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Abstract
By filtering the incoming climate signal when producing streamflow, river basins can attenuate—or
amplify—projected increases in rainfall variability. A common perception is that river systems
dampen rainfall variability by averaging spatial and temporal variations in their watersheds.
However, by analyzing 671 watersheds throughout the United States, we find that many catchments
actually amplify the coefficient of variation of rainfall, and that these catchments also likely amplify
changes in rainfall variability. Based on catchment-scale water balance principles, we relate that
faculty to the interplay between two fundamental hydrological processes: water uptake by
vegetation and the storage and subsequent release of water as discharge. By increasing plant water
uptake, warmer temperatures might exacerbate the amplifying effect of catchments. More variable
precipitations associated with a warmer climate are therefore expected to lead to even more
variable river flows—a significant potential challenge for river transportation, ecosystem
sustainability and water supply reliability.

1. Introduction

The temporal variability of stream flow mediates
a variety of social and ecological outcomes. For
example, daily flow variability determines the suitab-
ility of aquatic habitats (Fabris et al 2018), whereas
variations over longer time scales affect the resilience
of water supply (Vogel and Bolognese 1995), river
transportation (Marengo et al 2013), local economic
development (Brown and Lall 2006) and the potential
for violent conflicts (Roche et al 2020). The coefficient
of variation of stream flow (CVQ, defined as the ratio
between the standard deviation of flow and its mean)
plays a particularly important role, demarcating
whether riverine processes are variance-dominated,
with long periods of little to no flow interspersed with
erratic bursts of high discharge, or mean-dominated,
with flow rates persistently at or near their long-term
mean. This distinction has implications for the form,
function and resilience of river-dependent systems
(Botter et al 2013).

Although driven by the variability of incoming
precipitation, stream flow variability is ultimately
determined by physical processes that take place
throughout (and below) the land surface. Through
these processes, catchments regulate stochastic
weather fluctuations to sustain stream-dependent
social and ecological systems, and to potentially buf-
fer these systems against changes in these fluctuations
(Chezik et al 2017, Teutschbein et al 2018). This
buffering of water variability is commonly deemed
an ecosystem service provided by the catchment
(Guswa et al 2017), and emerges from a long-term
co-evolution between the landscapes and the sys-
tems that depend on them, against the backdrop of
a continually changing climate (Dietrich and Perron
2006, Sivapalan 2006, Porder 2014, Troch et al 2015,
Fan et al 2019). Yet today’s climate is changing at
an unprecedented rate. The temporal variability of
rainfall is projected to increase in most regions of the
world, where increased temperatures will be associ-
atedwithmore intense and less frequent precipitation
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events (Donat et al 2016). The standard deviation of
daily rainfall is projected to be more sensitive than
rainfall averages to changing temperatures (4%–5%
per ◦C versus ⩽1%–2% per ◦C) (Donat et al 2016,
Pendergrass et al 2017). The coefficient of variation
of both rainfall and stream flow has increased signi-
ficantly in most regions of the United States over the
last four decades (red in figure 1(a)). The ability of
social and ecological systems to adapt to these changes
is determined by the capacity of river catchments to
buffer the effect of rapidly changing rainfall variabil-
ity as they generate flow.

Using daily stream flow and precipitation data
from 671 catchments located across the con-
tiguous United States for the 1980–2015 period
(see section 4), this paper highlights three import-
ant characteristics of catchments’ ability to modulate
climate variability. First, we show that many catch-
ments in fact amplify the variability (as quantified
by CV) of incoming precipitation (figures 1(a)–(c)).
Second, these catchments might also amplify projec-
ted changes in rainfall variability, which has poten-
tially troubling implications for stream-dependent
social and ecological systems. Third, we show that
both characteristics are time-scale dependent, mean-
ing that a catchment can simultaneously dampen
the CV of daily rainfall while amplifying the CV of
monthly rainfall. This implies that a catchment’s
propensity to amplify changes in rainfall variabil-
ity might depend on the time scale that is relev-
ant for the considered application. We build on a
widely used model of catchment-scale water balance
dynamics (Rodriguez-Iturbe et al 1999, Porporato
et al 2004, Botter et al 2007), to relate the amplify-
ing effect of catchments to the interplay between two
fundamental hydrological processes: the partitioning
of rainfall into runoff and evapo-transpiration, and
the retention of non-evapotranspired water as stor-
age prior to its release as stream flow. We show that
an increase in the proportion of precipitation lost to
evapo-transpiration (e.g. due to higher temperatures
(Berghuijs et al 2014a)) will exacerbate the amplify-
ing effect of catchments and ultimately increase the
variability of stream flow, even if rainfall variability is
held constant. This suggests that projected increases
in rainfall variability and evapotranspirative losses
might both contribute to increasingly variable stream
flows.We show that these twomechanisms had a driv-
ing influence on observed historical changes in CVQ.

