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Abstract
Hydraulicproperties of soils could play an important role in affecting the partitioning

of precipitation in the critical zone. In addition to traditional approaches, in the last

two decades, many geophysical methods have been used to aid the hydrologic charac-

terization and measurement of geological materials. In particular, the self-potential

(SP) method shows great potential in these hydrogeophysical applications. The objec-

tive of this study is to evaluate whether the addition of SP data can improve the

estimation of hydraulic properties of soils in an outflow experiment. A stochastic,

coupled hydrogeophysical inversion was developed, in which the governing equa-

tions were solved using the finite volume method and the parameter estimation was

conducted using a Bayesian approach associated with the Markov chain Monte Carlo

technique. The results show that the addition of SP data in the inversion could reduce

the uncertainty related to the estimated hydraulic parameters of soils and the length of

the associated 95% confidence interval can be shortened by ∼1/3. It is also shown that

the electrical properties of soils at saturated and unsaturated conditions may also be

estimated from the outflow experiment when SP data are available. Compared with

hydraulic parameters, the accuracy of the estimated electrical properties is slightly

lower. Among them, the saturated streaming potential coupling coefficient Csat has

the highest accuracy and lowest uncertainty since Csat directly influences the magni-

tude of SP signals. The accuracy of other electrical parameters is lower than that of

Csat (and hydraulic parameters), and the associated uncertainty can be one order of

magnitude larger.

1 INTRODUCTION

The spatial variability of hydraulic properties in the subsur-
face could significantly affect the partitioning of precipita-
tion in the critical zone (Takagi & Lin, 2011), an open sys-
tem extending from the top of the canopy to the base of active

Abbreviations: AM, adaptive Metropolis; MCMC, Markov chain Monte
Carlo; SP, self-potential.
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groundwater (Giardino & Houser, 2015), thus influencing the
amount, routing, and residence time of groundwater (Brooks
et al., 2015). Many experimental methods have been proven
effective in characterizing the hydraulic properties of earth
materials in the critical zone, including field sampling and
then testing in the laboratory (Wieting et al., 2017), field
hydraulic tests (Libohova et al., 2018; Zhang et al., 2020),
and geophysical tests (Holbrook et al., 2014). As an important
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portion of the critical zone, the vadose zone plays a paramount
role in affecting the water chemistry and dynamics in the
critical zone (Jin et al., 2011). In particular, hydraulic prop-
erties of the vadose zone such as soil water retention curve
and unsaturated hydraulic conductivity regulate the amount
of water stored in the soil and drained into fractured bedrock
and streams (Hammond et al., 2019) and thus could be the
dominating parameters influencing the hydraulic partition-
ing in the critical zones in, for example, mountainous west-
ern United States. In addition to critical zone hydrology, the
hydraulic properties of unsaturated soils are also important in
other disciplines such as agriculture engineering (Kirkham,
2014), geotechnical engineering (Lu, 2020), and environmen-
tal sciences (Leme & Miguel, 2018).

In general, hydraulic properties of unsaturated soils can be
either estimated with pedotransfer functions (Wösten et al.,
2001) or measured with laboratory or field hydraulic tests
(Tarantino et al., 2009). Pedotransfer functions, which are
usually developed based on statistical regression analysis or
theoretical modeling, predict soil hydraulic properties from
some easy-to-measure properties usually available from soil
surveys (Aimrun & Amin, 2009; Bouma, 1989; Jaiswal et al.,
2013; Patil & Singh, 2016). Despite their simplicity, pedo-
transfer functions may not perform well when the chemical
composition, texture, and/or fabric of the soil exceed the cal-
ibration range (Patil & Singh, 2016). In the laboratory, the
unsaturated soil properties can be accurately measured with
some steady-state hydraulic experiments such as the constant
flow method proposed in Lu et al. (2006). However, this type
of test is usually time consuming, especially for fine mate-
rials with low hydraulic conductivity (Moebius et al., 2007;
Šimůnek et al., 1998). In contrast, a transient flow test could
produce large amounts of hydraulic data (e.g., pore water pres-
sure and flow rate) within a short time period (Gribb, 1996;
Wayllace & Lu, 2012). Unsaturated hydraulic properties of the
sample can be estimated from these transient data by either
analytical calculations (Li et al., 2009) or inversion. In such
an inversion, the difference between the measured and sim-
ulated transient hydraulic responses is minimized (Latorre
et al., 2015; Šimůnek et al., 1998) to recover the soil hydraulic
properties. This inversion-based parameter estimation can
be either deterministic (Šimůnek & van Genuchten, 1997)
or stochastic (Thoma et al., 2014). Compared with steady-
state tests, transient tests reduce the measurement time sig-
nificantly, and thus they have been increasingly adopted in
practice to determine the unsaturated hydraulic properties of
various soils (Bahrami & Aghamir, 2020; Elliott & Price,
2020).

Recently, geophysical measurements have been used to aid
the estimation of hydraulic properties and to monitor vari-
ous hydrological processes in the subsurface (Binley et al.,
2015). These hydrogeophysical applications are based on the
observed correlations between hydrological and geophysi-

Core Ideas
∙ Self-potential data can reduce the uncertainty of

hydraulic parameter estimation.
∙ Soil electrical properties can be estimated from

transient hydraulic and SP data.
∙ Stochastic coupled inversion is suitable for hydro-

geophysical parameter estimation.

cal properties of porous media (Lesmes & Friedman, 2005),
such as water content and dielectric constant (Topp et al.,
1980), hydraulic conductivity and resistivity (Purvance &
Andricevic, 2000), and hydraulic conductivity and imaginary
conductivity (Weller et al., 2015). One of the most promi-
nent geophysical methods in hydrological applications is the
self-potential (SP) method, which measures the natural occur-
rence of electric fields on the ground surface (Allègre et al.,
2010; Mboh et al., 2012). The dominant contribution to the
SP signals in hydrological settings is the so-called stream-
ing potential, which is generated by water flow in geologi-
cal materials with charged mineral surfaces (Sill, 1983; Revil
et al., 2002). In general, the measured streaming potential
is influenced by the water flow rate, surface charge density,
and effective electrical conductivity of the material. Due to
the direct coupling between water flow and streaming poten-
tial, the SP method has been used in groundwater hydrol-
ogy (Revil & Jardani, 2013), for example, to estimate the
hydraulic conductivity and geometry of an aquifer (Darnet
et al., 2003), to locate flow pathways and estimate the seepage
velocity in dams and embankments (Bolève et al., 2009), and
to monitor transpiration-induced water flows (Voytek et al.,
2019) and rainwater infiltration processes (Doussan et al.,
2002; Hu et al., 2020; Jougnot et al., 2015) in the vadose
zone.

At saturated conditions, the streaming potential of porous
media has been extensively studied (Ishido, 1989), and theo-
retical models are available to describe or predict the stream-
ing potential coupling coefficient (Hunter et al., 2013), a
parameter quantifying the streaming potential generated in
a material under a given pressure gradient. For unsatu-
rated porous media, many models have also been devel-
oped to describe the coupling coefficient; these unsaturated
models are developed either by modifying the Helmholtz–
Smoluchowski equation (Darnet & Marquis, 2004; Guichet
et al., 2003; Perrier & Morat, 2000; Thanh et al., 2020) or
by upscaling the effective excess charge defined at the pore
scale (Jougnot et al., 2020; Revil et al., 2007). The upscal-
ing of the effective excess charge can be done by the volume
averaging approach (Linde et al., 2007) and flux averaging
approach (Jougnot et al., 2012; Soldi et al., 2019). It should
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be noted that existing unsaturated coupling coefficient mod-
els may work for one type of soils but fail for a different soil
type. For instance, the model developed in Linde et al. (2007)
has been successfully applied to sand (Jougnot & Linde, 2013;
Mboh et al., 2012), but it fails to describe the SP responses of
other soils (Jougnot et al., 2012, 2020; Zhang et al., 2017).

