The accuracy of the automated method on an image-
by-image basis, referred to from now onward as the point
uncertainty, was calculated using the misfit (Xgr). Table I
shows the median misfits between the automated and man-
ual delineations by image condition for 10% (51 out of
the 512—see Section II-B) of manual delineations excluded
from the threshold optimization as well as the full manual
data set. The cross-validation values in Table I are averaged
from four iterations, with different training and testing data
sets each time.

Based on these results, the automated method is capable
of delineating terminus positions at an accuracy similar to
that of manual uncertainties in images that are clear, uniform
in brightness (either dim or bright), or contain thin cloud
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Fig. 8. Examples of automated delineations from a variety of peripheral glaciers and image conditions. Delineations are likely to be accurate for the following
image conditions: (a) Clear image with high-intensity contrast between glacier ice and darker ocean water. (b) Dim image. (d) Bright image. (e) Image with
thin cloud cover present. The following conditions present challenges to delineation: (c) partial shadow near calving front and (f) thick cloud cover present.
Automated delineation yields mixed results for (g) images with sea ice in front of the terminus. (a) and (b) are Landsat 8 images over peripheral glacier
RGI50-05.00460 (65.9493° N, 51.3711° W), (c) is of glacier RGI50-05.08041 (76.9672° N, 68.7804° W), (d)—(f) are of RGI50-05.05257 (61.6578° N,

42.7686° W), and (g) is of glacier RGI50-05.07192 (64.0291° N, 41.0122° W).

cover (Table I). For clear images, where there is high contrast
between the glacier ice and open water [e.g., Fig. 8(a)],
the automated method effectively delineates terminus positions
within 1-pixel uncertainty from the manual delineations. Due
to the method’s gradient-based algorithm, it also effectively
delineates glacier terminus positions in images that are uni-
formly bright or dim [Fig. 8(b) and (d)] and where thin
clouds are present [Fig. 8(e)], with better than 1-pixel uncer-
tainty. The median misfit for these three image conditions
was 12.5 £ 7.5 m or <1 pixel. The automated method’s
point uncertainty for these image conditions is within the
interanalyst uncertainty in delineation of ~2 pixels.

Images where the fjord walls cast shadows across the
glacier terminus, producing a higher intensity gradient than

the gradient along the terminus, delineations are often along
the shadow boundary [Fig. 8(c)]. In addition, the method may
delineate the shadow cast from the ice cliff at the calving front
onto the sea ice. For the latter condition, the distance between
the glacier terminus and the delineated shadow from the ice
cliff will be greater when the incident angle of the sunlight is
greater and will depend on the glacier’s aspect. North-facing
glaciers are particularly susceptible to these inaccuracies. If the
ice cliff shadow is delineated using the automated method,
then the movement of the shadow with the gradual change in
sun angle over time may result in a false decrease in terminus
position prior to the start of the actual glacier retreat in April,
as seen in the time series shown in Fig. 7(a). It may be
possible to correct for the shadow offset using the time of
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acquisition of the image, the viewing angle of the satellite,
and precise knowledge of the surrounding terrain; but we
do not explore these more complex methods here. Terminus
positions delineated during low sun angle months at high
latitudes should be interpreted with caution, but the automated
delineations are robust for delineations in less challenging
lighting conditions.

Sea ice breakup can complicate the delineation of the
terminus boundary. The automated method can delineate the
terminus boundary when there is sea ice that is cohesive and
extends out of the terminus box [Fig. 8(g)]. However, sea ice
breakup within the terminus box can present a challenge to
delineation, since the high contrast between the bright sea
ice and open water is often higher than the contrast between
glacier ice and sea ice. For glaciers where gradual seasonal sea
ice or mélange breakup is prominent, the automated method
may delineate boundaries that are further out than the glacier
terminus. Due to our selection of top five maxima chains and
our time series filtering using glacier velocities, these false
advances are often filtered out. The standard glacier velocity
threshold of three times the maximum flow speed could be
made stricter (e.g., 1 or 2 times the maximum flow speed)
for more stringent time series filtering. However, lowering
the glacier velocity threshold results in a tradeoff between
the improvement in time series for these glaciers and a loss
of temporal resolution for glaciers with large uncertainties in
velocity, which are overfiltered as a result. In the absence of
accurate, high spatial resolution time series of ice velocity,
we recommend using the large standard threshold of three
times the maximum flow speed and performing additional time
series filtering outside the algorithm.