2. Results

The ratio r= CVQ

CVP
between the coefficients of vari-

ation of stream flow and precipitation spans sev-
eral orders of magnitude across the conterminous
United States. For about a third of the 671× 4 con-
sidered combinations of catchments and seasons,
daily stream flow has a higher coefficient of variation
than the incoming daily precipitation (figure 1(b)).

However, the analysis also reveals a persistent pattern
of variations in the r ratio across seasons, observa-
tion time scales and geographic regions, as shown
on figure 1(c). Catchments in seasons (summer) or
locations (Great Plains and Southwest) where tem-
perature and precipitation peaks are in phase see
a larger share of their precipitation ‘lost’ as evapo-
transpiration (Berghuijs et al 2014b) and tend to
amplify the variability of rainfall (r> 1). In contrast,
catchmentswhere flow generation is governed by long
term (seasonal) water storage, either as snow pack
(RockyMountains and High Plains) or in the subsur-
face (West Coast summers), tend to dampen the vari-
ability of daily rainfall. However, a majority (83%)
of catchments and seasons amplify the variability of
monthly rainfall (obtained from daily observations
using a 30 d moving average, figure 1(d)). Based on
these results, we hypothesize that the partitioning and
retention of rainfall by catchments, along with the
considered observation time scale, play an important
role in determining whether catchments amplify or
attenuate incoming rainfall variability.

We formalize this hypothesis by deriving the
r ratio of catchments based on four common,
albeit extremely simplifying, assumptions about the
underlying hydroclimatic processes. First, rainfall
is assumed to follow a stationary marked Poisson
process with exponentially distributed event depths
(Rodriguez-Iturbe et al 1999). Second, instantaneous
evapo-transpirative losses from the unsaturated zone
are assumed proportional to its volumetric water con-
tent. Under these conditions, pulses of deep infiltra-
tion from the unsaturated zone to the saturated zone
(here designated as ‘recharge events’) themselves fol-
low a stationary marked Poisson process with a lower
event frequency than rainfall, but with identically dis-
tributed event depths (Porporato et al 2004). Third,
stream flow generation by the saturated subsurface
is assumed proportional to the volume of stored
water (with proportionality constant, or inversemean
hydraulic response time, k [T−1]), implying an expo-
nential decrease in stream flow through time between
recharge events (Botter et al 2007). Lastly, contribu-
tions to stream flow from overland runoff and lateral
flows in the unsaturated zone are negligible, or effect-
ively captured via the exponential recession model.
Under these assumptions, the (squared) r ratio of
catchments can be expressed as (see section 4):

r2 =
CV2

Q

CV2
P

=
f(ψ)

ϕ
, (1)

where f(ψ) = ψ−1+e−ψ

ψ ∈ [0,1] is a strictly increasing
function. Parameter ϕ∈ [0, 1] represents the water
yield, that is, the proportion of the incoming rain-
fall that leaves the catchment as stream flow. Para-
meter ψ ⩾ 0 is the ratio between the observation
time scale (e.g. monthly versus daily flows) and
the mean hydraulic response time of the catchment
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Figure 1. (a) Changes in the coefficient of variation of daily streamflow (CVQ, large symbols) and precipitation (CVP , small
symbols) by season (symbol quadrants) and region of the conterminous United States. Colors indicate statistically significant
(p< 0.05) increases (red) or decreases (blue) between 1980 and 2015, as indicated by the statistical significance of linear
regression coefficients of CV against time. CV values are computed over successive periods of 5 years for 563 of the 671 considered
catchments with uninterrupted time series of observations (see section 4). Geographical regions (from Addor et al 2017)
correspond to the Pacific Northwest (PNW), Pacific Coast (PCS), Great Basin (GBS), Southwest (SWS), Rockies (RMT), High
Plains (HPN), Great Plains (GPN), Mississippi Valley (MSV), Great Lakes (GLK), Tennessee Valley (TNV), Gulf Coast (GCS),
Ohio Valley (OHV) and Atlantic Coast (ACS). Numbers below the symbols indicate the number of catchments per region. (b)
Gage locations of the 671 catchments of the dataset (Addor et al 2017), with symbols split into seasonal quadrants. Colors indicate
whether the CV of daily streamflow in the 1980–2015 period is larger (red) or smaller (blue) than rainfall. (c) Ratio between CVQ