Recently, the SP method has been used in the laboratory to
monitor the transient water flow in soil column tests (Allègre
et al., 2014; Jougnot & Linde, 2013; Linde et al., 2007; Mboh
et al., 2012). Due to the advent of coupled hydrogeophysi-
cal inversion schemes (Hinnell et al., 2010), it becomes pos-
sible to recover the unsaturated hydraulic properties of soils
from both hydraulic and SP data (Mboh et al., 2012; Younes
et al., 2018). There are two potential yet unproven benefits of
incorporating SP measurement in a transient outflow exper-
iment. First, SP signals induced by water flow could help
better constrain some hydraulic parameters (e.g., saturated
hydraulic conductivity; Schwärzel et al., 2006) that usually
have high uncertainty if inverted from transient hydraulic data
alone. Second, in addition to hydraulic properties, the elec-
trical properties of soils in both saturated and unsaturated
conditions may also be estimated (Younes et al., 2018). Note
that accurately measuring the electrical properties of unsatu-
rated soils is a challenging task because special instruments
are often required to maintain a stable unsaturated condi-
tion (Merritt et al., 2016; Wu et al., 2017). Considering that
many outflow experiment systems have been equipped with
SP monitoring electrodes (Allègre et al., 2014; Linde et al.,
2007; Mboh et al., 2012), it is thus necessary to quantita-
tively evaluate whether the estimation of hydraulic and elec-
trical properties will benefit from the incorporation of SP
data.

The objective of this study is to conduct such an evaluation
using hydraulic and SP monitoring data during outflow exper-
iments. These data will be inverted in the Bayesian frame-
work with the coupled hydrogeophysical inversion approach
(Hinnell et al., 2010) to estimate the hydraulic and electrical
properties of soils. In this paper, we first introduce the cou-
pled forward modeling of water flow and streaming poten-
tial generation in saturated and unsaturated soils, followed by
the stochastic, coupled inversion, which adopts the adaptive
Metropolis (AM) algorithm to estimate model parameters as
well as their uncertainties. Synthetic outflow experiments are
conducted on sand and loam samples to produce time-series
cumulative flow, water pressure, and SP data. These datasets
are inverted to obtain the electrical and hydraulic properties of
soils, which are then compared with the true values to evalu-
ate the benefits of including SP data. The stochastic, coupled
inversion is also performed on published experimental data.
Discussions and major conclusions are presented at the end
of the paper.

2 FORWARD MODELING OF WATER
FLOW AND STREAMING POTENTIAL

In this section, we describe the governing equations for one-
dimensional water flow and streaming potential in saturated
and unsaturated soils. Constitutive relationships describing
hydraulic (water content and hydraulic conductivity) and elec-
trical properties (electrical conductivity and streaming poten-
tial coupling coefficient) of soils under different pore water
pressures or degrees of saturations are also introduced. In this
study, the governing equations are solved numerically with
the finite volume method, and the details of the calculation
are also presented in this section.

2.1 Water flow in saturated and
unsaturated soils

Water flow in saturated and unsaturated soils can be described
by the Richards equation (Richards, 1931). Under defined
initial and boundary conditions, the transient hydraulic
responses of the soil can be determined by solving the
Richards equation (van Dam & Feddes, 2000). The variable
to be solved can be either water content or pore water pres-
sure (head). The Richards equation, which combines Darcy’s
law and mass conservation (Brunone et al, 2003; Namin &
Boroomand, 2012), is a highly nonlinear partial differential
equation (Caviedes-Voullième et al., 2013), expressed as

∂θ
∂𝑡

− ∇ ⋅𝐾∇ℎ − ∂𝐾
∂𝑧

= 0 (1)

where θ is the volumetric water content (m3 m−3), h is the pore
water pressure head (m), z is the vertical coordinate (positive
upward, m), t is time (s), and K is the hydraulic conductivity
(m s−1). Note that both θ and K are not constant but func-
tions of h, known as the soil water retention curve θ(h) and
hydraulic conductivity function K(h). In this study, we use the
van Genuchten–Mualem models to describe θ(h) and K(h),
which can be expressed respectively as (Caviedes-Voullième
et al., 2013; Mualem, 1976; van Genuchten, 1980)

θ (ℎ) =
⎧⎪⎨⎪⎩

θs−θr

[1+(α|ℎ|)𝑛]1− 1
𝑛

+ θr , ℎ ≤ 0

θs, ℎ > 0
(2)

and

𝐾 (ℎ) =

⎧⎪⎪⎨⎪⎪⎩
𝐾s𝑆

0.5
e

⎡⎢⎢⎣1 −
(
1 − 𝑆

𝑛

𝑛−1
e

)1− 1
𝑛
⎤⎥⎥⎦
2

, ℎ ≤ 0

𝐾s, ℎ > 0

(3)
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where θs and θr denote the saturated and residual water con-
tent (m3 m−3), respectively, Ks is the saturated hydraulic con-
ductivity (m s−1), n is a unitless parameter characterizing the
shape of the curve θ(h) and is mainly influenced by the pore
size distribution of the material, α is a fitting parameter inter-
preted as the inverse of the air-entry pressure (m−1), and Se is
the effective saturation expressed as

𝑆e =
θ − θr
θs − θr

(4)

2.2 Streaming potential

In a streaming potential problem, the total electrical current
density j in a porous medium can be expressed as the sum of
the conductive current density jc and streaming current den-
sity js (Sill, 1983):

𝐣 = 𝐣𝐜 + 𝐣𝐬 (5)

The conductive current density jc is related to the electrical
potential ϕ by Ohm’s law:

𝐣𝐜 = −σ∇ϕ (6)

where σ is the effective electrical conductivity of the medium
(assumed to be isotropic, S m−1). Applying the continuity
condition (i.e., ∇ ⋅ 𝐣 = 0) to Equation 5 results in the gov-
erning equation for the streaming potential:

∇ ⋅ (σ∇ϕ) = ∇ ⋅ 𝐣𝐬 (7)

The effective electrical conductivity of porous geological
media is influenced by many factors, including soil texture,
water content, pore water chemistry, and mineral surface prop-
erties (Friedman, 2005). In this study, the empirical Archie’s
law is used to describe σ (Friedman, 2005):

σ =
σw
𝐹

𝑆𝑛a + σs (8)

where σw is the electrical conductivity of water (S m−1),
F = θs

–m is the formation factor (m being the porosity expo-
nent or cementation exponent), S = θ/θs is the degree of sat-
uration, na is the Archie saturation exponent (Archie, 1942),
and σs represents the surface conductivity (S m−1; Revil &
Glover, 1998). Equation 8 assumes that the surface conduc-
tion is in parallel with the conduction contributed from bulk
water. Other more sophisticated electrical conductivity mod-
els (Bussian, 1983) may also be used here.

The streaming current density js can be explained by the
electrokinetic theory (Ishido & Mizutani, 1981). In geologi-

cal materials, the surface of minerals is usually charged, and
ions in the pore water can accumulate near the solid–liquid
interface in response to the charged mineral surface, forming
the electrical double layer (EDL; Revil & Cerepi, 2004; Titov
et al., 2005). The movement of water in the pore space will
drag a portion of the excess charges in EDL, resulting in the
streaming current (Revil & Jardani, 2013). In principle, the
streaming current density in a porous medium is related to the
amount of excess charge moving with water (i.e., the excess
charge outside the shear plane; see Jougnot et al., 2020) and
the velocity of the pore water (Leroy & Revil, 2004).