Snow cover is another seasonal condition that may influ-
ence the method performance. Snow covering the boundary
between glacier ice and sea ice may greatly reduce the
intensity contrast across the terminus boundary. In addition,
spatial variability in snow covering the glacier ice Fig. 5(a)
may create intensity gradients within the glacier margins that
are greater than the gradients across the terminus boundary.
Delineation of nonglacial snow margins will likely be similar
to those corresponding to noisy features (shorter in length and
variable in orientation) which would be filtered out during
the thresholding process. In cases where the method does
not accurately resolve the terminus boundary, the calculated
terminus positions may also be filtered out through the time
series filtering steps discussed in Section II-C.

As the glaciers retreat and advance, the movement of the
glacier terminus outside the terminus box and to new positions
along the fjords with variable orientations is possible. The
glacier terminus boxes were drawn to encompass the glaciers’
terminus positions in 2000 and 2015, accounting for the
retreat along the fjords. Therefore, few adjustments to the box
length or orientation were necessary for our analysis over the
Landsat 8 record from 2013 to 2020. However, outside the
2000-2015 time period, the terminus may retreat or advance to
a position in the fjord outside of the box and potentially exhibit
a different orientation. In these cases, the terminus boxes will
require adjustment, which can be implemented automatically
using ice velocity vectors to determine glacier orientations
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along the fjord as well as a window in which the terminus
position movement is possible.

Despite the number of temporal variations and environ-
mental conditions that may challenge the method’s ability
to delineate glacier front positions, our method is able to
produce dense time series of frontal positions. These time
series resolve glacier length changes at subseasonal timescales
and at numerous locations across the glacier width, which will
allow for the detailed analysis of the length and the terminus
geometry change in conjunction with the time series of glacier
dynamics

IV. CONCLUSION

The use of the adapted 2-D WTMM segmentation method
for delineation of glacier calving fronts is promising. This
automated method is capable of delineating marine glacier
calving fronts within 1-pixel uncertainty in images with clear
conditions, dim or bright lighting conditions, and thin cloud
presence. Images where there are shadows cast by the fjord
walls across the glacier terminus and where there are shadows
from the ice cliff at the calving front remain challenging
to delineate using this method. However, knowing that two
humans do not produce identical delineation lines, our experi-
ments show that the automated method has an uncertainty that
is within the interhuman variability. This automated method
can be applied to accurately and efficiently resolve subseasonal
to multiyear patterns in the glacier terminus position change
in a variety of image conditions.

The resulting time series of glacier terminus position gen-
erated from this method can be used to assess glacier calving
front shape changes as well as spatiotemporal patterns in
glacier length change. We have shown that the time series are
able to capture a range of glacier behavior including gradual
advances and retreats, calving, and changes in terminus shape.
Immediate future work will focus on extending the workflow
to include images from earlier Landsat missions such as
Landsat 7 and Landsat 5. Future work should explore its
application to other image types (satellite radar images and
other optical images such as Sentinel-2, etc.), in other regions,
and for delineations of other features such as coastlines or
closed features such as icebergs and lakes. Adaptation of the
method to analyze satellite radar images could be particularly
useful for increasing the temporal resolution of these terminus
position time series, as radar images are not hindered by cloud
presence or darkness in polar night. The code used for all
image analyses discussed is available in a GitHub repository
(https://github.com/julialiu18/automated-glacier-terminus).
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