and CVP for different regions (RMT vs. SWS, all seasons), seasons (summer vs. winter, all regions) and observation time scales
(daily vs. monthly-averaged observations, all seasons and regions). (d) Comparison between CVQ and CVP for monthly-averaged
observations. The proportion of catchment-season combinations with CVQ>CVP increased from 33% to 83%, compared to the
equivalent map for daily observations in Panel b.

(see section 4). Equation (1) allows isovalues of r to
be mapped on the ϕ×ψ plane (figure 2(a)). Of par-
ticular interest is the isovalue line r= 1, which sep-
arates catchments that amplify (above the line on
figure 2(a)) or attenuate precipitation variability. The
four assumptions that underpin equation (1) are
restrictive and likely fail to capture some of the pro-
cesses that dominate flow generation in individual
catchments. For example, the model is parametrized
independently for each season, which allows it to cap-
ture seasonal changes in rainfall and temperature: a
different water yield value is estimated for each sea-
son. However, carryover water storage between wet
and dry seasons (both as soil moisture and ground-
water) might violate themodel’s stationarity assump-
tion (Müller et al 2014). In addition, the stream
flow recession in many catchments might be better-
approximated as a nonlinear power-law relationship
(Patnaik et al 2018), rather than the linear storage-
discharge relationship assumed in equation (1).How-
ever, these processes are unlikely dominant controls
on CVQ at the daily to monthly time scales that we
consider, as suggested by the numerical simulations

presented in the Supplementary Discussion (available
online at stacks.iop.org/ERL/16/084032/mmedia).

Applied to the 671× 4 combinations of catch-
ments and seasons of the dataset at daily, weekly, and
monthly observation time scales, themodel predicted
observed values of r with a mean absolute percent-
age error (MAPE) of 49%. As expected, predictions
are substantially better in small catchments that are
well aligned with the lumped nature of the model,
and in regions and seasons where dominant hydro-
logic processes are expected to align with the the-
oretical assumptions of the model (figure 2(c)). For
example, snow-dominated hydrology throughout the
winter season in the Rocky Mountain region viol-
ates the assumption that catchment storage occurs
in the subsurface and is proportional to discharge
at the outlet. In many of the seasonally dry west-
ern regions, wet season onset during the Fall months
of September, October, and November violate the
assumption that rainfall statistics within a given sea-
son are stationary (Müller et al 2014). In the summer
months of the desert Southwest, monsoonal rain-
fall likely arrives in short, intense bursts that trigger
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Figure 2. (a) Theoretical (squared) r ratio as a function of the water yield ϕ and the ratio ψ between the observation time scale
and the mean response time of the catchment. Partitioning (ϕ) and retention (ψ) processes interact non-linearly to determine the
r ratio of catchments. (b) Empirical validation of catchment types (r> 1 vs r< 1). Colored dots represent 671 catchments× 4
seasons× 3 observation time scales (1, 7 and 30 days). Catchments with empirical r above (below) the unit are represented in red
(blue) and are located above (below) the theoretical separation line with an accuracy above 80%. (c) Absolute percentage error
(APE) between observed and predicted r ratios by geographical region and season. The mean APE across all catchments, seasons
and time scales (daily, weekly and monthly) is 49%, N = 8004. Removing 1616 observations in regions and seasons dominated by
snow (Fall and Winter in the Rockies, High Plains, Great Plains, Great Basin and Sierra Nevada) or desert monsoon (Summer and
Fall in the Southwest) reduces the mean APE to 33%.