Considering a small length Δl of the material along the
flow direction, the streaming current-induced electrical poten-
tial difference across this length Δϕ can be determined using
Ohm’s law:

Δϕ = 𝑗s
Δ𝑙
σ

(9)

where js is the magnitude of the streaming current in the flow
direction. The streaming potential coupling coefficient C is
defined as the ratio of Δϕ over the pressure increment ΔP
across the length Δl driving the water flow [corresponding to
the total head difference Δ(Hz + h) where Hz is the elevation
head] (von Smoluchowski, 1903):

𝐶 =
Δϕ

Δ
(
𝐻z + ℎ

)
ρw𝑔

(10)

where ρw is the water density (kg m−3) and g is the gravity
acceleration (m s−2).

Consider Darcy’s law for the length Δl and then the Darcy
velocity u in the flow direction can be expressed as

𝑢 = −𝐾
Δ
(
𝐻z + ℎ

)
Δ𝑙

(11)

Inserting Equations 10 and 11 into Equation 9 yields the
relationship between the streaming current density and Darcy
velocity, which is expressed as (Linde et al., 2007 ; Revil et al.,
2007; Younes et al., 2018)

𝑗s = −ρw𝑔
σ𝐶
𝐾

𝑢 (12)

If the Darcy velocity is treated as a vector (i.e., u), the vector
form of the streaming current density can be expressed as

𝐣𝐬 = −ρw𝑔
σ𝐶
𝐾

𝐮 (13)

Inserting Equation 13 into Equation 7 gives the governing
equation for the streaming potential incorporating C:

∇ ⋅ (σ∇ϕ) = ∇ ⋅
(
ρw𝑔

σ𝐶
𝐾

𝐮
)

(14)
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It is noted that the parameters K and σ are dependent on the
degrees of saturation (e.g., Equation 3 for K and Equation 8 for
σ). The coupling coefficient C is also a function of saturation,
and it can be linked to the coupling coefficient at saturation
Csat, for example, by (Linde et al., 2007)

𝐶 =
𝐶sat
𝑆

⋅
𝐾

𝐾s
⋅
σsat
σ

(15)

where σsat is the effective electrical conductivity of the soil
at saturation (i.e., Equation 8 with S = 1). Note that although
Equation 15 has been successfully applied to sand (Jougnot
& Linde, 2013), it may not work well for other types of soils
(Zhang et al., 2017). Other constitutive models for C may be
used (Perrier & Morat, 2000) to model the streaming potential
in unsaturated soils when necessary.

2.3 Finite volume method for the coupled
forward modeling

For coupled water flow and streaming potential modeling, the
governing equations include Equations 1 and 14 and the rel-
evant constitutive models include Equations 2, 3, 8, and 15.
Due to the highly nonlinear dependence of θ, K, σ, and C
on h, analytical solutions of Equations 1 and 14 may only be
available under some specific boundary conditions and sim-
plified constitutive models (Namin & Boroomand, 2012). In
general conditions, numerical methods are required to solve
Equations 1 and 14 to determine the spatial and temporal dis-
tributions of h and ϕ in the soil. In this study, we use the finite
volume method (Caviedes-Voullième et al., 2013; Eymard
et al., 1999) to solve the governing equations, and many sim-
ilar applications can be found in the literature (Manzini &
Ferraris, 2004; Namin & Boroomand, 2012; Pei et al., 2006;
Younes et al., 2018).

In our finite volume modeling, the sample domain is evenly
divided into N − 1 layers (with a thickness of ∆z) by N notes.
Define the pressure head and water content at node i (i = 1,
. . . , N) as θi and hi, and then the discretized Equation 1 at time
t reads

∂θ𝑖
∂𝑡 = 1

Δ𝑧2
[
𝐾𝑖+1∕2

(
ℎ𝑖+1 − ℎ𝑖

)
−𝐾𝑖−1∕2(ℎ𝑖 − ℎ𝑖−1)

]
+ 1

Δ𝑧

(
𝐾𝑖+1∕2 −𝐾𝑖−1∕2

) (16)

where Ki+1/2 (or Ki − 1/2) represents the interlayer hydraulic
conductivity between layer i and i+ 1 (or i− 1). The interlayer
conductivity can be calculated as the arithmetic mean, geo-
metric mean, harmonic mean, or upstream mean of adjacent
two layers (Baker, 2006; Caviedes-Voullième et al., 2013; Pei
et al., 2006; Warrick, 1991). In general, when the hydraulic
conductivity does not change significantly between adjacent

layers, the simple arithmetic mean should be sufficient; oth-
erwise, the other methods may be used to ensure numerical
accuracy. In this study, the arithmetic mean was adopted [i.e.,
Ki + 1/2 = (Ki + 1+Ki)/2 and Ki − 1/2 = (Ki − 1+Ki)/2]. Simi-
larly, define the electrical conductivity and electrical potential
at node i as σi and ϕ𝑖 and parameter δ = (ρwgσC)/K at node
i as δi = (ρwgσiCi)/Ki. The discretized Equation 14 can then
be written as

σ𝑖+1∕2
ϕ𝑖+1 − ϕ𝑖

Δ𝑧
− σ

𝑖−1
2

ϕ𝑖 − ϕ𝑖−1
Δ𝑧

= δ𝑖+1∕2 𝑢𝑖+1∕2 − δ𝑖−1∕2𝑢𝑖−1∕2 (17)

where σi + 1/2 (or σi − 1/2) is the interlayer electrical conduc-
tivity between layers i and i + 1 (or i − 1) and δi + 1/2 (or δi −

1/2) is the average δ of two adjacent layers i and i + 1 (or i −
1). In this study, the arithmetic mean is used to calculate σi

+ 1/2 (or σi − 1/2).
The time domain to be solved can be divided into M − 1

steps with increment Δt j where j = 1, . . . , M. The time step
Δt j may vary, and in this study, we use the implicit scheme in
Caviedes-Voullième et al. (2013) to ensure that the solutions
are accurate at large time steps. The discretized Equation 1
in the time domain can be expressed as (Caviedes-Voullième
et al., 2013; Kumar, 1996)

θ𝑖 𝑗+1−θ𝑖 𝑗

Δ𝑡𝑗
= 1

Δ𝑧2

[
𝐾

𝑗+ 1
2

𝑖+ 1
2

(
ℎ
𝑗+1
𝑖+1 − ℎ

𝑗+1
𝑖

)
−𝐾

𝑗+ 1
2

𝑖− 1
2

(
ℎ
𝑗+1
𝑖

− ℎ
𝑗+1
𝑖−1

)]
+ 1

Δ𝑧

(
𝐾

𝑗+1∕2
𝑖+1∕2 −𝐾

𝑗+1∕2
𝑖−1∕2

)
(18)

where the index j indicates the associated variable at the time
node j and the index j + 1/2 indicates the average soil property
during the time step Δt j. In this study, the arithmetic mean is
used to calculate the average K during a time increment. For
Equation 14, temporal discretization is not needed, and Equa-
tion 17 will be solved after Equation 18 is solved at each time
node. After the water content of the soil sample is calculated,
the related cumulative outflow increment at the time node j
(i.e., ΔQj) can then be determined by considering the average
water content change of the sample. The cumulative outflow
at time node j (i.e., Qj) thus can be expressed as

𝑄𝑗 = 𝑄𝑗−1 + 𝐴

𝑁−1∑
𝑖=1

(
θ𝑖𝑗−1 − θ𝑖𝑗

)
Δ𝑧 (19)

where A is the cross section area of the sample.
In the finite volume modeling of water flow, the follow-

ing boundary conditions (Dirichlet and Neumann types) are
applied (Allègre et al., 2010):

ℎ (𝑧, 𝑡) = ℎb (𝑡) (20)
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and [
−𝐾 (ℎ) ∂ℎ

∂𝑧
−𝐾 (ℎ)

]
𝑖=1or 𝑁

= 𝑢b (𝑡) (21)

where hb(t) and ub(t) are the pressure head and Darcy veloc-
ity at the boundaries. In streaming potential modeling, Dirich-
let and Neumann type boundary conditions are also applied,
expressed respectively as

ϕ (𝑧) = ϕb (22)

and [
−σ∇ϕ − δ𝑢

]
𝑖 = 1 or 𝑁 = 𝑗b (23)

where ϕb and jb are the electrical potential and external cur-
rent density at the boundary.

3 STOCHASTIC COUPLED INVERSION

The hydraulic and geophysical properties of soils at satu-
rated and unsaturated conditions can be estimated from the
transient hydrogeophysical data using Bayesian inference,
which uses probability distributions to describe model param-
eters m. Assume the prior information on the model parame-
ters can be represented by the prior probability distributions
P0(m). In Bayesian inference, the prior distributions P0(m)
are updated as more information (e.g., measurement data d)
becomes available, yielding the posterior probability distribu-
tions π(m|d) for the model parameters. From π(m|d), we can
obtain not only a maximum likelihood model but also a quan-
tification of the uncertainties of the model. Using Bayesian
methods for parameter estimation has received increased pop-
ularity in many earth and environmental sciences such as
atmosphere (Smith et al., 2009; Tamminen, 2004), geophysics
(Grana et al., 2017; Ray & Myer, 2019), hydrology (Freni &
Mannina, 2010; Tang et al., 2016), and environmental sci-
ences (Ahmadi et al., 2015; Liu et al., 2021).

Due to the analytically intractable nature of many for-
ward modeling problems, the implementation of the Bayesian
method for parameter estimations is usually aided by the
Markov chain Monte Carlo (MCMC) techniques, which use
random walk approaches to generate samples that follow
the posterior distributions of the model parameters (Vrugt
et al., 2003). Over the years, many MCMC algorithms have
been developed to sample the model space, including the
Metropolis–Hastings algorithm (Hastings, 1970; Metropolis
et al, 1953) and its variants such as the delayed rejection
adaptive algorithm (Tierney & Mira, 1999). In this study, we
adopted the AM algorithm (Haario et al., 2001) to sample the
model parameters that characterize the hydraulic and electri-

cal properties of soils under saturated and unsaturated condi-
tions.

3.1 Adaptive Metropolis algorithm

The AM algorithm is based on the conventional Metropo-
lis algorithm with symmetric Gaussian proposal distributions,
and during the MCMC sampling process, the sizes and orien-
tations of the proposal distributions vary (Haario et al., 2001).
The AM algorithm has the advantages of keeping detailed bal-
ance and ergodicity and showing great efficiency on complex
and highly nonlinear target distributions (Saksman & Vihola,
2010; Tamminen, 2004). In practice, the AM algorithm can be
realized with the following steps (Tamminen, 2004). Assume
we have already sampled k model vectors m0, . . . , mk − 1. To
get the next model vector mk, a candidate vector Z is sampled
from the Gaussian proposal distribution with the mean value
at the current point mk − 1 and with the covariance matrix Ck.
The covariance matrix can be expressed as

𝐂𝑘 =
{
𝐂0, 𝑘 ≤ 𝑘0
𝑠𝑛𝐊𝑘 + 𝑠𝑛ε𝐼, 𝑘 > 𝑘0

(24)

where Kk = cov (m0, . . . , mk −1), sn = (2.4)2/n is a scaling
parameter (n being the dimension of the vector Z), ε is a small
value (e.g., 10−10) to prevent Ck from being singular, I is an
n× n identity matrix, and k0 defines the burn-in period, during
which, the covariance matrix Ck is not updated. The samples
in the burn-in period will be discarded in the calculation of
the posterior distributions such that the impact of initial point
(m0) can be minimized (Tamminen, 2004).

In the next step, the sampled vector Z is either accepted
(i.e., mk = Z) or rejected (thus, mk = mk − 1). The probability
of accepting Z is

β
(
𝐦𝑘−1,𝐙

)
= min

[
π (𝐙)

π
(
𝐦𝑘−1

) , 1] (25)

In the AM algorithm, the ratio π(𝐙)∕π(𝐦𝑘−1) can be
expressed as (Tamminen, 2004)

π (𝐙)
π
(
𝐦𝑘−1

) =
𝑃0 (𝐙)𝑃 (𝐝|𝐙)

𝑃0
(
𝐦𝑘−1

)
𝑃
(
𝐝|𝐦𝑘−1

) (26)

where the likelihood P(d|Z) [or P(d|mk − 1)] is a measure of
the degree of fit between observed data d and data predicted
from forward modeling with parameters Z (or mk − 1) (e.g.,
see Mosegaard & Tarantola, 1995) and the prior distribution
P0(Z) [or P0(mk − 1)] contains our existing knowledge of the
model parameters. Thus, the computation of the acceptance
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F I G U R E 1 Flowchart of the coupled stochastic inversion using Markov chain Monte Carlo (MCMC) method. Q is the cumulative outflow; h is
the pore water pressure head; θ is the volumetric water content; ∆V is the measured self-potential (SP); mk and mk − 1 are model vectors at step k and
k − 1, respectively; Z is a candidate vector; P(d|Z) [or P(d|mk − 1)] is the likelihood measuring the degree of fit between observation d and Z (or mk

− 1); and β(mk − 1, Z) is the probability of accepting Z

ratio involves mainly the evaluation of the likelihood. The
above steps are iterated until k reaches a predefined number.

3.2 MCMC inversion of transient
hydrogeophysical data

In this study, the AM algorithm is used to obtain sample
realizations of the model vector m. The associated parame-
ters include θr, α, n, log(Ks), m, na, and Csat × 10−7. Using
log(Ks) is to ensure the positivity of Ks in the inversion and
multiplying Csat by 10−7 will scale up the coupling coeffi-
cient to the same order of magnitude as the other parameters.
Other parameters in the constitutive models such as θs and σw
are relatively easy to determine in practice, and thus they are
assumed known and will not be estimated in our inversion.
The transient hydraulic data include the pore water pressure
head h, cumulative outflow Q, and SP ϕ.

In this study, the hydraulic data and electrical data are
inverted in a coupled way, which relies on the direct cou-
pling between the streaming current js and Darcy velocity u
(Equation 13) in the forward modeling and inversion process
(Hinnell et al., 2010). The workflow of coupled hydrogeo-
physical inversions has been detailed in Ferré et al. (2009)
and is also shown in Figure 1. In such a coupled inver-
sion, an initial model is proposed, used to simulate transient
responses based on coupled hydrologic and geophysical simu-
lations (Equations 1 and 14), and then updated based on misfit
between the simulated and observed transient data. In addition
to the streaming current, the electrical conductivity of the soil
is also dependent on the water content (e.g., Equation 8). In
the inversion, both geophysical responses (ϕ) and hydraulic
responses (Q and h) are used in quantifying the misfit between
predicted and measured observations. Comparing to sequen-
tial inversion (Kang et al., 2020), the coupled inversion does
not involve an intermediate geophysical inversion step before
conducting the hydraulic inversion (or estimation), and thus it

has the potential to reduce the uncertainties related to esti-
mated hydrologic and geophysical properties and predicted
hydraulic processes (Hinnell et al., 2010; Mboh et al., 2012).