overland flow (Howes and Abrahams 2003), which is
not strictly accounted for by the underlying runoff
generation model (Botter et al 2007). Removing the
15% of catchments in region-seasons, where hydro-
logy is likely dominated by snow (Fall and Winter in
the Rockies, High Plains, Great Plains, Great Basin
and Sierra Nevada) or overland flow (Summer and
Fall Monsoon in the Southwest) reduces the MAPE
to 33%. Notably, although simplifying assumptions
on streamflow recession have little effect at the daily
time scale, the theory does not accurately predict r at
theweekly ormonthly time scales for catchmentswith
strongly non-linear storage discharge relationships
(figure S6). We speculate that this is because longer
observation time scales (and the associated time aver-
aging) tend to shave off high flows and increase the
preponderance of lower flows, for which the effect
of non-linear storage-discharge on the recession limb
is most salient (Karst et al 2019). Despite its short-
comings in predicting the actual value of r in some
catchments, themodel predicted whether catchments
amplify (r> 1) or attenuate (r< 1) rainfall with an

accuracy above 80% for the full sample of catchments
and seasons (figure 2(b)). Model performance did
not vary substantially across observation time scales
(figure S6).

These results suggest that the amplifying effect
of catchments is ultimately determined by a compet-
ition between two fundamental processes captured
by the model, precipitation partitioning and storage
retention, which appear to transcend the complex and
highly local nature of stream flow generating pro-
cesses in individual catchments. On the one hand,
the water yield ϕ quantifies how infiltrated precipita-
tion is partitioned between river discharge and evapo-
transpiration. If all other conditions remain the same,
an increase in water yield increases the mean value of
stream flow and therefore decreases its coefficient of
variation and r ratio. On the other hand, the para-
meter ψ quantifies how non-evapotranspired water
is retained between precipitation events and gradu-
ally released into the stream. Catchment retention
affects stream flow variability differently for different
observation time scales. If the observation time scale
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exceeds the average response time of the catchment
(ψ > 1), the serial correlation introduced by catch-
ment retention is ‘integrated out’ in the observed
stream flow time series and will have little effect on
r. In contrast, stream flow observations taken at a
short enough time scale (ψ < 1)will capture the serial
correlation introduced by catchment retention. These
correlations attenuate the variance of stream flow and
therefore decrease r.

We turn to investigating whether catchments that
amplify the variability of incoming precipitation also
amplify changes in that variability. This may not be
the case, for instance, if changing rainfall variability
affects catchments’ ability to partition or retain water
through changes in vegetation cover or snow pack.
To estimate these effects, we use a linear regression
framework, where the r ratio is taken to be a func-
tion of relative rainfall variability (CVP) and time, and
where CVP is a function of time. Taking the full time-
derivative of the coefficient of variation of stream
flow, CVQ, then yields a linear function of ∂CVP

∂t and
CVP:

dCVQ

dt︸ ︷︷ ︸
Total

=
d(r ·CVP)

dt

= r
∂CVP

∂t︸ ︷︷ ︸
Direct

+
∂r

∂CVP

∂CVP

∂t
CVP︸ ︷︷ ︸

Indirect

+
∂r

∂t
CVP + r

∂CVP

∂r

∂r

∂t︸ ︷︷ ︸
Exogenous

. (2)

The first term of the derivative represents the dir-
ect (linear) response of the catchment to changing
rainfall variability, as described by the ratio r. This
term demonstrates that catchments that amplify rain-
fall variability may also amplify changes in rainfall
variability. The second term represents the indirect
(non linear) effect of changing rain regimes, where
the r ratio is itself a function of rainfall variabil-
ity. For example, more variable precipitation might
affect vegetation cover in a way that decreases the
proportion of rainfall lost to evapo-transpiration
(Feng et al 2015). This increase in water yield would
lower the r ratio (per equation (1)), in which case
∂r/∂CVP would be negative. The last terms repres-
ent the effects of an exogenous change in the r ratio
that is not elicited by a change in rainfall variabil-
ity. For example, warmer temperatures will cause less
precipitation to fall as snow, which has been linked
to lower water yields (Berghuijs et al 2014a). This
would increase r (per equation (1)) irrespective of
changing precipitation variability, in which case ∂r

∂t
would be positive. Such changes in catchment pro-
cesses will directly influence streamflow variability
(third term of equation (2)) but might also feed back

to affect the variability of precipitation (last term of
equation (2)), for instance by affecting precipitation
recycling processes (Spera et al 2016).