In the MCMC inversion, it is usually assumed that the noise
is additive and Gaussian, leading to the following likelihood
function,

𝑃 (𝐝|𝐙) ∝ exp

(
−

𝑁𝑑∑
𝑖=1

√
2 ||𝑓 (𝐙) − 𝑑𝑖

||
ε𝑖

)
(27)

where Nd is the total number of data points, f is a function
denoting the forward modeling, and di and εi denote the ith
data point and associated standard deviation, respectively. The
l1-norm is used in calculating the likelihood and it is less sen-
sitive to outliers than the l2-norm (Tarantola, 1987). It has
been observed that most model parameters in this study [θr,
α, n, log(Ks), m, na, and Csat × 10−7] have limited ranges.
For example, the cementation factor m of most geological
materials ranges between 1 and 4 (Friedman, 2005). The prior
knowledge of the bounds of model parameters can be easily
incorporated in calculating the acceptance probability (Equa-
tion 25), expressed as

𝑃0 (𝐙) =
{
1, 𝑧 ∈ [𝑎, 𝑏]
0, otherwise (28)

where [a, b] is our predefined range for the model parameter
z in Z.

4 SYNTHETIC EXPERIMENT AND
INVERSION

In this section, the abovementioned stochastic coupled inver-
sion is used to analyze the information content of tran-
sient hydraulic and SP data obtained from a typical outflow
experiment. In particular, we will address the following two
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T A B L E 1 Synthetic soil samples and inversion scenarios considered in this study

Sample Scenarios Data used in inversion Parameters to be inverted
Sand Scenarios 1 Q, h θr, α, n, Ks

Scenarios 2 Q, h, and Δϕ θr, α, n, Ks, na, Csat, m
Loam Scenarios 1 Q, h θr, α, n, Ks

Scenarios 2 Q, h, and Δϕ θr, α, n, Ks, na, Csat, m

Note: Q, cumulative outflow; h, pressure head; Δϕ, streaming potential difference; θr, residual water content; α, fitting parameter interpreted as the inverse of the air-entry
pressure; n, the parameter characterizing the shape of the soil water retention curve; Ks, saturated hydraulic conductivity; na, the Archie saturation exponent; Csat, the
coupling coefficient at saturation; m, the porosity exponent.

F I G U R E 2 Schematic of a typical outflow experiment. Pore
water pressure is measured at two depths using two tensiometers T1 and
T2. Self-potential is measured at two depths using a pair of
nonpolarizing electrodes E1 and E2. No flux is allowed at the upper
boundary, and a pressure head hb is applied to the initially saturated
sample to drain the soil. z1 and z2 are different elevations

questions: (a) what is the uncertainty of the hydraulic and
electrical properties estimated from transient hydrogeophysi-
cal data; and (b) to what degree will the addition of SP data
reduce the uncertainty of the estimated hydraulic properties?
Two synthetic soils are considered here (Table 1) for analysis.

4.1 Synthetic outflow experiment

The schematic of a typical outflow experiment is shown in
Figure 2. The soil sample is initially saturated, and a pressure
head hb is applied to the lower boundary to drain the soil
sample. The ambient pressure on the upper boundary is equal
to the atmospheric pressure but no flux is allowed. During
the drainage process, the cumulative outflow Q is monitored.
Electrical potential and pressure head are also monitored
at two elevations z1 and z2 (Figure 2). This type of outflow
experiments can be found, for example, in Allègre et al.
(2014) and Linde et al. (2007). The measured transient data

are used to estimate the hydraulic and electrical properties of
the soil, including θr, α, n, Ks, m, na, and Csat.

To test the accuracy of our forward modeling, we con-
ducted an outflow simulation with a cylindrical soil sample
(5 cm in radius and 20 cm in height; Figure 2). The sam-
ple is initially saturated and the total head is equal to 20 cm
with datum at the base of the soil column. The applied hb is
−2 m. The cumulative outflow, pore water pressure head, and
electrical potential during drainage were calculated using our
numerical code. To facilitate the calculation, hb was assumed
to decrease linearly from 20 cm to −2 m in a short period
(e.g., 100 s). The simulation was stopped when the cumula-
tive outflow Q was not changing significantly. The following
soil parameters were used in the simulation: θs = 0.3 m3 m−3,
θr = 0.03 m3 m−3, α = 1.4 m−1, n = 1.6, Ks = 5 × 10−6 m
s−1, na = 3.5, Csat = −3.5 × 10−7 V Pa−1, m = 2, σs = 0.002 S
m−1, σw = 0.1 S m−1, ρ = 1,000 kg m−3, and g = 10 m s−2.
The electrical potential at the lower boundary is set as zero.
The calculated hydraulic responses (h measured between T1
and T2) and electrical responses (potential difference Δϕ mea-
sured between E1 and E2) are shown in Figure 3. To validate
the accuracy of our calculation, the finite element method
software COMSOL Multiphysics 5.6 (COMSOL) was also
used to conduct the simulation and the results are shown in
Figure 3. In general, the results from our numerical model-
ing are in good agreement with those from the COMSOL
simulation. The related RMSDs of Q, h, and Δϕ are 0.88 cm3,
0.23 cm, and 0.0028 mV, respectively. This excellent agree-
ment shows the effectiveness and accuracy of our numeri-
cal scheme in solving the coupled water flow and streaming
potential problem.

4.2 Sample 1: Sand

The first soil sample considered here is a sand with a porosity
of 0.4. For the soil water retention curve, the van Genuchten
model (Equation 2) is used and relevant parameters are
α = 8 m−1, θs = 0.4, θr = 0.01, and n = 5; for the unsaturated
hydraulic function, Equation 3 is used with log(Ks) = −4 m
s−1. Archie’s law incorporating the surface conduction (Equa-
tion 8) is used to model the effective electrical conductivity of
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F I G U R E 3 Transient hydraulic and electrical responses of a soil
in an outflow experiment calculated with our numerical code (data
points) and COMSOL Multiphysics (solid lines): (a) cumulative
outflow Q; (b) pressure head h at two elevations (circles for z1 and
triangles for z2); and (c) streaming potential difference Δϕ between z1

and z2

the sand at various saturations with the following parameters:
na = 2.6, m = 1.6, and σs = 0.0002 S m−1. We use Equa-
tion 15 with Csat = −2.9 × 10−7 V Pa−1 to model the stream-
ing potential coupling coefficient of the sand with different
degrees of saturation. These model parameters are summa-
rized in Table 2. The sample is initially saturated and total
head is 20 cm. In the outflow experiment, the pressure head
at the lower boundary hb was decreased from the initial value
of 20 cm to −1 m within 30 s. The water pressure and electri-
cal potential at z1 and z2 are monitored for 104 s as well as the
cumulative outflow Q. These transient responses are shown in
Figure 4.

Two scenarios were considered in our stochastic inversion
(Table 1). In Scenario 1, only hydraulic data (i.e., Q and h
at two elevations) are used in the inversion. The number of

F I G U R E 4 Hydraulic and electrical responses of a synthetic sand
sample: (a) cumulative outflow Q; (b) pressure head h at two elevations
(circles for z1 and triangles for z2); and (c) streaming potential
difference Δϕ between z1 and z2. Dashed and dotted lines represent the
predictions calculated using the mean model parameters of Scenarios 1
and 2, respectively

data points in each dataset is 30, and thus the total data points
used in the inversion is 90. The measurement errors are set as
4 cm3 and 0.2 cm respectively for Q and h. In the inversion,
the parameter θs is fixed, considering the fact that the porosity
of the sand sample is relatively easy to control or measure in
the experiment. Initial values of θr, α, n, and log(Ks) are 0.015,
6 m−1, 4, and −4.5 m s−1, respectively, and the covariances
are 0.0052, 1.52, 12, and 0.22, respectively (also see Table 2).
These initial values are selected as typical values of sandy
samples (Schaap & Leij, 2000). These initial covariance val-
ues are chosen such that the sampling intervals of the proposal
distributions (symmetric Gaussian) are approximately half of
the predefined ranges of the model parameters (prior knowl-
edge). The MCMC sampling is terminated after 30,000 runs
and the chains of the sampled model parameters are shown
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T A B L E 2 Summary of the Markov chain Monte Carlo (MCMC) estimated model parameters for the synthetic sand sample

Parameter True value
Prior mean
(covariance) Prior bounds Inversion resultsof Scenario 1 Inversion resultsof Scenario 2

θr, m3 m−3 0.01 0.015 (0.0052) 0 ∼ 0.05 0.013 (30%) [0.009, 0.017]
61.5%

0.010 (0%) [0.009, 0.012] 30.0%

α, m−1 8.0 6.0 (1.52) 1 ∼ 15 8.04 (0.5%) [7.95, 8.13] 2.2% 8.00 (0%) [7.95, 8.04] 1.1%

n 5.0 4.0 (1.02) 1.1 ∼ 10 4.97 (0.6%) [4.83, 5.11] 5.6% 5.03 (0.6%) [4.97, 5.08] 2.2%

log(Ks), m s−1 −4.0 −4.5 (0.22) −5 ∼ −3 −3.99 (0.25%) [−4.00, −3.97]
0.8%

−4.00 (0%) [−4.01, −3.99] 0.5%

na 2.6 2.0 (0.52) 1 ∼ 5 – 2.60 (0%) [2.58, 2.62] 1.5%

Csat × 10−7, V Pa−1 −2.9 −3.5 (0.52) −6 ∼ −1 – −2.90 (0%) [−2.91, −2.88] 1.0%

m 1.6 2.0 (0.22) 1 ∼ 4 – 1.60 (0%) [1.51, 1.68] 10.6%

Note: In the fifth and sixth columns, the estimated mean values of model parameters are in bold, followed by the associated relative differences (in parentheses); the 95%
confidence intervals (CIs) are included in square brackets, and the relative lengths of the 95% CIs are in italic. θr, residual water content; α, fitting parameter interpreted
as the inverse of the air-entry pressure; n, the parameter characterizing the shape of the soil water retention curve; log(Ks), logarithm of saturated hydraulic conductivity;
na, the Archie saturation exponent; Csat, the coupling coefficient at saturation; m, the porosity exponent.

F I G U R E 5 The sampled chains of the hydraulic properties of the synthetic sand sample (scenario 1): (a) θr, (b) α, (c) log Ks, and (d) n

in Figure 5. The first 10,000 runs are considered as the burn-
in period, during which the covariances are not updated. The
model parameters from the last 20,000 runs are used to esti-
mate the statistical measures of the posterior distributions.

The MCMC estimated posterior distributions of the model
parameters are shown in Figure 6 as histograms, which are cal-
culated from the last 20,000 runs after the burn-in period. The
mean value and 95% confidence interval (CI) of each param-
eter are estimated from the histograms and listed in Table 2.
We also calculated the relative difference (i.e., absolute dif-

ference divided by the true value) between the estimated and
true mean values as well as the relative length of the 95% CI
(i.e., the length of the 95% CI normalized by the true value)
for all the model parameters. In Table 2, it is apparent that
the recovered model parameters are very close to the true val-
ues and the relative differences are generally less than ∼1%
except for θr, which also has a high uncertainty with a relative
length of the 95% CI of ∼61.5%. The model parameter log(Ks)
has the lowest uncertainty with the length of the 95% CI as
∼0.8% of its mean value. The results in Table 2 confirm that
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F I G U R E 6 Markov chain Monte Carlo (MCMC)-estimated
posterior distributions of the hydraulic properties of the sand sample
(Scenario 1): (a) residual water content, θr; (b) fitting parameter
interpreted as the inverse of the air-entry pressure, α; (c) logarithm of
saturated hydraulic conductivity, log(Ks); and (d) the parameter
characterizing the shape of the soil water retention curve, n

stochastic inversion can effectively recover the hydraulic
properties of soils from the transient flow and pressure data.

The estimated mean values are used to calculate the tran-
sient hydraulic responses (Q and h) of the sand sample and the
results (dashed lines) are shown in Figure 4. It is clear that the
simulated Q and h agree very well with “measured” Q and
h, and the related RMSDs are only 3.82 cm3 and 0.19 cm.
To evaluate the related prediction uncertainty, a couple of
hundred sets of model parameters are drawn randomly from
the posterior distributions in Figure 6 and are used to simu-
late the hydraulic responses. The variation ranges of the sim-
ulated Q and h are very narrow (not shown in Figure 4),
generally smaller than the size of the data point symbols in
Figure 4. Comparisons of experimental and simulated results
in Figure 4 confirm that the transient outflow Q and pressure
head h data in outflow experiments contain sufficient infor-
mation on the saturated and unsaturated hydraulic properties
of the sample (Toorman et al., 1992).

The second inversion (Scenario 2 in Table 1) is also con-
ducted to estimate both the hydraulic and electrical proper-
ties of the sand sample from the “measured” outflow Q, water
head h, and streaming potential difference Δϕ. The measure-
ment errors of Q and h are same as those used in Scenario 1,
and the error of SP measurements is set as 0.002 mV. In the
inversion, the parameters θs and σw are considered known;
σs is also assumed known, considering that the effect of sur-
face conduction on SP signal is relatively small (Linde et al.,

2007). The duration and time intervals of the monitoring data
are the same as those used in Scenario 1. Parameters related
to the MCMC sampling are also kept unchanged. The prior
information on model parameters is summarized in Table 2 as
well as the inversion results (mean values and 95% CIs). The
inversion results are also shown in Figure 7 as histograms. The
estimated mean values are used to simulate the hydraulic and
geophysical responses during the drainage and the results are
plotted in Figure 4 (dotted lines). Similar to Scenario 1, the
agreement between the simulated and “measured” responses
is excellent, and the related RMSDs for Q, ∆ϕ, and h are
only 4.74 cm3, 0.0026 mV, and 0.2 cm, respectively. We also
evaluated the variation ranges of the predicted Q, ∆ϕ, and h
responses (not shown in Figure 4); compared with Scenario 1,
the calculated ranges of variations are quite similar though
slightly narrower.

As shown in Table 2, both the recovered hydraulic and elec-
trical parameters in Scenario 2 are very close to the true val-
ues. The associated uncertainties (i.e., relative length of the
95% CI) vary between 0.5% for log(Ks) and 30% for θr. Com-
pared with Scenario 1, the estimated mean values in Sce-
nario 2 are closer to the true values (Table 2); the related
uncertainty (relative length of 95% CI) is also smaller, about
half of those in Scenario 1. For example, the estimated mean
n in Scenario 2 is 5.03 with the 95% CI as [4.97, 5.08], and
the estimation from Scenario 1 is 4.97 with the 95% CI as
[4.83, 5.11]; the relative length of 95% CI decreases from
5.6 to 2.2%. This indicates that the addition of transient SP
data helps the estimation of hydraulic properties. Among the
three electrical properties, the cementation factor m has the
highest uncertainty, and the relative length of the 95% CI is
∼10.6%; in contrast, the values for Csat and na are only ∼1 and
1.5%, respectively. This is consistent with the results shown
in Younes et al. (2018). The relatively high uncertainty of
m is understandable because, in such an outflow experiment
(Figure 2), the effective electrical conductivity of the soil is
not directly measured. On the contrary, the monitored SP sig-
nals are directly influenced by the coupling coefficient Csat.
Thus, m is less sensitive to the monitored transient data than
Csat (Younes et al., 2018).