We use linear regressions to estimate the four
terms of equation (2) based on historical changes in
rain and flow variability (see section 4). We focus
on a subset of 563 catchments that have 35 years of
continuous daily observations available, as shown in
supplementary table S1. Regression results are shown
in supplementary table S2 and used to construct the
graphs on figure 3. Figure 3(a) shows a general histor-
ical increase in CVQ (p < 0.01) for daily, weekly and
monthly observations in all seasons, except winter
when CVQ decreased (p < 0.01). Changes in CVQ are
dominated by exogenous changes in r (figure 3(a),
red). This suggests that relative streamflow variability
might be particularly sensitive to changes in factors
(such as temperature (Berghuijs et al 2014a) and land
cover (Levy et al 2018)) known to strongly affect water
yield and recession behavior, which our theoretical
model associates with r. The indirect effect of changes
in CVP (green) generally operates in the opposite dir-
ection to the direct (blue) and exogenous (red) com-
ponents. This suggests that, on average across our
dataset, catchments tend to ‘adapt’ their response to
increasing rainfall variability so as to attenuate its
overall effect on the variability of river flow—a neg-
ative feedback that has been associated with hydrolo-
gic resilience in past studies (Harder et al 2015). The
indirect effect of CVP on changes in CVQ is also
substantially smaller in magnitude than the direct
effect. The ratio between the two effects is signific-
antly smaller in absolute value than 0.55 (p< 0.01)
for all seasons and observation time scales (dots on
figure 3(b)). Note that catchments in different geo-
graphic regions are lumped together in the linear
regressions in order for sample sizes to be sufficiently
large for statistical inference. Consequently, the res-
ults in figure 3 represent average effects across catch-
ments. To investigate regional disparities, we rep-
licated the analysis individually for each geographic
region (but lumping across seasons and observation
time scales). Results in figure S4 show that the exo-
genous effect varies substantially across regions, as
expected by the variety of factors affecting recession
and water yields across regions. However, the direc-
tions and relativemagnitude of the direct and indirect
effects are similar to those found in the main analysis.
In addition, a Monte Carlo analysis (see section 4)
carried out to simulate variations of the estimated
effect across catchments within the sample shows
that the direct effect remains larger than the indirect
effect for nearly all (>95%) simulated instances (box
plots on figure 3(b)). Together, these results suggest
that catchments that currently amplify rainfall vari-
ability are also likely to amplify changes in rainfall
variability.
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Figure 3. (a) Components of changes in historical CVQ. Dots represent the average annual change in CVQ across all gages
(N = 563) by season and for daily (D), weekly (W) and monthly (M) observations. Colored bars represent the direct (blue) and
indirect (green) contributions of changes in CVP , and the contribution of exogenous changes in r (red) estimated through linear
regression. (b) Ratio between the indirect and direct effects of CVP on historical changes in CVQ. Dots indicate the ratios between
α12 · E[CVP] and α1, where α1 and α12 are linear regression coefficients (see section 4) and E[CVP] is the observed CVP averaged
across gages. Bootstrapped 95% confidence intervals are smaller than symbol sizes so not displayed. Purple boxplots represent
simulated variations across catchments: α12 and α1 are drawn from independent normal distributions with mean and standard
deviation given by the linear regression estimates, and CVPs are observed individually at each gage. The ratio between the average
indirect and direct effects is smaller than 0.55 for all seasons and time scales (p< 0.01). The direct effect is larger than the indirect
effect for>95% of the simulations. (c) Comparison between the regression coefficient α2 (black) and empirically estimated r
ratios (purple), see section 4. Most regression coefficient lie within one standard deviation (error bar) of the mean empirical
observation of r (empty symbol).

3. Conclusion

River catchments filter incoming climate signals,
and therefore determine the extent to which chan-
ging rain regimes ultimately translate into chan-
ging water availability for stream-dependent social
and ecological systems. Whether a catchment amp-
lifies or attenuates changes in rainfall variabil-
ity emerges from the competition between two
fundamental hydrologic functions—partitioning
and retention—that are active in all watersheds.
The universal nature of these drivers can facilit-
ate the assessment of climate vulnerability in data-
scarce basins, which is an enduring global chal-
lenge (Blöschl et al 2019). The two parameters that
describe this competition—water yield and the mean
catchment response time—can be directly estim-
ated if (even sparse) rainfall and stream flow records
are available (Doulatyari et al 2015, Müller and
Thompson 2015).

These findings have three important implica-
tions in the context of climate change. First, by
decreasing the water yield (for instance by decreas-
ing the fraction of precipitation falling as snow
(Berghuijs et al 2014a)), increased temperatures will
likely increase catchments’ propensity to amplify the
relative variability of incoming rainfall. The model
associates any relative decrease in ϕ with an equi-
valent relative increase in r2, per the inverse pro-
portional relation between ϕ and r2 in equation (1).
This implies that, by affecting water yield, increasing

temperatures will increase the coefficient of variation
of stream flow, even if rainfall variability remains
constant. Regression results in figure 3(a) suggest
that, indeed, the effects of exogenous changes in r
(as might arise from changes in temperature) dom-
inate historical changes in CVQ. Second, partition-
ing (ϕ) and retention (ψ) interact non-linearly to
determine the r-ratio of the catchment. By capturing
this relation, the model may be used to evaluate the
effect of catchment alterations − land cover changes,
for instance− on the amplification or attenuation of
changing rainfall variability. For example, an increase
in water yield from ϕ= 0.36 to ϕ= 0.4 (perhaps
associated with deforestation (Levy et al 2018)) will
have a disproportionately large bearing on r2 for
catchments with short response times, where a large
value of ψ maps to steep isovalues of r in the ϕ×ψ
plane on figure 2(a). Third, the theory elucidates
the relation between observation time scales and
catchments’ ability to filter incoming rainfall vari-
ability. A catchment that attenuates rainfall variab-
ility for short (e.g. daily) observation time scales
will nonetheless amplify rainfall variability for suffi-
ciently long (e.g. monthly) time scales. The appro-
priate time scale of observation is determined by
the considered application. This implies that a given
catchment can both attenuate changes in rainfall vari-
ability for some applications (e.g. fish habitat driven
by daily variability), while amplifying it for others
(e.g. agricultural yields driven by seasonal variabil-
ity). Therefore, the application context, not only the
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underlying hydrologic processes, determines the vul-
nerability of watersheds to changing rain regimes
(Müller and Thompson 2019).

4. Methods

4.1. Data and pre-processing
Stream flow data were obtained from the Catch-
ment Attributes and Meteorology for Large Sample
Studies (CAMELS) dataset compiled by the United
States Geological Survey (Addor et al 2017). We used
precipitation data from the North America Land
Data Assimilation data preprocessed to match the
catchments of the CAMELS dataset (Addor et al
2017). The combined stream flow and precipitation
dataset is publicly available at https://ral.ucar.edu/
solutions/products/camels and provides daily rain-
fall and stream discharge observations from 671
gaged catchments withminimal human impact in the
lower 48 US states between 1980 and 2015. Observa-
tions from 16 season-catchment combinations, most
of them in winter, (supplementary table S1) were
removed because we were unable to identify suit-
able recessions to determine k (see below), likely
due to snow-dominated runoff processes. Separately,
we removed 108 gauges from the regression analysis
due to incomplete (interrupted) time series of obser-
vations (table S1). Our sample sizes were therefore
2668 and 2252 catchment-season combinations for
the validation and regression analyses, respectively.
All data used in both analyses are freely available at
https://curate.nd.edu/show/bc386h47534. As seen on
supplementary figure S1, the dataset covers a very
wide range of catchment sizes, topography, vegetation
and hydroclimatic characteristics (Addor et al 2017).

Time series of daily precipitation and stream flow
observations were split into four seasons according
to their observation month: December to February,
March to May, June to August and September to
November, respectively for Winter, Spring, Summer
and Fall. Moving average window of seven and thirty
days were then applied to aggregate the 35 years of
daily precipitation and stream flow time series into
weekly (T0 = 7) and monthly (T0 = 30) observation
time scales, respectively. The coefficients of variation
(CV) of precipitation and stream flow, and their ratio
r, were then computed using the aggregated time
series. Note that CVQ [−] is unit-less and repres-
ents the CV of both specific (i.e. area-normalized)
and total discharge. Water yields ϕ were computed
for each season and catchment by taking the ratio
between total seasonal stream flow volume and total
seasonal precipitation volume, both taken over the
whole period of data observation. Lastly, the lin-
ear recession constant k was estimated by identifying
suitable recessions (at least 4 consecutive days with
a decreasing, concave-up hydrograph) to be fitted
with non-linear least squares, as detailed in (Dralle
et al 2017b). The recession constant was used to

compute ψ= k ·T0 for each combination of catch-
ments, seasons, and observation time scales.