4.3 Sample 2: Loam

We also consider a loam sample to study if the soil texture
affects the MCMC inversion results. Similarly, two scenarios
are considered (i.e., inverting with Q and h, and with Q, h, and
Δϕ; Table 1). Similarly, θs, σw, and σs are assumed known
and the following constant values are used in the inversions:
θs = 0.3 m3 m−3, σw = 0.1 S m−1, and σs = 0.002 S m−1. Sim-
ilar to the sand sample, the loam sample is initially saturated
and the total head is 20 cm. In the forward modeling, a pres-
sure head hb = −2 m is gradually applied to the bottom within
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F I G U R E 7 Markov chain Monte Carlo (MCMC)-estimated posterior distributions of the hydraulic and electrical properties of the synthetic
sand sample (Scenario 2): (a) residual water content, θr; (b) fitting parameter interpreted as the inverse of the air-entry pressure, α; (c) the parameter
characterizing the shape of the soil water retention curve, n; (d) logarithm of saturated hydraulic conductivity, log(Ks); (e) the Archie saturation
exponent, na; (f) the coupling coefficient at saturation (Csat) × 10−7; and (g) the porosity exponent, m

150 s. The transient measurements available for the inversions
begin at 1 s and end at 2 × 104 s after the onset of the outflow
(see Figure 8). Other parameters are the same as those used in
the sand sample.

The MCMC inversion results of the loam sample are
summarized in Table 3. The transient hydraulic and electri-
cal responses calculated using the MCMC estimated model
parameters are shown in Figure 8. Similar conclusions can be
made for the loam sample after analyzing the results: (a) using
Q and h data are sufficient to accurately estimate the hydraulic
properties of the sample; (b) addition of SP data can help
reduce the uncertainty of the estimated hydraulic properties
of the soil; and (c) the electrical properties of the sample can
be estimated from Q, h, and Δϕ data with a fair accuracy,
although not as well as hydraulic properties. In general, the
lengths of the 95% CIs of the estimated hydraulic properties
in Scenario 2 are about one- to two-thirds of those obtained
in Scenario 1. Among all the hydraulic properties, θr has the
highest uncertainty, and the relative length of the 95% CI is
96.6% for Scenario 1 and 62.1% for Scenario 2; log(Ks) has
the lowest uncertainty, and the relative length of the 95% CI
is lower than 2% for both scenarios. For the electrical proper-
ties, the estimation of Csat is relatively accurate with the rel-
ative length of the 95% CI lower than 4%. In contrast, m and
na have relatively high uncertainties and the relative length of
the 95% CIs is higher than 50% (Table 3).

Comparison of results in Tables 2 and 3 indicates that the
estimated model parameters are in general more accurate for
the sand than the loam. For example, the relative length of
the 95% CI for α is only 2.2% in Scenario 1 and 1.1% in Sce-
nario 2 for the sand, but the values are 7.9 and 5% for the
loam. The predicted electrical and hydraulic responses using
the recovered model parameters (Figures 4 and 8) show sim-
ilar trends, particularly for t larger than 100 s. The relatively
better performance in sand is probably due to the fact that the
transient data of sand used in inversions contain a larger por-
tion of the drainage process (Kool et al., 1985). Note that the
last portion of the cumulative outflow Q appears to approach
a constant value for the sand (Figure 4), but it still has a ten-
dency to increase for the loam (Figure 8). This implies that, to
ensure a good performance on finer soils, the outflow experi-
ment (Figure 2) should be performed for a longer period than
coarse samples such that more information can be included in
the measurement.

5 INFLUENCE OF ELECTRICAL
MODELS AND PARAMETERS

It has been found that the unsaturated streaming potential cou-
pling coefficient C model (Equation 15) does not work for
many soils (Jougnot et al., 2012, 2020; Zhang et al., 2017).
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F I G U R E 8 Hydraulic and electrical responses of the synthetic
loam sample: (a) cumulative outflow Q; (b) pressure head h at two
elevations (circles for z1 and triangles for z2); and (c) streaming
potential difference Δϕ between z1 and z2. Dashed and dotted lines
represent the predictions calculated using the mean model parameters
of Scenarios 1 and 2, respectively. The shaded regions represent the
variation ranges of the prediction (light color for Scenario 1 and dark
color for Scenario 2)

In addition, it is also difficult to accurately determine the sur-
face conductivity σs (Equation 8) of a soil in practice. Thus,
it is necessary to analyze how the unsaturated C models and
an incorrect σs affect the coupled inversion.

5.1 Influence of an incorrect σs

We invert the hydraulic and SP measurements of the loam
sample once again with σs = 0, and all the other parame-
ters are kept unchanged. The inverted mean values of the
model parameters are θr = 0.024 m3 m−3, α = 1.37 m−1,
n = 1.59, Ks = 10−5.32 m s−1, na = 2.33, Csat = −3.51
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T A B L E 4 Summary of the Markov chain Monte Carlo (MCMC) estimated model parameters for the sand and loam samples with a different
streaming potential coupling coefficient model (Equation 19)

Parameters
True values of
sand sample

Inversion results of sand
Scenario 2

True values of
loam sample

Inversion results of loam
Scenario 2

θr, m3 m−3 0.01 0.010 (0%) [0.007, 0.012] 50.0% 0.03 0.027 (10%) [0.024, 0.029] 18.5%

α, m−1 8.0 8.03 (0.4%) [7.96, 8.08] 1.7% 1.4 1.40 (0%) [1.38, 1.42] 2.9%

n 5.0 5.03 (0.6%) [4.95, 5.14] 3.8% 1.6 1.60 (0%) [1.59, 1.61] 0.3%

log(Ks), m s−1 −4.0 −3.99 (0.3%) [−4.00, −3.99] 0.3% –5.3 −5.30 (0%) [−5.31, −5.28] 0.6%

na 2.6 2.58 (0.8%) [2.56, 2.60] 1.6% 3.5 3.47 (0.9%) [3.35, 3.63] 8.1%

Csat × 10−7, V
Pa−1

−2.9 −2.90 (0%) [−2.91, −2.89] 0.7% –3.5 −3.51 (0.3%) [−3.53, −3.49] 1.1%

m 1.6 1.56 (2.5%) [1.53, 1.60] 4.5% 2 2.00 (0%) [1.93, 2.09] 8.0%

Note: In the third and fifth columns, the estimated mean values of model parameters are in bold, followed by the associated relative differences (in parentheses); the 95%
confidence intervals (CIs) are included in square brackets, and the relative lengths of the 95% CIs are in italic. θr, residual water content; α, fitting parameter interpreted
as the inverse of the air-entry pressure; n, the parameter characterizing the shape of the soil water retention curve; log(Ks), logarithm of saturated hydraulic conductivity;
na, the Archie saturation exponent; Csat, the coupling coefficient at saturation; m, the porosity exponent.

×10−7 V Pa−1, and m = 1.63. Compared with the inversion
results with an accurate σs (Scenario 2 in Table 3), most of the
recovered parameters are almost unchanged except na and m,
which become noticeably smaller. According to Equation 8, a
smaller na (or m) will increase the calculated electrical con-
ductivity σ of the soil, which will compensate the effect of
setting σs = 0. This implies that using an incorrect σs in the
coupled inversion only affects the other parameters appearing
in the electrical conductivity model (Equation 8), and other
model parameters are not influenced significantly.

5.2 Influence of C models

In this subsection, we analyze if a different coupling coeffi-
cient model (other than Equation 15) will affect the conclu-
sion made in our previous section. The unsaturated model
proposed in Soldi et al. (2020) is used here, and it can be
expressed as (see Equations 23 and 27 in Soldi et al., 2020)

𝐶 = 𝐶sat𝑆e
σsat
σ

(29)

The outflow experiments are simulated for both the sand
and loam samples with the new C model and the measure-
ments are then inverted to estimate the petrophysical prop-
erties of the samples. In the modeling and inversion, all the
model parameters are kept unchanged. The inversion results
are shown in Table 4.