We estimated temporal changes in CVP and
CVQ by assuming that long-term precipitation and
stream flow dynamics emerge from stationary pro-
cesses that take place withinmultiple juxtaposed peri-
ods (Porporato et al 2006, Botter et al 2013). The
35 years of continuous daily observations available
for 563 catchments of the data-set (see supplement-
ary table S1) were split into seven non-overlapping
periods of five years. To ensure that our results are
not driven by the arbitrary period length, we repro-
duced our analyses using period lengths of two and
10 years (see supplementary figures S2 and S3). The
coefficients of variation of precipitation and river
flows were then computed for each period, catch-
ment, season and (daily, weekly and monthly) obser-
vation time scales. Pairs of successive periods (t− 1
and t) were then combined to estimate temporal
changes in stream flow and precipitation variability

(∆CV(t)
Q = CV(t)

Q −CV(t−1)
Q and ∆CV(t)

P = CV(t)
P −

CV(t−1)
P ) along with the average level of rainfall vari-

ability (CVP
(t)

= 0.5CV(t)
P + 0.5CV(t−1)

P ) across the
pair.

4.2. Hydrological model
The model assumes that precipitation is a marked
Poisson process, with frequency λP [T−1] and expo-
nentially distributed event volumes with (area-
normalized) mean αP [L] (Rodriguez-Iturbe et al
1999). Due to the assumed independence of rain
events, the CV of total rain volume, aggregated over
T0 days, is CVP =

√
2/(T0 λp) (see Supplementary

Discussion for derivation details). All incoming water
is assumed to infiltrate into a subsurface unsaturated
zone, meaning that canopy interception processes are
embedded in αP.

Once infiltrated, water exits the unsaturated
zone layer, either via evapo-transpiration (at a rate
assumed proportional to current unsaturated zone
water content (Porporato et al 2004)) or via percol-
ation into the saturated zone. Such runoff generating
recharge events are created when a contemporaneous
rain event causes unsaturated zone moisture con-
tent to exceed an effective field-capacity, where water
freely drains to the saturated zone. Under the above
assumptions about the rainfall process and drainage
from the unsaturated zone, it can be shown that the
probability distribution of depths of recharge events
is approximately equal (Botter et al 2007) to the prob-
ability distribution of rainfall depths (i.e. both distri-
butions are exponential with mean αp). Climate pro-
cesses and water storage dynamics in the unsaturated
zone therefore jointly determine the water delivered
to the saturated zone, which generates discharge in
the stream as the water table lowers between recharge
events. These recharge events can be described as a
marked Poisson process with a censored frequency
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λ < λP. The censoring ratio ϕ provides a simple
measure for quantifying the fraction of total rainfall
that exits the catchment as stream flow over the long
term (Doulatyari et al 2015), also known as the water
yield:

ϕ=
λ

λP
=
µQ
µP

∈ [0,1] (3)

where µp and µQ are the long-termmean precipitated
and discharged water volumes. Note that the above
expression neglects contributions to total stream flow
volume that are not associated with discharge gener-
ated by a subsurface saturated zone. This explains the
relatively poorer performance of the model in catch-
ments (e.g. SWS in summer, figure 2(c)) where over-
land flow is likely substantial.

Discharge at the catchment outlet is assumed pro-
portional to storage within the saturated zone, with a
proportionality constant k [T−1], implying an expo-
nential flow recession between rainfall events with
characteristic drainage timescale k−1 [T]. In contrast
to the rainfall and recharge events, the stream flow
time series is serially correlated due to the retention
and slow release of storage at a rate dependent on
the hydraulic response time of the catchment k−1

(Dralle et al 2017a). This process affects the vari-
ance of cumulative stream flow as follows (see Sup-
plementary Discussion for derivation details):

σ2Q = 2 λα2
Pk

−1
(
kT0 − 1+ e−kT0

)
. (4)

Expressing mean cumulative stream flow over a
period T0 as T0 λαP leads to an expression for the
coefficient of variation of stream flow (CVQ) and the
(squared) r ratio:

r2 =
CV2

Q

CV2
P

=
λP
λ

· kT0 − 1+ e−kT0

kT0
=

f(ψ)

ϕ
(5)

where ψ = kT0 > 0 is the ratio between the observa-
tion time scale (T0) and themean response time of the

catchment (k−1). The function f(ψ) = ψ−1+e−ψ

ψ ∈
[0,1] is strictly increasing and represents the serial
correlation introduced by retention, and its attenuat-
ing effect on streamflow variability.

The model was validated by computing the abso-
lute percentage error between the r2 ratio predicted
using equation (5) based on estimated k and ϕ, and
the r̂2 ratio obtained from empirical estimations of
CVQ and CVP:

APE= 100× | r2 − r̂2 |
r̂2

.

We also evaluated the model based on the fre-
quency of correct predictions of r< 1.

4.3. Regression analysis
We used linear regressions to analyse temporal
changes in CVQ and CVP. We first assessed time
trends in CV between subsequent periods. We
examined the sign and statistical significance of
the regression coefficient of CVQ and CVP cal-
culated for each period, against the median year
of the period. The analysis was conducted inde-
pendently for each season and geographical region
(figure 1(a)), with standard errors clustered by catch-
ment (Williams 2000).

To relate changes in CVQ to changes in CVP,
equation (2) is expressed as the following linear
regression:

∆CVQ︸ ︷︷ ︸
Total

= α0 +α1CVP︸ ︷︷ ︸
Exogenous

+α2 ·∆CVP︸ ︷︷ ︸
Direct

+α12 ·∆CVP ·CVP︸ ︷︷ ︸
Indirect

+ϵ. (6)

where ϵ is a random error term assumed to have a
mean value of zero and be independent across catch-
ments. Variables∆CVQ,∆CVP andCVP are obtained
from CVQ and CVP estimated for successive 5-year
periods of the observation record as described above.
Assuming that these estimates are discrete approxim-
ations of the corresponding terms in equation (2),
regression coefficients can be interpreted as the exo-
genous (α1 ≡ ∂r/∂t and α0 ≡ r · ∂CVP/∂r · ∂r/∂t),
direct (α2 ≡ r) and indirect (α12 ≡ ∂r/∂CVP) com-
ponents of ∂CVQ

∂t . Regression coefficients were estim-
ated for each season and observation time scale using
ordinary least squares, with standard errors clustered
by catchment (Williams 2000).

Plugging regression estimates back into
equation (6) and omitting random errors allowed
us to plot the average contributions of the direct,
indirect and exogenous effects on the average tem-
poral change in CVQ across catchments, for each
season and considered time scale (figure 3(a)). The
relative importance of the direct and indirect effects
was estimated by taking the ratio between the corres-
ponding terms of equation (6) (figure 3(b), dots). The
variability of this ratio across catchments was estim-
ated through numerical simulations by (a) sampling
CVP from the set of 563 catchment-averaged obser-
vations; (b) sampling α2 and α12 from independent
normal distributions with mean and standard devi-
ations given by the relevant regression estimates; and
(c) computing the ratio of indirect vs. direct effects as
CVP

α12
α2

. Box plots on figure 3(b) represent the distri-
bution of that ratio obtained from 1000 Monte Carlo
repetitions.

We carried out two robustness checks to build
confidence in our regression results. First, the ana-
lysis implies that the regression coefficient α2 can
be interpreted as the average value of r across all
catchments, as seen by comparing equations (2)
and (6). Figure 3(c) compares regression coefficient
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α2 (black) with r ratios obtained empirically from
period-of-record stream flow and precipitation
observations at each catchment (purple): α2 remains
within one standard deviation (error bar) of the
mean empirical value of r (empty symbols) for nearly
all seasons and time scales. Second, we replicated
the analysis using changes in CVQ and CVP estim-
ated over different periods lengths. Periods longer
(ten years) or shorter (two years) than the preferred
duration (five years) lead to increases in both the
uncertainty of regression estimates and in errors on
r≡α2 (supplementary figure S3). However, themean
contributions of the direct, indirect and exogen-
ous effects, and the spatial distribution of historical
trends, remain similar to those presented for periods
of five years (supplementary figures S2 and S3). We
interpret the errors and uncertainties for longer and
shorter periods as likely caused by sample size lim-
itations. Namely, there appears to be a tradeoff on
the duration of periods between (a) having enough
observations within each period to accurately estim-
ate CVP and CVQ at daily to monthly time scales and
(b) having enough periods represented to implement
the linear regression analysis over a large enough
sample size. The sensitivity analysis in supplement-
ary figure S3 points to the chosen period length of
five years as optimal in regards to that tradeoff.
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