In general, the recovered model parameters in Table 4 are
very close to those in Tables 2 and 3. Both hydraulic prop-
erties and electrical properties of the samples are determined
with a very small error. For the sand, the relative differences
between estimated and true values range between 0 and 2.8%;
for the loam, the related relative differences are between 0
and 10%. Compared with the results of Scenario 1 (Tables 2

and 3), the incorporation of SP data in the inversion with the
new C model (Equation 29) also reduces the length of the 95%
CIs significantly. For instance, the uncertainty of the param-
eter α (i.e., relative length of 95% CI) of the loam decreases
from 7.9% in Scenario 1 in Table 3 to 2.9% in Table 4. Gener-
ally speaking, the inversion results associated with the new C
model (Table 4) are consistent with those obtained with Equa-
tion 15. Therefore, the conclusions made in this study are still
valid if other C models are used in the coupled inversion.

6 INVERSION OF EXPERIMENTAL
DATA

In this section, we apply the stochastic, coupled inversion to
experimental data collected from an outflow test reported in
Linde et al. (2007). The available datasets include transient
Q, h, and ϕ measurements. The soil sample was cylindrical
with a radius of 0.035 m and a height of 1.35 m. The sand
was initially saturated and the saturated water content θs (or
porosity) is between 0.33 and 0.35 (Linde et al., 2007). A pres-
sure head hb = 0.091 m was applied to the bottom to drain the
sand column. During the drainage process, both h and ϕ were
measured at a number of locations along the sand column.
Some hydraulic and electrical properties of the sand have been
independently measured (Linde et al., 2007, or summarized in
Table 5): σsat = 0.012 S m−1, σw = 0.051 S m−1, F = 4.26,
Csat = −2.9×10−7 V Pa−1, Ks = 6.93 × 10−5 m s−1.

The datasets used in the inversion include ∼1.8 h of cumu-
lative outflow Q, ∼4 h of pressure head h at two locations
(22.5 and 47.5 cm from bottom), and ∼4 h of SP ϕ at two
locations (25 and 55 cm from bottom). In total, 30 data points
were digitized from Linde et al. (2007) for Q and 40 for h
and ϕ; the average time intervals of these data are between
200 and 1,000 s. Similar to synthetic soils, two inversion
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scenarios were considered (Table 5). In the inversions, the fol-
lowing model parameters were assumed known and thus kept
unchanged: θr = 0.015 m3 m−3, σs = 0, and σw = 0.051 S
m−1. A total number of 8,000 runs were performed for the
MCMC inversions, of which the first 4,000 runs were the
burn-in period. The prior information on the model param-
eters is summarized in Table 5.

In Scenario 1, hydraulic parameters were inverted from Q
and h and the results are summarized in Table 5. In general,
the MCMC estimated mean values are close to the values
reported in Linde et al. (2007). For α, n, and log(Ks), the rel-
ative differences are less than ∼10%; for θs, the relative dif-
ference exceeds 20%. These discrepancies are probably due to
the fact that h and ϕ data used in our inversion only cover ∼4 h
of the measurement. In contrast, the inversion in Linde et al.
(2007) used transient h and ϕ data with a longer period that
includes a free drainage stage (i.e., hb = 9.1 cm was removed)
in addition to the initial ∼4 h. Despite these discrepancies,
the modeled hydraulic responses using the MCMC estimated
model parameters are very close to the measured responses
(Figure 9). The associated RMSDs are only 0.9 cm3 and
0.55 cm for Q and h, respectively. The good agreement in
Figure 9 shows that the stochastic coupled inversion devel-
oped in this study could reliably estimate the hydraulic param-
eters of soils from transient hydraulic data collected in an out-
flow test.

The inversion results of Scenario 2 are also summarized
in Table 5. Comparison of Scenarios 1 and 2 show that the
estimated mean values of the hydraulic properties are very
similar. The associated uncertainty (e.g., relative length of
the 95% CI) is at the same level for parameters θs, α, n, and
log(Ks). These results indicate that the addition of SP data
may, although only slightly, reduce the uncertainty of the esti-
mated hydraulic properties of the sand sample.

Regarding the electrical properties, it appears that the esti-
mated mean values of na, Csat, and m are close to the values
reported in Linde et al. (2007), and the related relative differ-
ences are 9.4, 17.9, and 4.5%. Compared with hydraulic prop-
erties (e.g., results of Scenario 1), the discrepancies of electri-
cal parameters between our estimations and reference values
are slightly higher. It is also noted that the estimated 95% CIs
(i.e., uncertainty) of the electrical parameters are quite large
for na and m. Similar to synthetic soils, Csat has the lowest
uncertainty and the length of the 95% CI is only ∼8.8% of the
measured Csat; this low uncertainty is because SP responses
are directly affected by the streaming potential coupling coef-
ficient of the soil (e.g., Equation 10). Moreover, the estimated
m value (1.28 in Table 5) is lower than the typical value of
unconsolidated sediments (Friedman, 2005). This is because,
in the inversion, the surface conductivity was assumed zero
(i.e., σs = 0; Linde et al., 2007). Assuming σs = 0 will overes-
timate the contribution of bulk water, thereby underestimating
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F I G U R E 9 Hydraulic and electrical responses of the sand sample
in Linde et al. (2007): (a) cumulative outflow Q; (b) pressure head h at
two locations (circles for z1 = 47.5 cm and triangles for z2 = 22.5 cm);
and (c) self-potential ϕ at two locations (circles for z1 = 55 cm and
triangles z2 = 25 cm). Dashed and dotted lines represent the predictions
calculated using the mean model parameters of Scenarios 1 and 2,
respectively

the formation factor F and thus the value of m (Revil et al.,
2015).

7 CONCLUSIONS

In this study, stochastic, coupled inversions were performed
to estimate hydraulic and electrical properties of soils from
transient hydrogeophysical data collected in one-step out-
flow experiments. The time-series data used in the inversion
include cumulative outflow Q, pressure head h, and/or SP ϕ.
It is found that the stochastic inversion could provide infor-
mation about the sensitivity of a soil’s hydraulic and elec-

trical properties to the measured Q, h, and ϕ in the out-
flow experiment. The results show that both saturated and
unsaturated hydraulic properties of soils such as log(Ks), n,
and α can be reliably estimated from transient Q and h data
and the relative differences between estimation and true val-
ues are generally less than 10%. The accuracy of the esti-
mated residual water content θr is much lower than other
hydraulic properties, and the estimation is also associated
with a larger uncertainty (the relative length of the 95% CI
can reach ∼100%). Comparison of the sand and loam sam-
ples indicates that the related uncertainty of the estimated
hydraulic parameters can be reduced if the transient hydraulic
data used in inversion cover a large portion of the drainage
process.

Inversions including SP data were also performed. Com-
pared with inversions with hydraulic data only (i.e., Q and
h), the addition of SP data ϕ can reduce the uncertainty of
the estimated hydraulic properties, although the mean value
is not improved significantly. The related length of the 95%
CIs for most hydraulic properties [e.g., log(Ks) and n] could
be reduced by about one-third. This indicates that incorpo-
rating SP measurement in an outflow experiment is benefi-
cial to the estimation of hydraulic properties. To the best of
our knowledge, such a quantitative evaluation of the SP mea-
surement in an outflow experiment was not available in the
literature.

Inversion results also show that both saturated and unsat-
urated electrical properties (Csat, na, and m) of the soil
may be estimated from the hydraulic and SP data collected
in outflow experiments. Among these electrical properties,
the saturated streaming potential coupling coefficient Csat
has the highest accuracy and lowest uncertainty. The accu-
racy of other parameters such as m and na is slightly lower
compared with Csat (and hydraulic parameters). The asso-
ciated uncertainty (relative length of the 95% CI) is gener-
ally large, about one order of magnitude higher than Csat and
hydraulic parameters (e.g., α and n). These different perfor-
mances are due to the fact that parameters m and na do not
directly affect the generation of streaming potential in an out-
flow experiment. In addition, it was also found that a good
estimation of m and n relies on a correct surface conduc-
tivity value in the coupled inversion. The numerical find-
ings in this study can serve as guidance in estimating soil
petrophysical properties and their uncertainty from outflow
experiments.
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